Index: source/libvpx/vp9/common/vp9_reconinter.c |
=================================================================== |
--- source/libvpx/vp9/common/vp9_reconinter.c (revision 219822) |
+++ source/libvpx/vp9/common/vp9_reconinter.c (working copy) |
@@ -10,163 +10,17 @@ |
#include <assert.h> |
+#include "./vpx_scale_rtcd.h" |
#include "./vpx_config.h" |
+ |
#include "vpx/vpx_integer.h" |
+ |
#include "vp9/common/vp9_blockd.h" |
#include "vp9/common/vp9_filter.h" |
#include "vp9/common/vp9_reconinter.h" |
#include "vp9/common/vp9_reconintra.h" |
-#include "./vpx_scale_rtcd.h" |
-static int scale_value_x_with_scaling(int val, |
- const struct scale_factors *scale) { |
- return (val * scale->x_scale_fp >> VP9_REF_SCALE_SHIFT); |
-} |
-static int scale_value_y_with_scaling(int val, |
- const struct scale_factors *scale) { |
- return (val * scale->y_scale_fp >> VP9_REF_SCALE_SHIFT); |
-} |
- |
-static int unscaled_value(int val, const struct scale_factors *scale) { |
- (void) scale; |
- return val; |
-} |
- |
-static MV32 mv_q3_to_q4_with_scaling(const MV *mv, |
- const struct scale_factors *scale) { |
- const MV32 res = { |
- ((mv->row << 1) * scale->y_scale_fp >> VP9_REF_SCALE_SHIFT) |
- + scale->y_offset_q4, |
- ((mv->col << 1) * scale->x_scale_fp >> VP9_REF_SCALE_SHIFT) |
- + scale->x_offset_q4 |
- }; |
- return res; |
-} |
- |
-static MV32 mv_q3_to_q4_without_scaling(const MV *mv, |
- const struct scale_factors *scale) { |
- const MV32 res = { |
- mv->row << 1, |
- mv->col << 1 |
- }; |
- return res; |
-} |
- |
-static MV32 mv_q4_with_scaling(const MV *mv, |
- const struct scale_factors *scale) { |
- const MV32 res = { |
- (mv->row * scale->y_scale_fp >> VP9_REF_SCALE_SHIFT) + scale->y_offset_q4, |
- (mv->col * scale->x_scale_fp >> VP9_REF_SCALE_SHIFT) + scale->x_offset_q4 |
- }; |
- return res; |
-} |
- |
-static MV32 mv_q4_without_scaling(const MV *mv, |
- const struct scale_factors *scale) { |
- const MV32 res = { |
- mv->row, |
- mv->col |
- }; |
- return res; |
-} |
- |
-static void set_offsets_with_scaling(struct scale_factors *scale, |
- int row, int col) { |
- const int x_q4 = 16 * col; |
- const int y_q4 = 16 * row; |
- |
- scale->x_offset_q4 = (x_q4 * scale->x_scale_fp >> VP9_REF_SCALE_SHIFT) & 0xf; |
- scale->y_offset_q4 = (y_q4 * scale->y_scale_fp >> VP9_REF_SCALE_SHIFT) & 0xf; |
-} |
- |
-static void set_offsets_without_scaling(struct scale_factors *scale, |
- int row, int col) { |
- scale->x_offset_q4 = 0; |
- scale->y_offset_q4 = 0; |
-} |
- |
-static int get_fixed_point_scale_factor(int other_size, int this_size) { |
- // Calculate scaling factor once for each reference frame |
- // and use fixed point scaling factors in decoding and encoding routines. |
- // Hardware implementations can calculate scale factor in device driver |
- // and use multiplication and shifting on hardware instead of division. |
- return (other_size << VP9_REF_SCALE_SHIFT) / this_size; |
-} |
- |
-void vp9_setup_scale_factors_for_frame(struct scale_factors *scale, |
