Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(444)

Side by Side Diff: source/libvpx/vp9/encoder/vp9_segmentation.c

Issue 23600008: libvpx: Pull from upstream (Closed) Base URL: svn://chrome-svn/chrome/trunk/deps/third_party/libvpx/
Patch Set: Created 7 years, 3 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View unified diff | Download patch | Annotate | Revision Log
« no previous file with comments | « source/libvpx/vp9/encoder/vp9_rdopt.c ('k') | source/libvpx/vp9/encoder/vp9_temporal_filter.c » ('j') | no next file with comments »
Toggle Intra-line Diffs ('i') | Expand Comments ('e') | Collapse Comments ('c') | Show Comments Hide Comments ('s')
OLDNEW
1 /* 1 /*
2 * Copyright (c) 2012 The WebM project authors. All Rights Reserved. 2 * Copyright (c) 2012 The WebM project authors. All Rights Reserved.
3 * 3 *
4 * Use of this source code is governed by a BSD-style license 4 * Use of this source code is governed by a BSD-style license
5 * that can be found in the LICENSE file in the root of the source 5 * that can be found in the LICENSE file in the root of the source
6 * tree. An additional intellectual property rights grant can be found 6 * tree. An additional intellectual property rights grant can be found
7 * in the file PATENTS. All contributing project authors may 7 * in the file PATENTS. All contributing project authors may
8 * be found in the AUTHORS file in the root of the source tree. 8 * be found in the AUTHORS file in the root of the source tree.
9 */ 9 */
10 10
11 11
12 #include <limits.h> 12 #include <limits.h>
13 #include "vpx_mem/vpx_mem.h" 13 #include "vpx_mem/vpx_mem.h"
14 #include "vp9/encoder/vp9_segmentation.h" 14 #include "vp9/encoder/vp9_segmentation.h"
15 #include "vp9/common/vp9_pred_common.h" 15 #include "vp9/common/vp9_pred_common.h"
16 #include "vp9/common/vp9_tile_common.h" 16 #include "vp9/common/vp9_tile_common.h"
17 17
18 void vp9_enable_segmentation(VP9_PTR ptr) { 18 void vp9_enable_segmentation(VP9_PTR ptr) {
19 VP9_COMP *cpi = (VP9_COMP *)ptr; 19 VP9_COMP *cpi = (VP9_COMP *)ptr;
20 struct segmentation *const seg = &cpi->common.seg;
20 21
21 cpi->mb.e_mbd.seg.enabled = 1; 22 seg->enabled = 1;
22 cpi->mb.e_mbd.seg.update_map = 1; 23 seg->update_map = 1;
23 cpi->mb.e_mbd.seg.update_data = 1; 24 seg->update_data = 1;
24 } 25 }
25 26
26 void vp9_disable_segmentation(VP9_PTR ptr) { 27 void vp9_disable_segmentation(VP9_PTR ptr) {
27 VP9_COMP *cpi = (VP9_COMP *)ptr; 28 VP9_COMP *cpi = (VP9_COMP *)ptr;
28 cpi->mb.e_mbd.seg.enabled = 0; 29 struct segmentation *const seg = &cpi->common.seg;
30 seg->enabled = 0;
29 } 31 }
30 32
31 void vp9_set_segmentation_map(VP9_PTR ptr, 33 void vp9_set_segmentation_map(VP9_PTR ptr,
32 unsigned char *segmentation_map) { 34 unsigned char *segmentation_map) {
33 VP9_COMP *cpi = (VP9_COMP *)(ptr); 35 VP9_COMP *cpi = (VP9_COMP *)ptr;
36 struct segmentation *const seg = &cpi->common.seg;
34 37
35 // Copy in the new segmentation map 38 // Copy in the new segmentation map
36 vpx_memcpy(cpi->segmentation_map, segmentation_map, 39 vpx_memcpy(cpi->segmentation_map, segmentation_map,
37 (cpi->common.mi_rows * cpi->common.mi_cols)); 40 (cpi->common.mi_rows * cpi->common.mi_cols));
38 41
39 // Signal that the map should be updated. 42 // Signal that the map should be updated.
