OLD | NEW |
---|---|
(Empty) | |
1 // Copyright (c) 2013 The Chromium Authors. All rights reserved. | |
2 // Use of this source code is governed by a BSD-style license that can be | |
3 // found in the LICENSE file. | |
4 | |
5 #include "media/mp2t/es_parser_h264.h" | |
6 | |
7 #include "base/basictypes.h" | |
8 #include "base/logging.h" | |
9 #include "media/base/bit_reader.h" | |
10 #include "media/base/buffers.h" | |
11 #include "media/base/stream_parser_buffer.h" | |
12 #include "media/base/video_decoder_config.h" | |
13 #include "media/base/video_frame.h" | |
14 #include "media/mp2t/mp2t_common.h" | |
15 #include "ui/gfx/rect.h" | |
16 #include "ui/gfx/size.h" | |
17 | |
18 static const int kExtendedSar = 255; | |
19 | |
20 // ISO 14496 part 10 | |
21 // VUI parameters: Table E-1 "Meaning of sample aspect ration indicator" | |
22 static const int kTableSarWidth[14] = { | |
23 1, 1, 12, 10, 16, 40, 24, 20, 32, 80, 18, 15, 64, 160 | |
24 }; | |
25 | |
26 static const int kTableSarHeight[14] = { | |
27 1, 1, 11, 11, 11, 33, 11, 11, 11, 33, 11, 11, 33, 99 | |
28 }; | |
29 | |
30 // Remove the start code emulation prevention ( 0x000003 ) | |
31 // and return the size of the converted buffer. | |
32 // Note: Size of |buf_rbsp| should be at least |size| to accomodate | |
33 // the worst case. | |
34 static int ConvertToRbsp(const uint8* buf, int size, uint8* buf_rbsp) { | |
35 int rbsp_size = 0; | |
36 int zero_count = 0; | |
37 for (int k = 0; k < size; k++) { | |
38 if (buf[k] == 0x3 && zero_count >= 2) | |
damienv1
2013/09/17 16:11:52
{
zero_count = 0;
continue;
}
damienv1
2013/09/17 22:07:44
Done.
| |
39 continue; | |
40 if (buf[k] == 0) | |
41 zero_count++; | |
42 else | |
43 zero_count = 0; | |
44 buf_rbsp[rbsp_size++] = buf[k]; | |
45 } | |
46 return rbsp_size; | |
47 } | |
48 | |
49 namespace media { | |
50 namespace mp2t { | |
51 | |
52 // ISO 14496 - Part 10: Table 7-1 "NAL unit type codes" | |
53 enum NalUnitType { | |
54 kNalUnitTypeNonIdrSlice = 1, | |
55 kNalUnitTypeIdrSlice = 5, | |
56 kNalUnitTypeSPS = 7, | |
57 kNalUnitTypePPS = 8, | |
58 kNalUnitTypeAUD = 9, | |
59 }; | |
60 | |
61 class BitReaderH264 : public BitReader { | |
62 public: | |
63 BitReaderH264(const uint8* data, off_t size) | |
64 : BitReader(data, size) { } | |
65 | |
66 // Read an unsigned exp-golomb value. | |
67 // Return true if successful. | |
68 bool ReadBitsExpGolomb(uint32* exp_golomb_value); | |
69 }; | |
70 | |
71 bool BitReaderH264::ReadBitsExpGolomb(uint32* exp_golomb_value) { | |
72 // Get the number of leading zeros. | |
73 int zero_count = 0; | |
74 while (true) { | |
75 int one_bit; | |
76 RCHECK(ReadBits(1, &one_bit)); | |
77 if (one_bit != 0) | |
78 break; | |
79 zero_count++; | |
80 } | |
81 | |
82 // If zero_count is greater than 31, the calculated value will overflow. | |
83 if (zero_count > 31) { | |
84 SkipBits(zero_count); | |
85 return false; | |
86 } | |
87 | |
88 // Read the actual value. | |
89 uint32 base = (1 << zero_count) - 1; | |
90 uint32 offset; | |
91 RCHECK(ReadBits(zero_count, &offset)); | |
92 *exp_golomb_value = base + offset; | |
93 | |
94 return true; | |
95 } | |
96 | |
97 EsParserH264::EsParserH264( | |
98 const NewVideoConfigCB& new_video_config_cb, | |
99 const EmitBufferCB& emit_buffer_cb) | |
100 : new_video_config_cb_(new_video_config_cb), | |
101 emit_buffer_cb_(emit_buffer_cb), | |
102 es_pos_(0), | |
103 current_nal_pos_(-1), | |