- int other_w, int other_h, |
- int this_w, int this_h) { |
- scale->x_scale_fp = get_fixed_point_scale_factor(other_w, this_w); |
- scale->x_offset_q4 = 0; // calculated per-mb |
- scale->x_step_q4 = (16 * scale->x_scale_fp >> VP9_REF_SCALE_SHIFT); |
- |
- scale->y_scale_fp = get_fixed_point_scale_factor(other_h, this_h); |
- scale->y_offset_q4 = 0; // calculated per-mb |
- scale->y_step_q4 = (16 * scale->y_scale_fp >> VP9_REF_SCALE_SHIFT); |
- |
- if ((other_w == this_w) && (other_h == this_h)) { |
- scale->scale_value_x = unscaled_value; |
- scale->scale_value_y = unscaled_value; |
- scale->set_scaled_offsets = set_offsets_without_scaling; |
- scale->scale_mv_q3_to_q4 = mv_q3_to_q4_without_scaling; |
- scale->scale_mv_q4 = mv_q4_without_scaling; |
- } else { |
- scale->scale_value_x = scale_value_x_with_scaling; |
- scale->scale_value_y = scale_value_y_with_scaling; |
- scale->set_scaled_offsets = set_offsets_with_scaling; |
- scale->scale_mv_q3_to_q4 = mv_q3_to_q4_with_scaling; |
- scale->scale_mv_q4 = mv_q4_with_scaling; |
- } |
- |
- // TODO(agrange): Investigate the best choice of functions to use here |
- // for EIGHTTAP_SMOOTH. Since it is not interpolating, need to choose what |
- // to do at full-pel offsets. The current selection, where the filter is |
- // applied in one direction only, and not at all for 0,0, seems to give the |
- // best quality, but it may be worth trying an additional mode that does |
- // do the filtering on full-pel. |
- if (scale->x_step_q4 == 16) { |
- if (scale->y_step_q4 == 16) { |
- // No scaling in either direction. |
- scale->predict[0][0][0] = vp9_convolve_copy; |
- scale->predict[0][0][1] = vp9_convolve_avg; |
- scale->predict[0][1][0] = vp9_convolve8_vert; |
- scale->predict[0][1][1] = vp9_convolve8_avg_vert; |
- scale->predict[1][0][0] = vp9_convolve8_horiz; |
- scale->predict[1][0][1] = vp9_convolve8_avg_horiz; |
- } else { |
- // No scaling in x direction. Must always scale in the y direction. |
- scale->predict[0][0][0] = vp9_convolve8_vert; |
- scale->predict[0][0][1] = vp9_convolve8_avg_vert; |
- scale->predict[0][1][0] = vp9_convolve8_vert; |
- scale->predict[0][1][1] = vp9_convolve8_avg_vert; |
- scale->predict[1][0][0] = vp9_convolve8; |
- scale->predict[1][0][1] = vp9_convolve8_avg; |
- } |
- } else { |
- if (scale->y_step_q4 == 16) { |
- // No scaling in the y direction. Must always scale in the x direction. |
- scale->predict[0][0][0] = vp9_convolve8_horiz; |
- scale->predict[0][0][1] = vp9_convolve8_avg_horiz; |
- scale->predict[0][1][0] = vp9_convolve8; |
- scale->predict[0][1][1] = vp9_convolve8_avg; |
- scale->predict[1][0][0] = vp9_convolve8_horiz; |
- scale->predict[1][0][1] = vp9_convolve8_avg_horiz; |
- } else { |
- // Must always scale in both directions. |
- scale->predict[0][0][0] = vp9_convolve8; |
- scale->predict[0][0][1] = vp9_convolve8_avg; |
- scale->predict[0][1][0] = vp9_convolve8; |
- scale->predict[0][1][1] = vp9_convolve8_avg; |
- scale->predict[1][0][0] = vp9_convolve8; |