40 cpi->mb.e_mbd.seg.update_map = 1; 43 seg->update_map = 1;
41 cpi->mb.e_mbd.seg.update_data = 1; 44 seg->update_data = 1;
42 } 45 }
43 46
44 void vp9_set_segment_data(VP9_PTR ptr, 47 void vp9_set_segment_data(VP9_PTR ptr,
45 signed char *feature_data, 48 signed char *feature_data,
46 unsigned char abs_delta) { 49 unsigned char abs_delta) {
47 VP9_COMP *cpi = (VP9_COMP *)(ptr); 50 VP9_COMP *cpi = (VP9_COMP *)ptr;
51 struct segmentation *const seg = &cpi->common.seg;
48 52
49 cpi->mb.e_mbd.seg.abs_delta = abs_delta; 53 seg->abs_delta = abs_delta;
50 54
51 vpx_memcpy(cpi->mb.e_mbd.seg.feature_data, feature_data, 55 vpx_memcpy(seg->feature_data, feature_data, sizeof(seg->feature_data));
52 sizeof(cpi->mb.e_mbd.seg.feature_data));
53 56
54 // TBD ?? Set the feature mask 57 // TBD ?? Set the feature mask
55 // vpx_memcpy(cpi->mb.e_mbd.segment_feature_mask, 0, 58 // vpx_memcpy(cpi->mb.e_mbd.segment_feature_mask, 0,
56 // sizeof(cpi->mb.e_mbd.segment_feature_mask)); 59 // sizeof(cpi->mb.e_mbd.segment_feature_mask));
57 } 60 }
58 61
59 // Based on set of segment counts calculate a probability tree 62 // Based on set of segment counts calculate a probability tree
60 static void calc_segtree_probs(MACROBLOCKD *xd, int *segcounts, 63 static void calc_segtree_probs(int *segcounts, vp9_prob *segment_tree_probs) {
61 vp9_prob *segment_tree_probs) {
62 // Work out probabilities of each segment 64 // Work out probabilities of each segment
63 const int c01 = segcounts[0] + segcounts[1]; 65 const int c01 = segcounts[0] + segcounts[1];
64 const int c23 = segcounts[2] + segcounts[3]; 66 const int c23 = segcounts[2] + segcounts[3];
65 const int c45 = segcounts[4] + segcounts[5]; 67 const int c45 = segcounts[4] + segcounts[5];
66 const int c67 = segcounts[6] + segcounts[7]; 68 const int c67 = segcounts[6] + segcounts[7];
67 69
68 segment_tree_probs[0] = get_binary_prob(c01 + c23, c45 + c67); 70 segment_tree_probs[0] = get_binary_prob(c01 + c23, c45 + c67);
69 segment_tree_probs[1] = get_binary_prob(c01, c23); 71 segment_tree_probs[1] = get_binary_prob(c01, c23);
70 segment_tree_probs[2] = get_binary_prob(c45, c67); 72 segment_tree_probs[2] = get_binary_prob(c45, c67);
71 segment_tree_probs[3] = get_binary_prob(segcounts[0], segcounts[1]); 73 segment_tree_probs[3] = get_binary_prob(segcounts[0], segcounts[1]);
72 segment_tree_probs[4] = get_binary_prob(segcounts[2], segcounts[3]); 74 segment_tree_probs[4] = get_binary_prob(segcounts[2], segcounts[3]);
73 segment_tree_probs[5] = get_binary_prob(segcounts[4], segcounts[5]); 75 segment_tree_probs[5] = get_binary_prob(segcounts[4], segcounts[5]);
74 segment_tree_probs[6] = get_binary_prob(segcounts[6], segcounts[7]); 76 segment_tree_probs[6] = get_binary_prob(segcounts[6], segcounts[7]);
75 } 77 }
76 78
77 // Based on set of segment counts and probabilities calculate a cost estimate 79 // Based on set of segment counts and probabilities calculate a cost estimate
78 static int cost_segmap(MACROBLOCKD *xd, int *segcounts, vp9_prob *probs) { 80 static int cost_segmap(int *segcounts, vp9_prob *probs) {
79 const int c01 = segcounts[0] + segcounts[1]; 81 const int c01 = segcounts[0] + segcounts[1];
80 const int c23 = segcounts[2] + segcounts[3]; 82 const int c23 = segcounts[2] + segcounts[3];
