| OLD | NEW |
| 1 // Copyright 2012 the V8 project authors. All rights reserved. | 1 // Copyright 2012 the V8 project authors. All rights reserved. |
| 2 // Redistribution and use in source and binary forms, with or without | 2 // Redistribution and use in source and binary forms, with or without |
| 3 // modification, are permitted provided that the following conditions are | 3 // modification, are permitted provided that the following conditions are |
| 4 // met: | 4 // met: |
| 5 // | 5 // |
| 6 // * Redistributions of source code must retain the above copyright | 6 // * Redistributions of source code must retain the above copyright |
| 7 // notice, this list of conditions and the following disclaimer. | 7 // notice, this list of conditions and the following disclaimer. |
| 8 // * Redistributions in binary form must reproduce the above | 8 // * Redistributions in binary form must reproduce the above |
| 9 // copyright notice, this list of conditions and the following | 9 // copyright notice, this list of conditions and the following |
| 10 // disclaimer in the documentation and/or other materials provided | 10 // disclaimer in the documentation and/or other materials provided |
| (...skipping 828 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
| 839 // determining that pointers are outside the heap (used mostly in assertions | 839 // determining that pointers are outside the heap (used mostly in assertions |
| 840 // and verification). The estimate is conservative, i.e., not all addresses in | 840 // and verification). The estimate is conservative, i.e., not all addresses in |
| 841 // 'allocated' space are actually allocated to our heap. The range is | 841 // 'allocated' space are actually allocated to our heap. The range is |
| 842 // [lowest, highest), inclusive on the low and and exclusive on the high end. | 842 // [lowest, highest), inclusive on the low and and exclusive on the high end. |
| 843 static void* lowest_ever_allocated = reinterpret_cast<void*>(-1); | 843 static void* lowest_ever_allocated = reinterpret_cast<void*>(-1); |
| 844 static void* highest_ever_allocated = reinterpret_cast<void*>(0); | 844 static void* highest_ever_allocated = reinterpret_cast<void*>(0); |
| 845 | 845 |
| 846 | 846 |
| 847 static void UpdateAllocatedSpaceLimits(void* address, int size) { | 847 static void UpdateAllocatedSpaceLimits(void* address, int size) { |
| 848 ASSERT(limit_mutex != NULL); | 848 ASSERT(limit_mutex != NULL); |
| 849 ScopedLock lock(limit_mutex); | 849 LockGuard<Mutex> lock_guard(limit_mutex); |
| 850 | 850 |
| 851 lowest_ever_allocated = Min(lowest_ever_allocated, address); | 851 lowest_ever_allocated = Min(lowest_ever_allocated, address); |
| 852 highest_ever_allocated = | 852 highest_ever_allocated = |
| 853 Max(highest_ever_allocated, | 853 Max(highest_ever_allocated, |
| 854 reinterpret_cast<void*>(reinterpret_cast<char*>(address) + size)); | 854 reinterpret_cast<void*>(reinterpret_cast<char*>(address) + size)); |
| 855 } | 855 } |
| 856 | 856 |
| 857 | 857 |
| 858 bool OS::IsOutsideAllocatedSpace(void* pointer) { | 858 bool OS::IsOutsideAllocatedSpace(void* pointer) { |
| 859 if (pointer < lowest_ever_allocated || pointer >= highest_ever_allocated) | 859 if (pointer < lowest_ever_allocated || pointer >= highest_ever_allocated) |
| (...skipping 841 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
| 1701 } | 1701 } |
| 1702 | 1702 |
| 1703 | 1703 |
| 1704 | 1704 |
| 1705 void Thread::YieldCPU() { | 1705 void Thread::YieldCPU() { |
| 1706 Sleep(0); | 1706 Sleep(0); |
| 1707 } | 1707 } |
| 1708 | 1708 |
| 1709 | 1709 |
