OLD | NEW |
(Empty) | |
| 1 // Copyright (c) 2013 The Chromium Authors. All rights reserved. |
| 2 // Use of this source code is governed by a BSD-style license that can be |
| 3 // found in the LICENSE file. |
| 4 |
| 5 #include "media/mp2t/es_parser_h264.h" |
| 6 |
| 7 #include "base/basictypes.h" |
| 8 #include "base/logging.h" |
| 9 #include "media/base/bit_reader.h" |
| 10 #include "media/base/buffers.h" |
| 11 #include "media/base/stream_parser_buffer.h" |
| 12 #include "media/base/video_decoder_config.h" |
| 13 #include "media/base/video_frame.h" |
| 14 #include "media/mp2t/mp2t_common.h" |
| 15 #include "ui/gfx/rect.h" |
| 16 #include "ui/gfx/size.h" |
| 17 |
| 18 static const int kExtendedSar = 255; |
| 19 |
| 20 static const int kTableSarWidth[14] = { |
| 21 1, 1, 12, 10, 16, 40, 24, 20, 32, 80, 18, 15, 64, 160 |
| 22 }; |
| 23 |
| 24 static const int kTableSarHeight[14] = { |
| 25 1, 1, 11, 11, 11, 33, 11, 11, 11, 33, 11, 11, 33, 99 |
| 26 }; |
| 27 |
| 28 namespace media { |
| 29 namespace mp2t { |
| 30 |
| 31 class BitReaderH264 : public BitReader { |
| 32 public: |
| 33 BitReaderH264(const uint8* data, off_t size) |
| 34 : BitReader(data, size) { } |
| 35 |
| 36 // Read an unsigned exp-golomb value. |
| 37 // Return true if successful. |
| 38 bool ReadBitsExpGolomb(uint32* exp_golomb_value); |
| 39 }; |
| 40 |
| 41 bool BitReaderH264::ReadBitsExpGolomb(uint32* exp_golomb_value) { |
| 42 // Get the number of leading zeros. |
| 43 int zero_count = 0; |
| 44 while (true) { |
| 45 int one_bit; |
| 46 RCHECK(ReadBits(1, &one_bit)); |
| 47 if (one_bit != 0) |
| 48 break; |
| 49 zero_count++; |
| 50 } |
| 51 |
| 52 // If zero_count is greater than 31, the calculated value will overflow. |
| 53 if (zero_count > 31) { |
| 54 SkipBits(zero_count); |
| 55 return false; |
| 56 } |
| 57 |
| 58 // Read the actual value. |
| 59 uint32 base = (1 << zero_count) - 1; |
| 60 uint32 offset; |
| 61 RCHECK(ReadBits(zero_count, &offset)); |
| 62 *exp_golomb_value = base + offset; |
| 63 |
| 64 return true; |
| 65 } |
| 66 |
| 67 EsParserH264::EsParserH264( |
| 68 NewVideoConfigCB new_video_config_cb, |
| 69 EmitBufferCB emit_buffer_cb) |
| 70 : nal_es_pos_(0), |
| 71 new_video_config_cb_(new_video_config_cb), |
| 72 emit_buffer_cb_(emit_buffer_cb), |
| 73 is_video_config_known_(false), |
| 74 profile_idc_(0), |
| 75 level_idc_(0), |
| 76 pic_width_in_mbs_minus1_(0), |
| 77 pic_height_in_map_units_minus1_(0) { |
| 78 } |
| 79 |
| 80 EsParserH264::~EsParserH264() { |
| 81 } |
| 82 |
| 83 bool EsParserH264::Parse(const uint8* buf, int size, |
| 84 base::TimeDelta pts, |
| 85 base::TimeDelta dts) { |
| 86 // Note: Parse is invoked each time a PES packet has been reassembled. |
| 87 // Unfortunately, a PES packet does not necessarily map |
| 88 // to an h264 access unit, although the HLS recommandation is to use one PES |
| 89 // for each access unit (but this is just a recommandation and some streams |
| 90 // do not comply with this recommandation). |
| 91 |
| 92 // Link position |raw_es_size| in the ES stream with a timing descriptor. |
| 93 // HLS recommandation: "In AVC video, you should have both a DTS and a |
| 94 // PTS in each PES header". |
| 95 if (dts == kNoTimestamp() && pts == kNoTimestamp()) { |