81 const int c45 = segcounts[4] + segcounts[5]; 83 const int c45 = segcounts[4] + segcounts[5];
82 const int c67 = segcounts[6] + segcounts[7]; 84 const int c67 = segcounts[6] + segcounts[7];
83 const int c0123 = c01 + c23; 85 const int c0123 = c01 + c23;
84 const int c4567 = c45 + c67; 86 const int c4567 = c45 + c67;
85 87
86 // Cost the top node of the tree 88 // Cost the top node of the tree
87 int cost = c0123 * vp9_cost_zero(probs[0]) + 89 int cost = c0123 * vp9_cost_zero(probs[0]) +
88 c4567 * vp9_cost_one(probs[0]); 90 c4567 * vp9_cost_one(probs[0]);
(...skipping 40 matching lines...) Expand 10 before | Expand all | Expand 10 after
129 131
130 segment_id = mi->mbmi.segment_id; 132 segment_id = mi->mbmi.segment_id;
131 xd->mode_info_context = mi; 133 xd->mode_info_context = mi;
132 set_mi_row_col(cm, xd, mi_row, bh, mi_col, bw); 134 set_mi_row_col(cm, xd, mi_row, bh, mi_col, bw);
133 135
134 // Count the number of hits on each segment with no prediction 136 // Count the number of hits on each segment with no prediction
135 no_pred_segcounts[segment_id]++; 137 no_pred_segcounts[segment_id]++;
136 138
137 // Temporal prediction not allowed on key frames 139 // Temporal prediction not allowed on key frames
138 if (cm->frame_type != KEY_FRAME) { 140 if (cm->frame_type != KEY_FRAME) {
139 const BLOCK_SIZE_TYPE bsize = mi->mbmi.sb_type; 141 const BLOCK_SIZE bsize = mi->mbmi.sb_type;
140 // Test to see if the segment id matches the predicted value. 142 // Test to see if the segment id matches the predicted value.
141 const int pred_segment_id = vp9_get_segment_id(cm, cm->last_frame_seg_map, 143 const int pred_segment_id = vp9_get_segment_id(cm, cm->last_frame_seg_map,
142 bsize, mi_row, mi_col); 144 bsize, mi_row, mi_col);
143 const int pred_flag = pred_segment_id == segment_id; 145 const int pred_flag = pred_segment_id == segment_id;
144 const int pred_context = vp9_get_pred_context_seg_id(xd); 146 const int pred_context = vp9_get_pred_context_seg_id(xd);
145 147
146 // Store the prediction status for this mb and update counts 148 // Store the prediction status for this mb and update counts
147 // as appropriate 149 // as appropriate
148 vp9_set_pred_flag_seg_id(cm, bsize, mi_row, mi_col, pred_flag); 150 vp9_set_pred_flag_seg_id(cm, bsize, mi_row, mi_col, pred_flag);
149 temporal_predictor_count[pred_context][pred_flag]++; 151 temporal_predictor_count[pred_context][pred_flag]++;
150 152
151 if (!pred_flag) 153 if (!pred_flag)
152 // Update the "unpredicted" segment count 154 // Update the "unpredicted" segment count
153 t_unpred_seg_counts[segment_id]++; 155 t_unpred_seg_counts[segment_id]++;
154 } 156 }
155 } 157 }
156 158
157 static void count_segs_sb(VP9_COMP *cpi, MODE_INFO *mi, 159 static void count_segs_sb(VP9_COMP *cpi, MODE_INFO *mi,
158 int *no_pred_segcounts, 160 int *no_pred_segcounts,
159 int (*temporal_predictor_count)[2], 161 int (*temporal_predictor_count)[2],
160 int *t_unpred_seg_counts, 162 int *t_unpred_seg_counts,
161 int mi_row, int mi_col, 163 int mi_row, int mi_col,
162 BLOCK_SIZE_TYPE bsize) { 164 BLOCK_SIZE bsize) {
163 VP9_COMMON *const cm = &cpi->common; 165 const VP9_COMMON *const cm = &cpi->common;
164 const int mis = cm->mode_info_stride; 166 const int mis = cm->mode_info_stride;