- scale->predict[1][0][1] = vp9_convolve8_avg; |
- } |
- } |
- // 2D subpel motion always gets filtered in both directions |
- scale->predict[1][1][0] = vp9_convolve8; |
- scale->predict[1][1][1] = vp9_convolve8_avg; |
-} |
- |
void vp9_setup_interp_filters(MACROBLOCKD *xd, |
INTERPOLATIONFILTERTYPE mcomp_filter_type, |
VP9_COMMON *cm) { |
@@ -197,19 +51,20 @@ |
void vp9_build_inter_predictor(const uint8_t *src, int src_stride, |
uint8_t *dst, int dst_stride, |
- const int_mv *src_mv, |
+ const MV *src_mv, |
const struct scale_factors *scale, |
- int w, int h, int weight, |
+ int w, int h, int ref, |
const struct subpix_fn_table *subpix, |
enum mv_precision precision) { |
- const MV32 mv = precision == MV_PRECISION_Q4 |
- ? scale->scale_mv_q4(&src_mv->as_mv, scale) |
- : scale->scale_mv_q3_to_q4(&src_mv->as_mv, scale); |
- const int subpel_x = mv.col & 15; |
- const int subpel_y = mv.row & 15; |
+ const int is_q4 = precision == MV_PRECISION_Q4; |
+ const MV mv_q4 = { is_q4 ? src_mv->row : src_mv->row << 1, |
+ is_q4 ? src_mv->col : src_mv->col << 1 }; |
+ const MV32 mv = scale->scale_mv(&mv_q4, scale); |
+ const int subpel_x = mv.col & SUBPEL_MASK; |
+ const int subpel_y = mv.row & SUBPEL_MASK; |
- src += (mv.row >> 4) * src_stride + (mv.col >> 4); |
- scale->predict[!!subpel_x][!!subpel_y][weight]( |
+ src += (mv.row >> SUBPEL_BITS) * src_stride + (mv.col >> SUBPEL_BITS); |
+ scale->predict[subpel_x != 0][subpel_y != 0][ref]( |
src, src_stride, dst, dst_stride, |
subpix->filter_x[subpel_x], scale->x_step_q4, |
subpix->filter_y[subpel_y], scale->y_step_q4, |
@@ -220,195 +75,187 @@ |
return (value < 0 ? value - 2 : value + 2) / 4; |
} |
-static int mi_mv_pred_row_q4(MACROBLOCKD *mb, int idx) { |
- const int temp = mb->mode_info_context->bmi[0].as_mv[idx].as_mv.row + |
- mb->mode_info_context->bmi[1].as_mv[idx].as_mv.row + |
- mb->mode_info_context->bmi[2].as_mv[idx].as_mv.row + |
- mb->mode_info_context->bmi[3].as_mv[idx].as_mv.row; |
- return round_mv_comp_q4(temp); |
+static MV mi_mv_pred_q4(const MODE_INFO *mi, int idx) { |
+ MV res = { round_mv_comp_q4(mi->bmi[0].as_mv[idx].as_mv.row + |
+ mi->bmi[1].as_mv[idx].as_mv.row + |
+ mi->bmi[2].as_mv[idx].as_mv.row + |
+ mi->bmi[3].as_mv[idx].as_mv.row), |
+ round_mv_comp_q4(mi->bmi[0].as_mv[idx].as_mv.col + |
+ mi->bmi[1].as_mv[idx].as_mv.col + |
+ mi->bmi[2].as_mv[idx].as_mv.col + |
+ mi->bmi[3].as_mv[idx].as_mv.col) }; |
+ return res; |
} |
-static int mi_mv_pred_col_q4(MACROBLOCKD *mb, int idx) { |
- const int temp = mb->mode_info_context->bmi[0].as_mv[idx].as_mv.col + |
- mb->mode_info_context->bmi[1].as_mv[idx].as_mv.col + |
- mb->mode_info_context->bmi[2].as_mv[idx].as_mv.col + |
- mb->mode_info_context->bmi[3].as_mv[idx].as_mv.col; |
- return round_mv_comp_q4(temp); |
-} |
- |
// TODO(jkoleszar): yet another mv clamping function :-( |
-MV clamp_mv_to_umv_border_sb(const MV *src_mv, |
- int bwl, int bhl, int ss_x, int ss_y, |
- int mb_to_left_edge, int mb_to_top_edge, |