104 current_access_unit_pos_(-1), | |
105 is_key_frame_(false), | |
106 is_video_config_known_(false), | |
107 profile_idc_(0), | |
108 level_idc_(0), | |
109 pic_width_in_mbs_minus1_(0), | |
110 pic_height_in_map_units_minus1_(0) { | |
111 } | |
112 | |
113 EsParserH264::~EsParserH264() { | |
114 } | |
115 | |
116 bool EsParserH264::Parse(const uint8* buf, int size, | |
117 base::TimeDelta pts, | |
118 base::TimeDelta dts) { | |
119 // Note: Parse is invoked each time a PES packet has been reassembled. | |
120 // Unfortunately, a PES packet does not necessarily map | |
121 // to an h264 access unit, although the HLS recommendation is to use one PES | |
122 // for each access unit (but this is just a recommendation and some streams | |
123 // do not comply with this recommendation). | |
124 | |
125 // Link position |raw_es_size| in the ES stream with a timing descriptor. | |
126 // HLS recommendation: "In AVC video, you should have both a DTS and a | |
127 // PTS in each PES header". | |
128 if (dts == kNoTimestamp() && pts == kNoTimestamp()) { | |
129 DVLOG(1) << "A timestamp must be provided for each reassembled PES"; | |
130 return false; | |
131 } | |
132 TimingDesc timing_desc; | |
133 timing_desc.pts = pts; | |
134 timing_desc.dts = (dts != kNoTimestamp()) ? dts : pts; | |
135 | |
136 int raw_es_size; | |
137 const uint8* raw_es; | |
138 es_byte_queue_.Peek(&raw_es, &raw_es_size); | |
139 timing_desc_list_.push_back( | |
140 std::pair<int, TimingDesc>(raw_es_size, timing_desc)); | |
141 | |
142 // Add the incoming bytes to the ES queue. | |
143 es_byte_queue_.Push(buf, size); | |
144 | |
145 // Add NALs from the incoming buffer. | |
146 if (!ParseInternal()) | |
147 return false; | |
148 | |
149 // Discard emitted frames | |
150 // or every byte that was parsed so far if there is no current frame. | |
151 int skip_count = | |
152 (current_access_unit_pos_ >= 0) ? current_access_unit_pos_ : es_pos_; | |
153 DiscardEs(skip_count); | |
154 | |
155 return true; | |
156 } | |
157 | |
158 void EsParserH264::Flush() { | |
159 if (current_access_unit_pos_ < 0) | |
160 return; | |
161 | |
162 // Force emitting the last access unit. | |
163 int next_aud_pos; | |
164 const uint8* raw_es; | |
165 es_byte_queue_.Peek(&raw_es, &next_aud_pos); | |
166 EmitFrameIfNeeded(next_aud_pos); | |
167 current_nal_pos_ = -1; | |
168 current_access_unit_pos_ = -1; | |
169 | |
170 // Discard the emitted frame. | |
171 DiscardEs(next_aud_pos); | |
172 } | |
173 | |
174 void EsParserH264::Reset() { | |
175 DVLOG(1) << "EsParserH264::Reset"; | |
176 es_byte_queue_.Reset(); | |
177 timing_desc_list_.clear(); | |
178 es_pos_ = 0; | |
179 current_nal_pos_ = -1; | |
180 current_access_unit_pos_ = -1; | |
181 is_key_frame_ = false; | |
182 is_video_config_known_ = false; | |
183 } | |
184 | |
185 bool EsParserH264::ParseInternal() { | |
186 int raw_es_size; | |
187 const uint8* raw_es; | |
188 es_byte_queue_.Peek(&raw_es, &raw_es_size); | |
189 | |
190 DCHECK_GE(es_pos_, 0); | |
191 DCHECK_LT(es_pos_, raw_es_size); | |
192 | |
193 // Resume NAL segmentation where it was left. | |
damienv1
2013/09/17 16:11:52
Comment should be updated.
damienv1
2013/09/17 22:07:44
Done.
| |
194 for ( ; es_pos_ < raw_es_size - 4; es_pos_++) { | |
damienv1
2013/09/17 16:11:52
Should be "- 5" to account for the size of the syn
damienv1
2013/09/17 22:07:44
My mistake, 4 is the right value.