165 int bwl, bhl; 167 int bw, bh;
166 const int bsl = mi_width_log2(bsize), bs = 1 << (bsl - 1); 168 const int bs = num_8x8_blocks_wide_lookup[bsize], hbs = bs / 2;
167 169
168 if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols) 170 if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols)
169 return; 171 return;
170 172
171 bwl = mi_width_log2(mi->mbmi.sb_type); 173 bw = num_8x8_blocks_wide_lookup[mi->mbmi.sb_type];
172 bhl = mi_height_log2(mi->mbmi.sb_type); 174 bh = num_8x8_blocks_high_lookup[mi->mbmi.sb_type];
173 175
174 if (bwl == bsl && bhl == bsl) { 176 if (bw == bs && bh == bs) {
175 count_segs(cpi, mi, no_pred_segcounts, temporal_predictor_count, 177 count_segs(cpi, mi, no_pred_segcounts, temporal_predictor_count,
176 t_unpred_seg_counts, 1 << bsl, 1 << bsl, mi_row, mi_col); 178 t_unpred_seg_counts, bs, bs, mi_row, mi_col);
177 } else if (bwl == bsl && bhl < bsl) { 179 } else if (bw == bs && bh < bs) {
178 count_segs(cpi, mi, no_pred_segcounts, temporal_predictor_count, 180 count_segs(cpi, mi, no_pred_segcounts, temporal_predictor_count,
179 t_unpred_seg_counts, 1 << bsl, bs, mi_row, mi_col); 181 t_unpred_seg_counts, bs, hbs, mi_row, mi_col);
180 count_segs(cpi, mi + bs * mis, no_pred_segcounts, temporal_predictor_count, 182 count_segs(cpi, mi + hbs * mis, no_pred_segcounts, temporal_predictor_count,
181 t_unpred_seg_counts, 1 << bsl, bs, mi_row + bs, mi_col); 183 t_unpred_seg_counts, bs, hbs, mi_row + hbs, mi_col);
182 } else if (bwl < bsl && bhl == bsl) { 184 } else if (bw < bs && bh == bs) {
183 count_segs(cpi, mi, no_pred_segcounts, temporal_predictor_count, 185 count_segs(cpi, mi, no_pred_segcounts, temporal_predictor_count,
184 t_unpred_seg_counts, bs, 1 << bsl, mi_row, mi_col); 186 t_unpred_seg_counts, hbs, bs, mi_row, mi_col);
185 count_segs(cpi, mi + bs, no_pred_segcounts, temporal_predictor_count, 187 count_segs(cpi, mi + hbs, no_pred_segcounts, temporal_predictor_count,
186 t_unpred_seg_counts, bs, 1 << bsl, mi_row, mi_col + bs); 188 t_unpred_seg_counts, hbs, bs, mi_row, mi_col + hbs);
187 } else { 189 } else {
188 BLOCK_SIZE_TYPE subsize; 190 const BLOCK_SIZE subsize = subsize_lookup[PARTITION_SPLIT][bsize];
189 int n; 191 int n;
190 192
191 assert(bwl < bsl && bhl < bsl); 193 assert(bw < bs && bh < bs);
192 if (bsize == BLOCK_SIZE_SB64X64) {
193 subsize = BLOCK_SIZE_SB32X32;
194 } else if (bsize == BLOCK_SIZE_SB32X32) {
195 subsize = BLOCK_SIZE_MB16X16;
196 } else {
197 assert(bsize == BLOCK_SIZE_MB16X16);
198 subsize = BLOCK_SIZE_SB8X8;
199 }
200 194
201 for (n = 0; n < 4; n++) { 195 for (n = 0; n < 4; n++) {
202 const int y_idx = n >> 1, x_idx = n & 0x01; 196 const int mi_dc = hbs * (n & 1);
197 const int mi_dr = hbs * (n >> 1);
203 198
204 count_segs_sb(cpi, mi + y_idx * bs * mis + x_idx * bs, 199 count_segs_sb(cpi, &mi[mi_dr * mis + mi_dc],
205 no_pred_segcounts, temporal_predictor_count, 200 no_pred_segcounts, temporal_predictor_count,
206 t_unpred_seg_counts, 201 t_unpred_seg_counts,
207 mi_row + y_idx * bs, mi_col + x_idx * bs, subsize); 202 mi_row + mi_dr, mi_col + mi_dc, subsize);
208 } 203 }
209 } 204 }
210 } 205 }
211 206
212 void vp9_choose_segmap_coding_method(VP9_COMP *cpi) { 207 void vp9_choose_segmap_coding_method(VP9_COMP *cpi) {