- int mb_to_right_edge, int mb_to_bottom_edge) { |
- /* If the MV points so far into the UMV border that no visible pixels |
- * are used for reconstruction, the subpel part of the MV can be |
- * discarded and the MV limited to 16 pixels with equivalent results. |
- */ |
- const int spel_left = (VP9_INTERP_EXTEND + (4 << bwl)) << 4; |
- const int spel_right = spel_left - (1 << 4); |
- const int spel_top = (VP9_INTERP_EXTEND + (4 << bhl)) << 4; |
- const int spel_bottom = spel_top - (1 << 4); |
- MV clamped_mv; |
- |
+MV clamp_mv_to_umv_border_sb(const MACROBLOCKD *xd, const MV *src_mv, |
+ int bw, int bh, int ss_x, int ss_y) { |
+ // If the MV points so far into the UMV border that no visible pixels |
+ // are used for reconstruction, the subpel part of the MV can be |
+ // discarded and the MV limited to 16 pixels with equivalent results. |
+ const int spel_left = (VP9_INTERP_EXTEND + bw) << SUBPEL_BITS; |
+ const int spel_right = spel_left - SUBPEL_SHIFTS; |
+ const int spel_top = (VP9_INTERP_EXTEND + bh) << SUBPEL_BITS; |
+ const int spel_bottom = spel_top - SUBPEL_SHIFTS; |
+ MV clamped_mv = { |
+ src_mv->row << (1 - ss_y), |
+ src_mv->col << (1 - ss_x) |
+ }; |
assert(ss_x <= 1); |
assert(ss_y <= 1); |
- clamped_mv.col = clamp(src_mv->col << (1 - ss_x), |
- (mb_to_left_edge << (1 - ss_x)) - spel_left, |
- (mb_to_right_edge << (1 - ss_x)) + spel_right); |
- clamped_mv.row = clamp(src_mv->row << (1 - ss_y), |
- (mb_to_top_edge << (1 - ss_y)) - spel_top, |
- (mb_to_bottom_edge << (1 - ss_y)) + spel_bottom); |
+ |
+ clamp_mv(&clamped_mv, (xd->mb_to_left_edge << (1 - ss_x)) - spel_left, |
+ (xd->mb_to_right_edge << (1 - ss_x)) + spel_right, |
+ (xd->mb_to_top_edge << (1 - ss_y)) - spel_top, |
+ (xd->mb_to_bottom_edge << (1 - ss_y)) + spel_bottom); |
+ |
return clamped_mv; |
} |
struct build_inter_predictors_args { |
MACROBLOCKD *xd; |
- int x; |
- int y; |
- uint8_t* dst[MAX_MB_PLANE]; |
- int dst_stride[MAX_MB_PLANE]; |
- uint8_t* pre[2][MAX_MB_PLANE]; |
- int pre_stride[2][MAX_MB_PLANE]; |
+ int x, y; |
}; |
-static void build_inter_predictors(int plane, int block, |
- BLOCK_SIZE_TYPE bsize, |
+ |
+static void build_inter_predictors(int plane, int block, BLOCK_SIZE bsize, |
int pred_w, int pred_h, |
void *argv) { |
const struct build_inter_predictors_args* const arg = argv; |
- MACROBLOCKD * const xd = arg->xd; |
- const int bwl = b_width_log2(bsize) - xd->plane[plane].subsampling_x; |
- const int bhl = b_height_log2(bsize) - xd->plane[plane].subsampling_y; |
- const int x = 4 * (block & ((1 << bwl) - 1)), y = 4 * (block >> bwl); |
- const int use_second_ref = xd->mode_info_context->mbmi.ref_frame[1] > 0; |
- int which_mv; |
+ MACROBLOCKD *const xd = arg->xd; |
+ struct macroblockd_plane *const pd = &xd->plane[plane]; |
+ const int bwl = b_width_log2(bsize) - pd->subsampling_x; |
+ const int bw = 4 << bwl; |
+ const int bh = plane_block_height(bsize, pd); |
+ const int x = 4 * (block & ((1 << bwl) - 1)); |
+ const int y = 4 * (block >> bwl); |