If syncword_leng
| |
195 // Make sure the syncword is either 00 00 00 01 or 00 00 01 | |
196 if (raw_es[es_pos_ + 0] != 0 || raw_es[es_pos_ + 1] != 0) | |
197 continue; | |
198 int syncword_length = 0; | |
199 if (raw_es[es_pos_ + 2] == 0 && raw_es[es_pos_ + 3] == 1) | |
200 syncword_length = 4; | |
201 else if (raw_es[es_pos_ + 2] == 1) | |
202 syncword_length = 3; | |
203 else | |
204 continue; | |
205 | |
206 // Parse the current NAL (and the new NAL then becomes the current one). | |
207 if (current_nal_pos_ >= 0) { | |
208 int nal_size = es_pos_ - current_nal_pos_; | |
209 DCHECK_GT(nal_size, 0); | |
210 RCHECK(NalParser(&raw_es[current_nal_pos_], nal_size)); | |
damienv1
2013/09/17 16:11:52
The NAL parser should receive a pointer to the NAL
damienv1
2013/09/17 22:07:44
Done.
| |
211 } | |
212 current_nal_pos_ = es_pos_; | |
213 | |
214 // Retrieve the NAL type. | |
215 int nal_header = raw_es[es_pos_ + syncword_length]; | |
216 int forbidden_zero_bit = (nal_header >> 7) & 0x1; | |
217 RCHECK(forbidden_zero_bit == 0); | |
218 NalUnitType nal_unit_type = static_cast<NalUnitType>(nal_header & 0x1f); | |
219 DVLOG(LOG_LEVEL_ES) << "nal: offset=" << es_pos_ | |
220 << " type=" << nal_unit_type; | |
221 | |
222 // Emit a frame if needed. | |
223 if (nal_unit_type == kNalUnitTypeAUD) | |
224 EmitFrameIfNeeded(es_pos_); | |
225 | |
226 // Skip the syncword. | |
227 es_pos_ += syncword_length; | |
228 } | |
229 | |
230 return true; | |
231 } | |
232 | |
233 void EsParserH264::EmitFrameIfNeeded(int next_aud_pos) { | |
234 // There is no current frame: start a new frame. | |
235 if (current_access_unit_pos_ < 0) { | |
236 current_access_unit_pos_ = next_aud_pos; | |
237 is_key_frame_ = true; | |
238 return; | |
239 } | |
240 | |
241 // Get the access unit timing info. | |
242 TimingDesc current_timing_desc; | |
243 while (!timing_desc_list_.empty() && | |
244 timing_desc_list_.front().first <= current_access_unit_pos_) { | |
245 current_timing_desc = timing_desc_list_.front().second; | |
246 timing_desc_list_.pop_front(); | |
247 } | |
248 | |
249 // Emit a frame. | |
250 int raw_es_size; | |
251 const uint8* raw_es; | |
252 es_byte_queue_.Peek(&raw_es, &raw_es_size); | |
253 int access_unit_size = next_aud_pos - current_access_unit_pos_; | |
254 scoped_refptr<StreamParserBuffer> stream_parser_buffer = | |
255 StreamParserBuffer::CopyFrom( | |
256 &raw_es[current_access_unit_pos_], | |
257 access_unit_size, | |
258 is_key_frame_); | |
259 stream_parser_buffer->SetDecodeTimestamp(current_timing_desc.dts); | |
260 stream_parser_buffer->set_timestamp(current_timing_desc.pts); | |
261 emit_buffer_cb_.Run(stream_parser_buffer); | |
262 | |
263 // Start a new frame. | |
264 // |is_key_frame_| will be updated while parsing the NALs of that frame. | |
265 current_access_unit_pos_ = es_pos_; | |
266 is_key_frame_ = true; | |
267 } | |
268 | |
269 void EsParserH264::DiscardEs(int nbytes) { | |
270 DCHECK_GE(nbytes, 0); | |
271 if (nbytes == 0) | |
272 return; | |
273 | |
274 // Update the position of | |
275 // - the parser, | |
276 // - the current NAL, | |
277 // - the current access unit. | |
278 es_pos_ -= nbytes; | |
279 if (es_pos_ < 0) | |
280 es_pos_ = 0; | |
281 | |
282 if (current_nal_pos_ >= 0) { | |
283 DCHECK_GE(current_nal_pos_, nbytes); | |