213 VP9_COMMON *const cm = &cpi->common; 208 VP9_COMMON *const cm = &cpi->common;
214 MACROBLOCKD *const xd = &cpi->mb.e_mbd; 209 struct segmentation *seg = &cm->seg;
215 210
216 int no_pred_cost; 211 int no_pred_cost;
217 int t_pred_cost = INT_MAX; 212 int t_pred_cost = INT_MAX;
218 213
219 int i, tile_col, mi_row, mi_col; 214 int i, tile_col, mi_row, mi_col;
220 215
221 int temporal_predictor_count[PREDICTION_PROBS][2]; 216 int temporal_predictor_count[PREDICTION_PROBS][2] = { { 0 } };
222 int no_pred_segcounts[MAX_SEGMENTS]; 217 int no_pred_segcounts[MAX_SEGMENTS] = { 0 };
223 int t_unpred_seg_counts[MAX_SEGMENTS]; 218 int t_unpred_seg_counts[MAX_SEGMENTS] = { 0 };
224 219
225 vp9_prob no_pred_tree[SEG_TREE_PROBS]; 220 vp9_prob no_pred_tree[SEG_TREE_PROBS];
226 vp9_prob t_pred_tree[SEG_TREE_PROBS]; 221 vp9_prob t_pred_tree[SEG_TREE_PROBS];
227 vp9_prob t_nopred_prob[PREDICTION_PROBS]; 222 vp9_prob t_nopred_prob[PREDICTION_PROBS];
228 223
229 const int mis = cm->mode_info_stride; 224 const int mis = cm->mode_info_stride;
230 MODE_INFO *mi_ptr, *mi; 225 MODE_INFO *mi_ptr, *mi;
231 226
232 // Set default state for the segment tree probabilities and the 227 // Set default state for the segment tree probabilities and the
233 // temporal coding probabilities 228 // temporal coding probabilities
234 vpx_memset(xd->seg.tree_probs, 255, sizeof(xd->seg.tree_probs)); 229 vpx_memset(seg->tree_probs, 255, sizeof(seg->tree_probs));
235 vpx_memset(xd->seg.pred_probs, 255, sizeof(xd->seg.pred_probs)); 230 vpx_memset(seg->pred_probs, 255, sizeof(seg->pred_probs));
236
237 vpx_memset(no_pred_segcounts, 0, sizeof(no_pred_segcounts));
238 vpx_memset(t_unpred_seg_counts, 0, sizeof(t_unpred_seg_counts));
239 vpx_memset(temporal_predictor_count, 0, sizeof(temporal_predictor_count));
240 231
241 // First of all generate stats regarding how well the last segment map 232 // First of all generate stats regarding how well the last segment map
242 // predicts this one 233 // predicts this one
243 for (tile_col = 0; tile_col < 1 << cm->log2_tile_cols; tile_col++) { 234 for (tile_col = 0; tile_col < 1 << cm->log2_tile_cols; tile_col++) {
244 vp9_get_tile_col_offsets(cm, tile_col); 235 vp9_get_tile_col_offsets(cm, tile_col);
245 mi_ptr = cm->mi + cm->cur_tile_mi_col_start; 236 mi_ptr = cm->mi + cm->cur_tile_mi_col_start;
246 for (mi_row = 0; mi_row < cm->mi_rows; 237 for (mi_row = 0; mi_row < cm->mi_rows;
247 mi_row += 8, mi_ptr += 8 * mis) { 238 mi_row += 8, mi_ptr += 8 * mis) {
248 mi = mi_ptr; 239 mi = mi_ptr;
249 for (mi_col = cm->cur_tile_mi_col_start; mi_col < cm->cur_tile_mi_col_end; 240 for (mi_col = cm->cur_tile_mi_col_start; mi_col < cm->cur_tile_mi_col_end;
250 mi_col += 8, mi += 8) 241 mi_col += 8, mi += 8)
251 count_segs_sb(cpi, mi, no_pred_segcounts, temporal_predictor_count, 242 count_segs_sb(cpi, mi, no_pred_segcounts, temporal_predictor_count,
252 t_unpred_seg_counts, mi_row, mi_col, BLOCK_SIZE_SB64X64); 243 t_unpred_seg_counts, mi_row, mi_col, BLOCK_64X64);
253 } 244 }
254 } 245 }
255 246
256 // Work out probability tree for coding segments without prediction 247 // Work out probability tree for coding segments without prediction
257 // and the cost. 248 // and the cost.