+ const MODE_INFO *const mi = xd->mode_info_context; |
+ const int use_second_ref = mi->mbmi.ref_frame[1] > 0; |
+ int ref; |
- assert(x < (4 << bwl)); |
- assert(y < (4 << bhl)); |
- assert(xd->mode_info_context->mbmi.sb_type < BLOCK_SIZE_SB8X8 || |
- 4 << pred_w == (4 << bwl)); |
- assert(xd->mode_info_context->mbmi.sb_type < BLOCK_SIZE_SB8X8 || |
- 4 << pred_h == (4 << bhl)); |
+ assert(x < bw); |
+ assert(y < bh); |
+ assert(mi->mbmi.sb_type < BLOCK_8X8 || 4 << pred_w == bw); |
+ assert(mi->mbmi.sb_type < BLOCK_8X8 || 4 << pred_h == bh); |
- for (which_mv = 0; which_mv < 1 + use_second_ref; ++which_mv) { |
- // source |
- const uint8_t * const base_pre = arg->pre[which_mv][plane]; |
- const int pre_stride = arg->pre_stride[which_mv][plane]; |
- const uint8_t *const pre = base_pre + |
- scaled_buffer_offset(x, y, pre_stride, &xd->scale_factor[which_mv]); |
- struct scale_factors * const scale = &xd->scale_factor[which_mv]; |
+ for (ref = 0; ref < 1 + use_second_ref; ++ref) { |
+ struct scale_factors *const scale = &xd->scale_factor[ref]; |
+ struct buf_2d *const pre_buf = &pd->pre[ref]; |
+ struct buf_2d *const dst_buf = &pd->dst; |
- // dest |
- uint8_t *const dst = arg->dst[plane] + arg->dst_stride[plane] * y + x; |
+ const uint8_t *const pre = pre_buf->buf + scaled_buffer_offset(x, y, |
+ pre_buf->stride, scale); |
- // motion vector |
- const MV *mv; |
- MV split_chroma_mv; |
- int_mv clamped_mv; |
+ uint8_t *const dst = dst_buf->buf + dst_buf->stride * y + x; |
- if (xd->mode_info_context->mbmi.sb_type < BLOCK_SIZE_SB8X8) { |
- if (plane == 0) { |
- mv = &xd->mode_info_context->bmi[block].as_mv[which_mv].as_mv; |
- } else { |
- // TODO(jkoleszar): All chroma MVs in SPLITMV mode are taken as the |
- // same MV (the average of the 4 luma MVs) but we could do something |
- // smarter for non-4:2:0. Just punt for now, pending the changes to get |
- // rid of SPLITMV mode entirely. |
- split_chroma_mv.row = mi_mv_pred_row_q4(xd, which_mv); |
- split_chroma_mv.col = mi_mv_pred_col_q4(xd, which_mv); |
- mv = &split_chroma_mv; |
- } |
- } else { |
- mv = &xd->mode_info_context->mbmi.mv[which_mv].as_mv; |
- } |
+ // TODO(jkoleszar): All chroma MVs in SPLITMV mode are taken as the |
+ // same MV (the average of the 4 luma MVs) but we could do something |
+ // smarter for non-4:2:0. Just punt for now, pending the changes to get |
+ // rid of SPLITMV mode entirely. |
+ const MV mv = mi->mbmi.sb_type < BLOCK_8X8 |
+ ? (plane == 0 ? mi->bmi[block].as_mv[ref].as_mv |
+ : mi_mv_pred_q4(mi, ref)) |
+ : mi->mbmi.mv[ref].as_mv; |
- /* TODO(jkoleszar): This clamping is done in the incorrect place for the |
- * scaling case. It needs to be done on the scaled MV, not the pre-scaling |
- * MV. Note however that it performs the subsampling aware scaling so |
- * that the result is always q4. |
- */ |
- clamped_mv.as_mv = clamp_mv_to_umv_border_sb(mv, bwl, bhl, |
- xd->plane[plane].subsampling_x, |
- xd->plane[plane].subsampling_y, |
- xd->mb_to_left_edge, |
- xd->mb_to_top_edge, |