284 current_nal_pos_ -= nbytes; | |
285 } | |
286 if (current_access_unit_pos_ >= 0) { | |
287 DCHECK_GE(current_access_unit_pos_, nbytes); | |
288 current_access_unit_pos_ -= nbytes; | |
289 } | |
290 | |
291 // Update the timing information accordingly. | |
292 std::list<std::pair<int, TimingDesc> >::iterator timing_it | |
293 = timing_desc_list_.begin(); | |
294 for (; timing_it != timing_desc_list_.end(); ++timing_it) | |
295 timing_it->first -= nbytes; | |
296 | |
297 // Discard |nbytes| of ES. | |
298 es_byte_queue_.Pop(nbytes); | |
299 } | |
300 | |
301 bool EsParserH264::NalParser(const uint8* buf, int size) { | |
302 // Discard the annexB syncword. | |
303 if (size < 3 || buf[0] != 0 || buf[1] != 0 || | |
304 !(buf[2] == 1 || (size >= 4 && buf[2] == 0 && buf[3] == 1))) { | |
305 DVLOG(1) << "NalParser: bad annexB start code"; | |
306 return false; | |
307 } | |
308 if (buf[2] == 1) { | |
309 buf += 3; | |
310 size -= 3; | |
311 } else { | |
312 buf += 4; | |
313 size -= 4; | |
314 } | |
damienv1
2013/09/17 16:11:52
All this can be removed if we assume |buf| is poin
| |
315 | |
316 // Get the NAL header. | |
317 if (size < 1) { | |
318 DVLOG(1) << "NalParser: incomplete NAL"; | |
319 return false; | |
320 } | |
321 int nal_header = buf[0]; | |
322 buf += 1; | |
323 size -= 1; | |
324 | |
325 int forbidden_zero_bit = (nal_header >> 7) & 0x1; | |
326 if (forbidden_zero_bit != 0) | |
327 return false; | |
328 int nal_ref_idc = (nal_header >> 5) & 0x3; | |
329 int nal_unit_type = nal_header & 0x1f; | |
330 | |
331 // Process the NAL content. | |
332 switch (nal_unit_type) { | |
333 case kNalUnitTypeSPS: | |
334 DVLOG(LOG_LEVEL_ES) << "NAL: SPS"; | |
335 // |nal_ref_idc| should not be 0 for a SPS. | |
336 if (nal_ref_idc == 0) | |
337 return false; | |
338 return ProcessSPS(buf, size); | |
339 case kNalUnitTypeIdrSlice: | |
340 DVLOG(LOG_LEVEL_ES) << "NAL: IDR slice"; | |
341 return true; | |
342 case kNalUnitTypeNonIdrSlice: | |
343 DVLOG(LOG_LEVEL_ES) << "NAL: Non IDR slice"; | |
344 is_key_frame_ = false; | |
345 return true; | |
346 case kNalUnitTypePPS: | |
347 DVLOG(LOG_LEVEL_ES) << "NAL: PPS"; | |
348 return true; | |
349 case kNalUnitTypeAUD: | |
350 DVLOG(LOG_LEVEL_ES) << "NAL: AUD"; | |
351 return true; | |
352 default: | |
353 DVLOG(LOG_LEVEL_ES) << "NAL: " << nal_unit_type; | |
354 return true; | |
355 } | |
356 | |
357 NOTREACHED(); | |
358 return false; | |
359 } | |
360 | |
361 bool EsParserH264::ProcessSPS(const uint8* buf, int size) { | |
362 if (size <= 0) | |
363 return false; | |
364 | |
365 // Removes start code emulation prevention. | |
366 // TODO(damienv): refactoring in media/base | |
367 // so as to have a unique H264 bit reader in Chrome. | |
368 scoped_ptr<uint8[]> buf_rbsp(new uint8[size]); | |
369 int rbsp_size = ConvertToRbsp(buf, size, buf_rbsp.get()); | |
370 | |
371 BitReaderH264 bit_reader(buf_rbsp.get(), rbsp_size); | |
372 | |
373 int profile_idc; | |
374 int constraint_setX_flag; | |
375 int level_idc; | |
376 uint32 seq_parameter_set_id; | |
377 uint32 log2_max_frame_num_minus4; | |
378 uint32 pic_order_cnt_type; | |
379 RCHECK(bit_reader.ReadBits(8, &profile_idc)); | |
380 RCHECK(bit_reader.ReadBits(8, &constraint_setX_flag)); | |