| 96 DVLOG(1) << "A timestamp must be provided for each reassembled PES"; |
| 97 Reset(); |
| 98 return false; |
| 99 } |
| 100 TimingDesc timing_desc; |
| 101 timing_desc.pts = pts; |
| 102 timing_desc.dts = (dts != kNoTimestamp()) ? dts : pts; |
| 103 |
| 104 int raw_es_size; |
| 105 const uint8* raw_es; |
| 106 es_byte_queue_.Peek(&raw_es, &raw_es_size); |
| 107 timing_desc_list_.push_back( |
| 108 std::pair<int, TimingDesc>(raw_es_size, timing_desc)); |
| 109 |
| 110 // Add the incoming bytes to the ES queue. |
| 111 es_byte_queue_.Push(buf, size); |
| 112 es_byte_queue_.Peek(&raw_es, &raw_es_size); |
| 113 |
| 114 // Add NALs from the incoming buffer. |
| 115 FindNals(); |
| 116 |
| 117 // Find access units based on AUD. |
| 118 std::list<NalDescList::const_iterator> access_unit_list; |
| 119 FindAccessUnits(&access_unit_list); |
| 120 if (access_unit_list.empty()) { |
| 121 DiscardEs(nal_es_pos_); |
| 122 return true; |
| 123 } |
| 124 |
| 125 // Emit all frames. |
| 126 std::list<NalDescList::const_iterator>::iterator it0 = |
| 127 access_unit_list.begin(); |
| 128 std::list<NalDescList::const_iterator>::iterator it1 = it0; |
| 129 ++it1; |
| 130 LOG_IF(WARNING, (*it0)->position != 0) |
| 131 << "Needs to discard some ES data before getting the 1st access unit: " |
| 132 << (*it0)->position; |
| 133 for (; it1 != access_unit_list.end(); ++it0, ++it1) { |
| 134 int nxt_frame_position = (*it1)->position; |
| 135 bool status = EmitFrame(*it0, *it1, nxt_frame_position); |
| 136 if (!status) { |
| 137 Reset(); |
| 138 return false; |
| 139 } |
| 140 } |
| 141 |
| 142 // Discard emitted frames. |
| 143 int last_position = access_unit_list.back()->position; |
| 144 DiscardEs(last_position); |
| 145 |
| 146 return true; |
| 147 } |
| 148 |
| 149 void EsParserH264::Flush() { |
| 150 // Find access units based on AUD. |
| 151 std::list<NalDescList::const_iterator> access_unit_list; |
| 152 FindAccessUnits(&access_unit_list); |
| 153 |
| 154 // At this point, there can be at most one access unit in the buffer. |
| 155 DCHECK_GE(access_unit_list.size(), 1u); |
| 156 if (!access_unit_list.empty()) { |
| 157 // Force emitting the last access unit (even if it might be incomplete). |
| 158 int nxt_frame_position = 0; |
| 159 const uint8* raw_es = NULL; |
| 160 es_byte_queue_.Peek(&raw_es, &nxt_frame_position); |
| 161 NalDescList::const_iterator cur_frame = *(access_unit_list.begin()); |
| 162 NalDescList::const_iterator nxt_frame = nal_desc_list_.end(); |
| 163 EmitFrame(cur_frame, nxt_frame, nxt_frame_position); |
| 164 } |
| 165 } |
| 166 |
| 167 void EsParserH264::Reset() { |
| 168 DVLOG(1) << "EsParserH264::Reset"; |
| 169 es_byte_queue_.Reset(); |
| 170 timing_desc_list_.clear(); |
| 171 nal_desc_list_.clear(); |
| 172 nal_es_pos_ = 0; |
| 173 is_video_config_known_ = false; |
| 174 } |
| 175 |
| 176 void EsParserH264::FindNals() { |
| 177 int raw_es_size; |
| 178 const uint8* raw_es; |
| 179 es_byte_queue_.Peek(&raw_es, &raw_es_size); |
| 180 |
| 181 DCHECK_GE(nal_es_pos_, 0); |
| 182 DCHECK_LT(nal_es_pos_, raw_es_size); |
| 183 |
| 184 // Resume NAL segmentation where it was left. |
| 185 for ( ; nal_es_pos_ < raw_es_size - 4; nal_es_pos_++) { |
| 186 // Make sure the syncword is either 00 00 00 01 or 00 00 01 |
| 187 if (raw_es[nal_es_pos_ + 0] != 0 || |