- xd->mb_to_right_edge, |
- xd->mb_to_bottom_edge); |
- scale->set_scaled_offsets(scale, arg->y + y, arg->x + x); |
+ // TODO(jkoleszar): This clamping is done in the incorrect place for the |
+ // scaling case. It needs to be done on the scaled MV, not the pre-scaling |
+ // MV. Note however that it performs the subsampling aware scaling so |
+ // that the result is always q4. |
+ const MV res_mv = clamp_mv_to_umv_border_sb(xd, &mv, bw, bh, |
+ pd->subsampling_x, |
+ pd->subsampling_y); |
- vp9_build_inter_predictor(pre, pre_stride, |
- dst, arg->dst_stride[plane], |
- &clamped_mv, &xd->scale_factor[which_mv], |
- 4 << pred_w, 4 << pred_h, which_mv, |
+ scale->set_scaled_offsets(scale, arg->y + y, arg->x + x); |
+ vp9_build_inter_predictor(pre, pre_buf->stride, dst, dst_buf->stride, |
+ &res_mv, scale, |
+ 4 << pred_w, 4 << pred_h, ref, |
&xd->subpix, MV_PRECISION_Q4); |
} |
} |
-void vp9_build_inter_predictors_sby(MACROBLOCKD *xd, |
- int mi_row, |
- int mi_col, |
- BLOCK_SIZE_TYPE bsize) { |
- struct build_inter_predictors_args args = { |
- xd, mi_col * MI_SIZE, mi_row * MI_SIZE, |
- {xd->plane[0].dst.buf, NULL, NULL}, {xd->plane[0].dst.stride, 0, 0}, |
- {{xd->plane[0].pre[0].buf, NULL, NULL}, |
- {xd->plane[0].pre[1].buf, NULL, NULL}}, |
- {{xd->plane[0].pre[0].stride, 0, 0}, {xd->plane[0].pre[1].stride, 0, 0}}, |
- }; |
- foreach_predicted_block_in_plane(xd, bsize, 0, build_inter_predictors, &args); |
+// TODO(jkoleszar): In principle, pred_w, pred_h are unnecessary, as we could |
+// calculate the subsampled BLOCK_SIZE, but that type isn't defined for |
+// sizes smaller than 16x16 yet. |
+typedef void (*foreach_predicted_block_visitor)(int plane, int block, |
+ BLOCK_SIZE bsize, |
+ int pred_w, int pred_h, |
+ void *arg); |
+static INLINE void foreach_predicted_block_in_plane( |
+ const MACROBLOCKD* const xd, BLOCK_SIZE bsize, int plane, |
+ foreach_predicted_block_visitor visit, void *arg) { |
+ int i, x, y; |
+ |
+ // block sizes in number of 4x4 blocks log 2 ("*_b") |
+ // 4x4=0, 8x8=2, 16x16=4, 32x32=6, 64x64=8 |
+ // subsampled size of the block |
+ const int bwl = b_width_log2(bsize) - xd->plane[plane].subsampling_x; |
+ const int bhl = b_height_log2(bsize) - xd->plane[plane].subsampling_y; |
+ |
+ // size of the predictor to use. |
+ int pred_w, pred_h; |
+ |
+ if (xd->mode_info_context->mbmi.sb_type < BLOCK_8X8) { |
+ assert(bsize == BLOCK_8X8); |
+ pred_w = 0; |
+ pred_h = 0; |
+ } else { |
+ pred_w = bwl; |
+ pred_h = bhl; |
+ } |
+ assert(pred_w <= bwl); |
+ assert(pred_h <= bhl); |
+ |
+ // visit each subblock in raster order |
+ i = 0; |
+ for (y = 0; y < 1 << bhl; y += 1 << pred_h) { |
+ for (x = 0; x < 1 << bwl; x += 1 << pred_w) { |
+ visit(plane, i, bsize, pred_w, pred_h, arg); |
+ i += 1 << pred_w; |
+ } |
+ i += (1 << (bwl + pred_h)) - (1 << bwl); |
+ } |
} |
-void vp9_build_inter_predictors_sbuv(MACROBLOCKD *xd, |
- int mi_row, |
- int mi_col, |
- BLOCK_SIZE_TYPE bsize) { |
- struct build_inter_predictors_args args = { |