381 RCHECK(bit_reader.ReadBits(8, &level_idc)); | |
382 RCHECK(bit_reader.ReadBitsExpGolomb(&seq_parameter_set_id)); | |
383 RCHECK(bit_reader.ReadBitsExpGolomb(&log2_max_frame_num_minus4)); | |
384 RCHECK(bit_reader.ReadBitsExpGolomb(&pic_order_cnt_type)); | |
385 | |
386 // |pic_order_cnt_type| shall be in the range of 0 to 2. | |
387 RCHECK(pic_order_cnt_type <= 2); | |
388 if (pic_order_cnt_type == 0) { | |
389 uint32 log2_max_pic_order_cnt_lsb_minus4; | |
390 RCHECK(bit_reader.ReadBitsExpGolomb(&log2_max_pic_order_cnt_lsb_minus4)); | |
391 } else if (pic_order_cnt_type == 1) { | |
392 // Note: |offset_for_non_ref_pic| and |offset_for_top_to_bottom_field| | |
393 // corresponds to their codenum not to their actual value. | |
394 bool delta_pic_order_always_zero_flag; | |
395 uint32 offset_for_non_ref_pic; | |
396 uint32 offset_for_top_to_bottom_field; | |
397 uint32 num_ref_frames_in_pic_order_cnt_cycle; | |
398 RCHECK(bit_reader.ReadBits(1, &delta_pic_order_always_zero_flag)); | |
399 RCHECK(bit_reader.ReadBitsExpGolomb(&offset_for_non_ref_pic)); | |
400 RCHECK(bit_reader.ReadBitsExpGolomb(&offset_for_top_to_bottom_field)); | |
401 RCHECK( | |
402 bit_reader.ReadBitsExpGolomb(&num_ref_frames_in_pic_order_cnt_cycle)); | |
403 for (uint32 i = 0; i < num_ref_frames_in_pic_order_cnt_cycle; i++) { | |
404 uint32 offset_for_ref_frame_codenum; | |
405 RCHECK(bit_reader.ReadBitsExpGolomb(&offset_for_ref_frame_codenum)); | |
406 } | |
407 } | |
408 | |
409 uint32 num_ref_frames; | |
410 int gaps_in_frame_num_value_allowed_flag; | |
411 uint32 pic_width_in_mbs_minus1; | |
412 uint32 pic_height_in_map_units_minus1; | |
413 RCHECK(bit_reader.ReadBitsExpGolomb(&num_ref_frames)); | |
414 RCHECK(bit_reader.ReadBits(1, &gaps_in_frame_num_value_allowed_flag)); | |
415 RCHECK(bit_reader.ReadBitsExpGolomb(&pic_width_in_mbs_minus1)); | |
416 RCHECK(bit_reader.ReadBitsExpGolomb(&pic_height_in_map_units_minus1)); | |
417 | |
418 int frame_mbs_only_flag; | |
419 RCHECK(bit_reader.ReadBits(1, &frame_mbs_only_flag)); | |
420 if (!frame_mbs_only_flag) { | |
421 int mb_adaptive_frame_field_flag; | |
422 RCHECK(bit_reader.ReadBits(1, &mb_adaptive_frame_field_flag)); | |
423 } | |
424 | |
425 int direct_8x8_inference_flag; | |
426 RCHECK(bit_reader.ReadBits(1, &direct_8x8_inference_flag)); | |
427 | |
428 bool frame_cropping_flag; | |
429 uint32 frame_crop_left_offset = 0; | |
430 uint32 frame_crop_right_offset = 0; | |
431 uint32 frame_crop_top_offset = 0; | |
432 uint32 frame_crop_bottom_offset = 0; | |
433 RCHECK(bit_reader.ReadBits(1, &frame_cropping_flag)); | |
434 if (frame_cropping_flag) { | |
435 RCHECK(bit_reader.ReadBitsExpGolomb(&frame_crop_left_offset)); | |
436 RCHECK(bit_reader.ReadBitsExpGolomb(&frame_crop_right_offset)); | |
437 RCHECK(bit_reader.ReadBitsExpGolomb(&frame_crop_top_offset)); | |
438 RCHECK(bit_reader.ReadBitsExpGolomb(&frame_crop_bottom_offset)); | |
439 } | |
440 | |
441 bool vui_parameters_present_flag; | |
442 RCHECK(bit_reader.ReadBits(1, &vui_parameters_present_flag)); | |
443 int sar_width = 1; | |
444 int sar_height = 1; | |
445 if (vui_parameters_present_flag) { | |
446 // Read only the aspect ratio information from the VUI section. | |
447 // TODO(damienv): check whether other VUI info are useful. | |