| 188 raw_es[nal_es_pos_ + 1] != 0) { |
| 189 continue; |
| 190 } |
| 191 int syncword_length = 0; |
| 192 if (raw_es[nal_es_pos_ + 2] == 0 && |
| 193 raw_es[nal_es_pos_ + 3] == 1) { |
| 194 syncword_length = 4; |
| 195 } else if (raw_es[nal_es_pos_ + 2] == 1) { |
| 196 syncword_length = 3; |
| 197 } else { |
| 198 continue; |
| 199 } |
| 200 |
| 201 // Retrieve the NAL type. |
| 202 int nal_header = raw_es[nal_es_pos_ + syncword_length]; |
| 203 int forbidden_zero_bit = (nal_header >> 7) & 0x1; |
| 204 NalDesc nal_desc; |
| 205 nal_desc.position = nal_es_pos_; |
| 206 nal_desc.nal_unit_type = static_cast<NalUnitType>(nal_header & 0x1f); |
| 207 if (forbidden_zero_bit != 0) |
| 208 nal_desc.nal_unit_type = kNalUnitTypeInvalid; |
| 209 DVLOG(LOG_LEVEL_ES) << "nal: offset=" << nal_desc.position |
| 210 << " type=" << nal_desc.nal_unit_type; |
| 211 nal_desc_list_.push_back(nal_desc); |
| 212 nal_es_pos_ += syncword_length; |
| 213 } |
| 214 } |
| 215 |
| 216 void EsParserH264::FindAccessUnits( |
| 217 std::list<NalDescList::const_iterator>* access_unit_list) { |
| 218 // Get the H264 access units based on AUD. |
| 219 // Mpeg2TS spec: "2.14 Carriage of Rec. ITU-T H.264 | ISO/IEC 14496-10 video" |
| 220 // "Each AVC access unit shall contain an access unit delimiter NAL Unit;" |
| 221 for (NalDescList::const_iterator it = nal_desc_list_.begin(); |
| 222 it != nal_desc_list_.end(); ++it) { |
| 223 if (it->nal_unit_type == kNalUnitTypeAUD) { |
| 224 DVLOG(LOG_LEVEL_ES) << "aud found @ pos=" << it->position; |
| 225 access_unit_list->push_back(it); |
| 226 } |
| 227 } |
| 228 } |
| 229 |
| 230 bool EsParserH264::EmitFrame( |
| 231 NalDescList::const_iterator& cur_frame, |
| 232 NalDescList::const_iterator& nxt_frame, |
| 233 int nxt_frame_position) { |
| 234 int raw_es_size; |
| 235 const uint8* raw_es; |
| 236 es_byte_queue_.Peek(&raw_es, &raw_es_size); |
| 237 |
| 238 // Current frame position = position of the 1st NAL of the frame. |
| 239 int cur_frame_position = cur_frame->position; |
| 240 int access_unit_size = nxt_frame_position - cur_frame_position; |
| 241 |
| 242 // Get the access unit timing info. |
| 243 TimingDesc current_timing_desc; |
| 244 while (!timing_desc_list_.empty() && |
| 245 timing_desc_list_.front().first <= cur_frame_position) { |
| 246 current_timing_desc = timing_desc_list_.front().second; |
| 247 timing_desc_list_.pop_front(); |
| 248 } |
| 249 |
| 250 // Check whether this is a key frame + light NAL parsing to get some |
| 251 // relevant information (e.g. SPS/PPS). |
| 252 // Note: it would have been nice to get the keyframe decision based |
| 253 // on the Mpeg2TS random_access_indicator but encoders sometimes just don't |
| 254 // bother setting this flag in the MPEG2 TS stream. |
| 255 bool is_key_frame = true; |
| 256 for (NalDescList::const_iterator it = cur_frame; it != nxt_frame; ++it) { |
| 257 if (it->nal_unit_type == kNalUnitTypeNonIdrSlice) |
| 258 is_key_frame = false; |
| 259 NalDescList::const_iterator next_nal_it = it; |
| 260 ++next_nal_it; |
| 261 int cur_nal_position = it->position; |
| 262 int nxt_nal_position = (next_nal_it == nxt_frame) |
| 263 ? nxt_frame_position : next_nal_it->position; |
| 264 int nal_size = nxt_nal_position - cur_nal_position; |
