| Index: src/core/SkGeometry.cpp
|
| diff --git a/src/core/SkGeometry.cpp b/src/core/SkGeometry.cpp
|
| index 027b65f0f1962e82e0bbfc38afb77184a23fdc12..a3ebfb38a892740aed025a08e31653f9a5585e5c 100644
|
| --- a/src/core/SkGeometry.cpp
|
| +++ b/src/core/SkGeometry.cpp
|
| @@ -1153,12 +1153,6 @@
|
| return pow2;
|
| }
|
|
|
| -// This was originally developed and tested for pathops: see SkOpTypes.h
|
| -// returns true if (a <= b <= c) || (a >= b >= c)
|
| -static bool between(SkScalar a, SkScalar b, SkScalar c) {
|
| - return (a - b) * (c - b) <= 0;
|
| -}
|
| -
|
| static SkPoint* subdivide(const SkConic& src, SkPoint pts[], int level) {
|
| SkASSERT(level >= 0);
|
|
|
| @@ -1168,32 +1162,6 @@
|
| } else {
|
| SkConic dst[2];
|
| src.chop(dst);
|
| - const SkScalar startY = src.fPts[0].fY;
|
| - const SkScalar endY = src.fPts[2].fY;
|
| - if (between(startY, src.fPts[1].fY, endY)) {
|
| - // If the input is monotonic and the output is not, the scan converter hangs.
|
| - // Ensure that the chopped conics maintain their y-order.
|
| - SkScalar midY = dst[0].fPts[2].fY;
|
| - if (!between(startY, midY, endY)) {
|
| - // If the computed midpoint is outside the ends, move it to the closer one.
|
| - SkScalar closerY = SkTAbs(midY - startY) < SkTAbs(midY - endY) ? startY : endY;
|
| - dst[0].fPts[2].fY = dst[1].fPts[0].fY = closerY;
|
| - }
|
| - if (!between(startY, dst[0].fPts[1].fY, dst[0].fPts[2].fY)) {
|
| - // If the 1st control is not between the start and end, put it at the start.
|
| - // This also reduces the quad to a line.
|
| - dst[0].fPts[1].fY = startY;
|
| - }
|
| - if (!between(dst[1].fPts[0].fY, dst[1].fPts[1].fY, endY)) {
|
| - // If the 2nd control is not between the start and end, put it at the end.
|
| - // This also reduces the quad to a line.
|
| - dst[1].fPts[1].fY = endY;
|
| - }
|
| - // Verify that all five points are in order.
|
| - SkASSERT(between(startY, dst[0].fPts[1].fY, dst[0].fPts[2].fY));
|
| - SkASSERT(between(dst[0].fPts[1].fY, dst[0].fPts[2].fY, dst[1].fPts[1].fY));
|
| - SkASSERT(between(dst[0].fPts[2].fY, dst[1].fPts[1].fY, endY));
|
| - }
|
| --level;
|
| pts = subdivide(dst[0], pts, level);
|
| return subdivide(dst[1], pts, level);
|
|
|