448 bool aspect_ratio_info_present_flag = false; | |
449 RCHECK(bit_reader.ReadBits(1, &aspect_ratio_info_present_flag)); | |
450 if (aspect_ratio_info_present_flag) { | |
451 int aspect_ratio_idc; | |
452 RCHECK(bit_reader.ReadBits(8, &aspect_ratio_idc)); | |
453 if (aspect_ratio_idc == kExtendedSar) { | |
454 RCHECK(bit_reader.ReadBits(16, &sar_width)); | |
455 RCHECK(bit_reader.ReadBits(16, &sar_height)); | |
456 } else if (aspect_ratio_idc < 14) { | |
457 sar_width = kTableSarWidth[aspect_ratio_idc]; | |
458 sar_height = kTableSarHeight[aspect_ratio_idc]; | |
459 } | |
460 } | |
461 } | |
462 | |
463 if (sar_width != sar_height) { | |
464 // TODO(damienv): Support non square pixels. | |
465 DVLOG(1) | |
466 << "Non square pixel not supported yet:" | |
467 << " sar_width=" << sar_width | |
468 << " sar_height=" << sar_height; | |
469 return false; | |
470 } | |
471 | |
472 if (is_video_config_known_ && | |
473 profile_idc == profile_idc_ && | |
474 level_idc == level_idc_ && | |
475 pic_width_in_mbs_minus1 == pic_width_in_mbs_minus1_ && | |
476 pic_height_in_map_units_minus1 == pic_height_in_map_units_minus1_) { | |
477 // This is the same SPS as the previous one. | |
478 return true; | |
479 } | |
480 is_video_config_known_ = true; | |
481 profile_idc_ = profile_idc; | |
482 level_idc_ = level_idc; | |
483 pic_width_in_mbs_minus1_ = pic_width_in_mbs_minus1; | |
484 pic_height_in_map_units_minus1_ = pic_height_in_map_units_minus1; | |
485 | |
486 // TODO(damienv): | |
487 // Assuming the SPS is used right away by the PPS | |
488 // and the slice headers is a strong assumption. | |
489 // In theory, we should process the SPS and PPS | |
490 // and only when one of the slice header is switching | |
491 // the PPS id, the video decoder config should be changed. | |
492 DVLOG(1) << "Profile IDC: " << profile_idc; | |
493 DVLOG(1) << "Level IDC: " << level_idc; | |
494 DVLOG(1) << "Pic width: " << (pic_width_in_mbs_minus1 + 1) * 16; | |
495 DVLOG(1) << "Pic height: " << (pic_height_in_map_units_minus1 + 1) * 16; | |
496 DVLOG(1) << "log2_max_frame_num_minus4: " << log2_max_frame_num_minus4; | |
497 | |
498 // TODO(damienv): a MAP unit can be either 16 or 32 pixels. | |
499 // although it's 16 pixels for progressive non MBAFF frames. | |
500 gfx::Size coded_size((pic_width_in_mbs_minus1 + 1) * 16, | |
501 (pic_height_in_map_units_minus1 + 1) * 16); | |
502 gfx::Rect visible_rect( | |
503 frame_crop_left_offset, | |
504 frame_crop_top_offset, | |
505 (coded_size.width() - frame_crop_right_offset) - frame_crop_left_offset, | |
506 (coded_size.height() - frame_crop_bottom_offset) - frame_crop_top_offset); | |
507 | |
508 // TODO(damienv): calculate the natural size based | |
509 // on the possible aspect ratio coded in the VUI parameters. | |
510 gfx::Size natural_size(visible_rect.width(), | |
511 visible_rect.height()); | |
512 | |
513 VideoDecoderConfig video_decoder_config( | |
514 kCodecH264, | |
515 VIDEO_CODEC_PROFILE_UNKNOWN, // TODO(damienv) | |
516 VideoFrame::YV12, | |
517 coded_size, | |
518 visible_rect, | |
519 natural_size, | |
520 NULL, 0, | |
521 false); | |
522 new_video_config_cb_.Run(video_decoder_config); | |
523 | |
524 return true; | |
525 } | |
526 | |
527 } // namespace mp2t | |
528 } // namespace media | |
529 | |
OLD | NEW |