| 1710 // ---------------------------------------------------------------------------- | 1710 // ---------------------------------------------------------------------------- |
| 1711 // Win32 mutex support. | |
| 1712 // | |
| 1713 // On Win32 mutexes are implemented using CRITICAL_SECTION objects. These are | |
| 1714 // faster than Win32 Mutex objects because they are implemented using user mode | |
| 1715 // atomic instructions. Therefore we only do ring transitions if there is lock | |
| 1716 // contention. | |
| 1717 | |
| 1718 class Win32Mutex : public Mutex { | |
| 1719 public: | |
| 1720 Win32Mutex() { InitializeCriticalSection(&cs_); } | |
| 1721 | |
| 1722 virtual ~Win32Mutex() { DeleteCriticalSection(&cs_); } | |
| 1723 | |
| 1724 virtual int Lock() { | |
| 1725 EnterCriticalSection(&cs_); | |
| 1726 return 0; | |
| 1727 } | |
| 1728 | |
| 1729 virtual int Unlock() { | |
| 1730 LeaveCriticalSection(&cs_); | |
| 1731 return 0; | |
| 1732 } | |
| 1733 | |
| 1734 | |
| 1735 virtual bool TryLock() { | |
| 1736 // Returns non-zero if critical section is entered successfully entered. | |
| 1737 return TryEnterCriticalSection(&cs_); | |
| 1738 } | |
| 1739 | |
| 1740 private: | |
| 1741 CRITICAL_SECTION cs_; // Critical section used for mutex | |
| 1742 }; | |
| 1743 | |
| 1744 | |
| 1745 Mutex* OS::CreateMutex() { | |
| 1746 return new Win32Mutex(); | |
| 1747 } | |
| 1748 | |
| 1749 | |
| 1750 // ---------------------------------------------------------------------------- | |
| 1751 // Win32 semaphore support. | 1711 // Win32 semaphore support. |
| 1752 // | 1712 // |
| 1753 // On Win32 semaphores are implemented using Win32 Semaphore objects. The | 1713 // On Win32 semaphores are implemented using Win32 Semaphore objects. The |
| 1754 // semaphores are anonymous. Also, the semaphores are initialized to have | 1714 // semaphores are anonymous. Also, the semaphores are initialized to have |
| 1755 // no upper limit on count. | 1715 // no upper limit on count. |
| 1756 | 1716 |
| 1757 | 1717 |
| 1758 class Win32Semaphore : public Semaphore { | 1718 class Win32Semaphore : public Semaphore { |
| 1759 public: | 1719 public: |
| 1760 explicit Win32Semaphore(int count) { | 1720 explicit Win32Semaphore(int count) { |
| (...skipping 222 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
| 1983 | 1943 |
| 1984 | 1944 |
| 1985 void OS::SetUp() { | 1945 void OS::SetUp() { |
| 1986 // Seed the random number generator. | 1946 // Seed the random number generator. |
| 1987 // Convert the current time to a 64-bit integer first, before converting it | 1947 // Convert the current time to a 64-bit integer first, before converting it |
| 1988 // to an unsigned. Going directly can cause an overflow and the seed to be | 1948 // to an unsigned. Going directly can cause an overflow and the seed to be |
| 1989 // set to all ones. The seed will be identical for different instances that | 1949 // set to all ones. The seed will be identical for different instances that |
| 1990 // call this setup code within the same millisecond. | 1950 // call this setup code within the same millisecond. |
| 1991 uint64_t seed = static_cast<uint64_t>(TimeCurrentMillis()); | 1951 uint64_t seed = static_cast<uint64_t>(TimeCurrentMillis()); |
| 1992 srand(static_cast<unsigned int>(seed)); | 1952 srand(static_cast<unsigned int>(seed)); |
| 1993 limit_mutex = CreateMutex(); | 1953 limit_mutex = new Mutex(); |
| 1994 } | 1954 } |
| 1995 | 1955 |
| 1996 | 1956 |
| 1997 void OS::TearDown() { | 1957 void OS::TearDown() { |
| 1998 delete limit_mutex; | 1958 delete limit_mutex; |
| 1999 } | 1959 } |
| 2000 | 1960 |
| 2001 | 1961 |
| 2002 } } // namespace v8::internal | 1962 } } // namespace v8::internal |
| OLD | NEW |