| 265 DCHECK_LE(cur_nal_position + nal_size, raw_es_size); |
| 266 bool nal_status = NalParser(&raw_es[cur_nal_position], nal_size); |
| 267 if (!nal_status) |
| 268 return false; |
| 269 } |
| 270 |
| 271 // Emit the current frame. |
| 272 DVLOG(LOG_LEVEL_ES) << "is_key_frame = " << is_key_frame; |
| 273 scoped_refptr<StreamParserBuffer> stream_parser_buffer = |
| 274 StreamParserBuffer::CopyFrom( |
| 275 &raw_es[cur_frame_position], |
| 276 access_unit_size, |
| 277 is_key_frame); |
| 278 stream_parser_buffer->SetDecodeTimestamp(current_timing_desc.dts); |
| 279 stream_parser_buffer->set_timestamp(current_timing_desc.pts); |
| 280 emit_buffer_cb_.Run(stream_parser_buffer); |
| 281 |
| 282 return true; |
| 283 } |
| 284 |
| 285 void EsParserH264::DiscardEs(int nbytes) { |
| 286 if (nbytes <= 0) |
| 287 return; |
| 288 |
| 289 // Update the NAL list accordingly. |
| 290 while (!nal_desc_list_.empty() && |
| 291 nal_desc_list_.front().position < nbytes) |
| 292 nal_desc_list_.pop_front(); |
| 293 for (NalDescList::iterator it = nal_desc_list_.begin(); |
| 294 it != nal_desc_list_.end(); ++it) { |
| 295 DCHECK(it->position >= nbytes); |
| 296 it->position -= nbytes; |
| 297 } |
| 298 nal_es_pos_ -= nbytes; |
| 299 if (nal_es_pos_ < 0) |
| 300 nal_es_pos_ = 0; |
| 301 |
| 302 // Update the timing information accordingly. |
| 303 std::list<std::pair<int, TimingDesc> >::iterator timing_it |
| 304 = timing_desc_list_.begin(); |
| 305 for (; timing_it != timing_desc_list_.end(); ++timing_it) |
| 306 timing_it->first -= nbytes; |
| 307 |
| 308 // Discard |nbytes| of ES. |
| 309 es_byte_queue_.Pop(nbytes); |
| 310 } |
| 311 |
| 312 bool EsParserH264::NalParser(const uint8* buf, int size) { |
| 313 // Discard the annexB syncword. |
| 314 if (size < 3 || buf[0] != 0 || buf[1] != 0 || |
| 315 !(buf[2] == 1 || (size >= 4 && buf[2] == 0 && buf[3] == 1))) { |
| 316 DVLOG(1) << "NalParser: bad annexB start code"; |
| 317 return false; |
| 318 } |
| 319 if (buf[2] == 1) { |
| 320 buf += 3; |
| 321 size -= 3; |
| 322 } else { |
| 323 buf += 4; |
| 324 size -= 4; |
| 325 } |
| 326 |
| 327 // Get the NAL header. |
| 328 if (size < 1) { |
| 329 DVLOG(1) << "NalParser: incomplete NAL"; |
| 330 return false; |
| 331 } |
| 332 int nal_header = buf[0]; |
| 333 buf += 1; |
| 334 size -= 1; |
| 335 |
| 336 int forbidden_zero_bit = (nal_header >> 7) & 0x1; |
| 337 if (forbidden_zero_bit != 0) |
| 338 return false; |
| 339 int nal_ref_idc = (nal_header >> 5) & 0x3; |
| 340 int nal_unit_type = nal_header & 0x1f; |
| 341 |
| 342 // TODO(damienv): |
| 343 // The nal start code emulation prevention should be un-done, |
| 344 // before parsing the NAL content. |
| 345 |
| 346 // Process the NAL content. |
| 347 if (nal_unit_type == kNalUnitTypeSPS) { |
| 348 DVLOG(LOG_LEVEL_ES) << "NAL: SPS"; |
| 349 // |nal_ref_idc| should not be 0 for a SPS. |
| 350 if (nal_ref_idc == 0) |
| 351 return false; |
| 352 return ProcessSPS(buf, size); |
| 353 } |
| 354 if (nal_unit_type == kNalUnitTypeIdrSlice) { |
| 355 DVLOG(LOG_LEVEL_ES) << "NAL: IDR slice"; |
| 356 return true; |
| 357 } |
| 358 if (nal_unit_type == kNalUnitTypeNonIdrSlice) { |
| 359 DVLOG(LOG_LEVEL_ES) << "NAL: Non IDR slice"; |
| 360 return true; |
| 361 } |
| 362 if (nal_unit_type == kNalUnitTypePPS) { |