258 calc_segtree_probs(xd, no_pred_segcounts, no_pred_tree); 249 calc_segtree_probs(no_pred_segcounts, no_pred_tree);
259 no_pred_cost = cost_segmap(xd, no_pred_segcounts, no_pred_tree); 250 no_pred_cost = cost_segmap(no_pred_segcounts, no_pred_tree);
260 251
261 // Key frames cannot use temporal prediction 252 // Key frames cannot use temporal prediction
262 if (cm->frame_type != KEY_FRAME) { 253 if (cm->frame_type != KEY_FRAME) {
263 // Work out probability tree for coding those segments not 254 // Work out probability tree for coding those segments not
264 // predicted using the temporal method and the cost. 255 // predicted using the temporal method and the cost.
265 calc_segtree_probs(xd, t_unpred_seg_counts, t_pred_tree); 256 calc_segtree_probs(t_unpred_seg_counts, t_pred_tree);
266 t_pred_cost = cost_segmap(xd, t_unpred_seg_counts, t_pred_tree); 257 t_pred_cost = cost_segmap(t_unpred_seg_counts, t_pred_tree);
267 258
268 // Add in the cost of the signalling for each prediction context 259 // Add in the cost of the signalling for each prediction context
269 for (i = 0; i < PREDICTION_PROBS; i++) { 260 for (i = 0; i < PREDICTION_PROBS; i++) {
270 const int count0 = temporal_predictor_count[i][0]; 261 const int count0 = temporal_predictor_count[i][0];
271 const int count1 = temporal_predictor_count[i][1]; 262 const int count1 = temporal_predictor_count[i][1];
272 263
273 t_nopred_prob[i] = get_binary_prob(count0, count1); 264 t_nopred_prob[i] = get_binary_prob(count0, count1);
274 265
275 // Add in the predictor signaling cost 266 // Add in the predictor signaling cost
276 t_pred_cost += count0 * vp9_cost_zero(t_nopred_prob[i]) + 267 t_pred_cost += count0 * vp9_cost_zero(t_nopred_prob[i]) +
277 count1 * vp9_cost_one(t_nopred_prob[i]); 268 count1 * vp9_cost_one(t_nopred_prob[i]);
278 } 269 }
279 } 270 }
280 271
281 // Now choose which coding method to use. 272 // Now choose which coding method to use.
282 if (t_pred_cost < no_pred_cost) { 273 if (t_pred_cost < no_pred_cost) {
283 xd->seg.temporal_update = 1; 274 seg->temporal_update = 1;
284 vpx_memcpy(xd->seg.tree_probs, t_pred_tree, sizeof(t_pred_tree)); 275 vpx_memcpy(seg->tree_probs, t_pred_tree, sizeof(t_pred_tree));
285 vpx_memcpy(xd->seg.pred_probs, t_nopred_prob, sizeof(t_nopred_prob)); 276 vpx_memcpy(seg->pred_probs, t_nopred_prob, sizeof(t_nopred_prob));
286 } else { 277 } else {
287 xd->seg.temporal_update = 0; 278 seg->temporal_update = 0;
288 vpx_memcpy(xd->seg.tree_probs, no_pred_tree, sizeof(no_pred_tree)); 279 vpx_memcpy(seg->tree_probs, no_pred_tree, sizeof(no_pred_tree));
289 } 280 }
290 } 281 }
OLDNEW
« no previous file with comments | « source/libvpx/vp9/encoder/vp9_rdopt.c ('k') | source/libvpx/vp9/encoder/vp9_temporal_filter.c » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698