- xd, mi_col * MI_SIZE, mi_row * MI_SIZE, |
-#if CONFIG_ALPHA |
- {NULL, xd->plane[1].dst.buf, xd->plane[2].dst.buf, |
- xd->plane[3].dst.buf}, |
- {0, xd->plane[1].dst.stride, xd->plane[1].dst.stride, |
- xd->plane[3].dst.stride}, |
- {{NULL, xd->plane[1].pre[0].buf, xd->plane[2].pre[0].buf, |
- xd->plane[3].pre[0].buf}, |
- {NULL, xd->plane[1].pre[1].buf, xd->plane[2].pre[1].buf, |
- xd->plane[3].pre[1].buf}}, |
- {{0, xd->plane[1].pre[0].stride, xd->plane[1].pre[0].stride, |
- xd->plane[3].pre[0].stride}, |
- {0, xd->plane[1].pre[1].stride, xd->plane[1].pre[1].stride, |
- xd->plane[3].pre[1].stride}}, |
-#else |
- {NULL, xd->plane[1].dst.buf, xd->plane[2].dst.buf}, |
- {0, xd->plane[1].dst.stride, xd->plane[1].dst.stride}, |
- {{NULL, xd->plane[1].pre[0].buf, xd->plane[2].pre[0].buf}, |
- {NULL, xd->plane[1].pre[1].buf, xd->plane[2].pre[1].buf}}, |
- {{0, xd->plane[1].pre[0].stride, xd->plane[1].pre[0].stride}, |
- {0, xd->plane[1].pre[1].stride, xd->plane[1].pre[1].stride}}, |
-#endif |
- }; |
- foreach_predicted_block_uv(xd, bsize, build_inter_predictors, &args); |
+ |
+static void build_inter_predictors_for_planes(MACROBLOCKD *xd, BLOCK_SIZE bsize, |
+ int mi_row, int mi_col, |
+ int plane_from, int plane_to) { |
+ int plane; |
+ for (plane = plane_from; plane <= plane_to; ++plane) { |
+ struct build_inter_predictors_args args = { |
+ xd, mi_col * MI_SIZE, mi_row * MI_SIZE, |
+ }; |
+ foreach_predicted_block_in_plane(xd, bsize, plane, build_inter_predictors, |
+ &args); |
+ } |
} |
-void vp9_build_inter_predictors_sb(MACROBLOCKD *xd, |
- int mi_row, int mi_col, |
- BLOCK_SIZE_TYPE bsize) { |
- vp9_build_inter_predictors_sby(xd, mi_row, mi_col, bsize); |
- vp9_build_inter_predictors_sbuv(xd, mi_row, mi_col, bsize); |
+void vp9_build_inter_predictors_sby(MACROBLOCKD *xd, int mi_row, int mi_col, |
+ BLOCK_SIZE bsize) { |
+ build_inter_predictors_for_planes(xd, bsize, mi_row, mi_col, 0, 0); |
} |
+void vp9_build_inter_predictors_sbuv(MACROBLOCKD *xd, int mi_row, int mi_col, |
+ BLOCK_SIZE bsize) { |
+ build_inter_predictors_for_planes(xd, bsize, mi_row, mi_col, 1, |
+ MAX_MB_PLANE - 1); |
+} |
+void vp9_build_inter_predictors_sb(MACROBLOCKD *xd, int mi_row, int mi_col, |
+ BLOCK_SIZE bsize) { |
+ build_inter_predictors_for_planes(xd, bsize, mi_row, mi_col, 0, |
+ MAX_MB_PLANE - 1); |
+} |
// TODO(dkovalev: find better place for this function) |
void vp9_setup_scale_factors(VP9_COMMON *cm, int i) { |
const int ref = cm->active_ref_idx[i]; |
struct scale_factors *const sf = &cm->active_ref_scale[i]; |
if (ref >= NUM_YV12_BUFFERS) { |
- memset(sf, 0, sizeof(*sf)); |
+ vp9_zero(*sf); |
} else { |
YV12_BUFFER_CONFIG *const fb = &cm->yv12_fb[ref]; |
vp9_setup_scale_factors_for_frame(sf, |
fb->y_crop_width, fb->y_crop_height, |
cm->width, cm->height); |
- if (sf->x_scale_fp != VP9_REF_NO_SCALE || |
- sf->y_scale_fp != VP9_REF_NO_SCALE) |
+ if (vp9_is_scaled(sf)) |
vp9_extend_frame_borders(fb, cm->subsampling_x, cm->subsampling_y); |
} |
} |