| 363 DVLOG(LOG_LEVEL_ES) << "NAL: PPS"; |
| 364 return true; |
| 365 } |
| 366 if (nal_unit_type == kNalUnitTypeAUD) { |
| 367 DVLOG(LOG_LEVEL_ES) << "NAL: AUD"; |
| 368 return true; |
| 369 } |
| 370 |
| 371 DVLOG(LOG_LEVEL_ES) << "NAL: " << nal_unit_type; |
| 372 return true; |
| 373 } |
| 374 |
| 375 bool EsParserH264::ProcessSPS(const uint8* buf, int size) { |
| 376 if (size <= 0) |
| 377 return false; |
| 378 BitReaderH264 bit_reader(buf, size); |
| 379 |
| 380 int profile_idc; |
| 381 int constraint_setX_flag; |
| 382 int level_idc; |
| 383 uint32 seq_parameter_set_id; |
| 384 uint32 log2_max_frame_num_minus4; |
| 385 uint32 pic_order_cnt_type; |
| 386 RCHECK(bit_reader.ReadBits(8, &profile_idc)); |
| 387 RCHECK(bit_reader.ReadBits(8, &constraint_setX_flag)); |
| 388 RCHECK(bit_reader.ReadBits(8, &level_idc)); |
| 389 RCHECK(bit_reader.ReadBitsExpGolomb(&seq_parameter_set_id)); |
| 390 RCHECK(bit_reader.ReadBitsExpGolomb(&log2_max_frame_num_minus4)); |
| 391 RCHECK(bit_reader.ReadBitsExpGolomb(&pic_order_cnt_type)); |
| 392 |
| 393 // |pic_order_cnt_type| shall be in the range of 0 to 2. |
| 394 if (pic_order_cnt_type > 2) |
| 395 return false; |
| 396 if (pic_order_cnt_type == 0) { |
| 397 uint32 log2_max_pic_order_cnt_lsb_minus4; |
| 398 RCHECK(bit_reader.ReadBitsExpGolomb(&log2_max_pic_order_cnt_lsb_minus4)); |
| 399 } else if (pic_order_cnt_type == 1) { |
| 400 NOTIMPLEMENTED(); |
| 401 return false; |
| 402 } |
| 403 |
| 404 uint32 num_ref_frames; |
| 405 int gaps_in_frame_num_value_allowed_flag; |
| 406 uint32 pic_width_in_mbs_minus1; |
| 407 uint32 pic_height_in_map_units_minus1; |
| 408 RCHECK(bit_reader.ReadBitsExpGolomb(&num_ref_frames)); |
| 409 RCHECK(bit_reader.ReadBits(1, &gaps_in_frame_num_value_allowed_flag)); |
| 410 RCHECK(bit_reader.ReadBitsExpGolomb(&pic_width_in_mbs_minus1)); |
| 411 RCHECK(bit_reader.ReadBitsExpGolomb(&pic_height_in_map_units_minus1)); |
| 412 |
| 413 int frame_mbs_only_flag; |
| 414 RCHECK(bit_reader.ReadBits(1, &frame_mbs_only_flag)); |
| 415 if (!frame_mbs_only_flag) { |
| 416 int mb_adaptive_frame_field_flag; |
| 417 RCHECK(bit_reader.ReadBits(1, &mb_adaptive_frame_field_flag)); |
| 418 } |
| 419 |
| 420 int direct_8x8_inference_flag; |
| 421 RCHECK(bit_reader.ReadBits(1, &direct_8x8_inference_flag)); |
| 422 |
| 423 bool frame_cropping_flag; |
| 424 uint32 frame_crop_left_offset = 0; |
| 425 uint32 frame_crop_right_offset = 0; |
| 426 uint32 frame_crop_top_offset = 0; |
| 427 uint32 frame_crop_bottom_offset = 0; |
| 428 RCHECK(bit_reader.ReadBits(1, &frame_cropping_flag)); |
| 429 if (frame_cropping_flag) { |
| 430 RCHECK(bit_reader.ReadBitsExpGolomb(&frame_crop_left_offset)); |
| 431 RCHECK(bit_reader.ReadBitsExpGolomb(&frame_crop_right_offset)); |
| 432 RCHECK(bit_reader.ReadBitsExpGolomb(&frame_crop_top_offset)); |
| 433 RCHECK(bit_reader.ReadBitsExpGolomb(&frame_crop_bottom_offset)); |
| 434 } |
| 435 |
| 436 bool vui_parameters_present_flag; |
| 437 RCHECK(bit_reader.ReadBits(1, &vui_parameters_present_flag)); |
| 438 int sar_width = 1; |
| 439 int sar_height = 1; |
| 440 if (vui_parameters_present_flag) { |
| 441 // Read only the aspect ratio information from the VUI section. |
| 442 // TODO(damienv): check whether other VUI info are useful. |
| 443 bool aspect_ratio_info_present_flag = false; |
| 444 RCHECK(bit_reader.ReadBits(1, &aspect_ratio_info_present_flag)); |
| 445 if (aspect_ratio_info_present_flag) { |
| 446 int aspect_ratio_idc; |
| 447 RCHECK(bit_reader.ReadBits(8, &aspect_ratio_idc)); |
| 448 if (aspect_ratio_idc == kExtendedSar) { |
| 449 RCHECK(bit_reader.ReadBits(16, &sar_width)); |
| 450 RCHECK(bit_reader.ReadBits(16, &sar_height)); |
| 451 } else if (aspect_ratio_idc < 14) { |
| 452 sar_width = kTableSarWidth[aspect_ratio_idc]; |
| 453 sar_height = kTableSarHeight[aspect_ratio_idc]; |
| 454 } |
| 455 } |
| 456 } |
| 457 |
| 458 if (sar_width != sar_height) { |
| 459 // TODO(damienv): Support non square pixels. |
| 460 DVLOG(1) |
| 461 << "Non square pixel not supported yet:" |
| 462 << " sar_width=" << sar_width |
| 463 << " sar_height=" << sar_height; |
| 464 return false; |
| 465 } |
| 466 |
| 467 if (is_video_config_known_ && |
| 468 profile_idc == profile_idc_ && |
| 469 level_idc == level_idc_ && |
| 470 pic_width_in_mbs_minus1 == pic_width_in_mbs_minus1_ && |
| 471 pic_height_in_map_units_minus1 == pic_height_in_map_units_minus1_) { |
| 472 // This is the same SPS as the previous one. |
| 473 return true; |
| 474 } |
| 475 is_video_config_known_ = true; |
| 476 profile_idc_ = profile_idc; |
| 477 level_idc_ = level_idc; |
| 478 pic_width_in_mbs_minus1_ = pic_width_in_mbs_minus1; |
| 479 pic_height_in_map_units_minus1_ = pic_height_in_map_units_minus1; |
| 480 |
| 481 // TODO(damienv): |
| 482 // Assuming the SPS is used right away by the PPS |
| 483 // and the slice headers is a strong assumption. |
| 484 // In theory, we should process the SPS and PPS |
| 485 // and only when one of the slice header is switching |
| 486 // the PPS id, the video decoder config should be changed. |
| 487 DVLOG(1) << "Profile IDC: " << profile_idc; |
| 488 DVLOG(1) << "Level IDC: " << level_idc; |
| 489 DVLOG(1) << "Pic width: " << (pic_width_in_mbs_minus1 + 1) * 16; |
| 490 DVLOG(1) << "Pic height: " << (pic_height_in_map_units_minus1 + 1) * 16; |
| 491 DVLOG(1) << "log2_max_frame_num_minus4: " << log2_max_frame_num_minus4; |
| 492 |
| 493 // TODO(damienv): a MAP unit can be either 16 or 32 pixels. |
| 494 // although it's 16 pixels for progressive non MBAFF frames. |
| 495 gfx::Size coded_size((pic_width_in_mbs_minus1 + 1) * 16, |
| 496 (pic_height_in_map_units_minus1 + 1) * 16); |
| 497 gfx::Rect visible_rect( |
| 498 frame_crop_left_offset, |
| 499 frame_crop_top_offset, |
| 500 (coded_size.width() - frame_crop_right_offset) - frame_crop_left_offset, |
| 501 (coded_size.height() - frame_crop_bottom_offset) - frame_crop_top_offset); |
| 502 |
| 503 // TODO(damienv): calculate the natural size based |
| 504 // on the possible aspect ratio coded in the VUI parameters. |
| 505 gfx::Size natural_size(visible_rect.width(), |
| 506 visible_rect.height()); |
| 507 |
| 508 VideoDecoderConfig video_decoder_config( |
| 509 kCodecH264, |
| 510 VIDEO_CODEC_PROFILE_UNKNOWN, // TODO(damienv) |
| 511 VideoFrame::YV12, |
| 512 coded_size, |
| 513 visible_rect, |
| 514 natural_size, |
| 515 NULL, 0, |
| 516 false); |
| 517 new_video_config_cb_.Run(video_decoder_config); |
| 518 |
| 519 return true; |
| 520 } |
| 521 |
| 522 } // namespace mp2t |
| 523 } // namespace media |
| 524 |
OLD | NEW |