OLD | NEW |
(Empty) | |
| 1 // Copyright (c) 2013 The Chromium Authors. All rights reserved. |
| 2 // Use of this source code is governed by a BSD-style license that can be |
| 3 // found in the LICENSE file. |
| 4 |
| 5 #include "media/mpeg2/es_parser_h264.h" |
| 6 |
| 7 #include "base/basictypes.h" |
| 8 #include "base/logging.h" |
| 9 #include "media/base/bit_reader.h" |
| 10 #include "media/base/stream_parser_buffer.h" |
| 11 #include "media/base/video_decoder_config.h" |
| 12 #include "media/base/video_frame.h" |
| 13 #include "media/mpeg2/mpeg2ts_common.h" |
| 14 #include "ui/gfx/rect.h" |
| 15 #include "ui/gfx/size.h" |
| 16 |
| 17 #define RCHECK(x) \ |
| 18 do { \ |
| 19 if (!(x)) { \ |
| 20 DLOG(ERROR) << "Failure while parsing H264: " << #x; \ |
| 21 return false; \ |
| 22 } \ |
| 23 } while (0) |
| 24 |
| 25 namespace { |
| 26 |
| 27 const int kExtendedSar = 255; |
| 28 |
| 29 const int kTableSarWidth[14] = { |
| 30 1, 1, 12, 10, 16, 40, 24, 20, 32, 80, 18, 15, 64, 160 |
| 31 }; |
| 32 |
| 33 const int kTableSarHeight[14] = { |
| 34 1, 1, 11, 11, 11, 33, 11, 11, 11, 33, 11, 11, 33, 99 |
| 35 }; |
| 36 |
| 37 class ByteReaderChainedBuffer { |
| 38 public: |
| 39 ByteReaderChainedBuffer(const uint8* buf0, int size0, |
| 40 const uint8* buf1, int size1) |
| 41 : buf0_(buf0), |
| 42 size0_(size0), |
| 43 buf1_(buf1), |
| 44 size1_(size1) { } |
| 45 |
| 46 uint8 Get(int offset) const { |
| 47 DCHECK_GE(offset, 0); |
| 48 DCHECK_LT(offset, size0_ + size1_); |
| 49 if (offset < size0_) { |
| 50 return buf0_[offset]; |
| 51 } |
| 52 return buf1_[offset - size0_]; |
| 53 } |
| 54 |
| 55 int GetSize() const { |
| 56 return (size0_ + size1_); |
| 57 } |
| 58 |
| 59 private: |
| 60 const uint8* const buf0_; |
| 61 const int size0_; |
| 62 const uint8* const buf1_; |
| 63 const int size1_; |
| 64 }; |
| 65 |
| 66 } // namespace |
| 67 |
| 68 namespace media { |
| 69 namespace mpeg2ts { |
| 70 |
| 71 EsParserH264::EsParserH264( |
| 72 NewVideoConfigCB new_video_config_cb, |
| 73 EmitBufferCB emit_buffer_cb) |
| 74 : nal_es_pos_(0), |
| 75 new_video_config_cb_(new_video_config_cb), |
| 76 emit_buffer_cb_(emit_buffer_cb), |
| 77 is_video_config_known_(false), |
| 78 profile_idc_(0), |
| 79 level_idc_(0), |
| 80 pic_width_in_mbs_minus1_(0), |
| 81 pic_height_in_map_units_minus1_(0) { |
| 82 } |
| 83 |
| 84 EsParserH264::~EsParserH264() { |
| 85 } |
| 86 |
| 87 void EsParserH264::Parse(const uint8* buf, int size, |
| 88 bool is_pts_valid, base::TimeDelta pts, |
| 89 bool is_dts_valid, base::TimeDelta dts) { |
| 90 // Note: Parse is invoked each time a PES packet has been reassembled. |
| 91 // Unfortunately, a PES packet does not necessarily map |
| 92 // to an h264 access unit, although the HLS recommandation is to use one PES |
| 93 // for each access unit (but this is just a recommandation and some streams |
| 94 // do not comply with this recommandation). |
| 95 |
| 96 // Link position |raw_es_.size()| in the ES stream with a timing descriptor. |
| 97 // HLS recommandation: "In AVC video, you should have both a DTS and a |
| 98 // PTS in each PES header". |
| 99 // TODO(damienv): What if the stream is not compliant and both the PTS and the |
| 100 // DTS are not valid ? |
| 101 TimingDesc timing_desc; |
| 102 timing_desc.pts = pts; |
| 103 if (is_dts_valid) { |
| 104 timing_desc.dts = dts; |
| 105 } else { |
| 106 timing_desc.dts = pts; |
| 107 } |
| 108 timing_desc_list_.push_back( |
| 109 std::pair<int, TimingDesc>(raw_es_.size(), timing_desc)); |
| 110 |
| 111 // Add NALs from the incoming buffer. |
| 112 FindNals(buf, size); |
| 113 |
| 114 // Find access units based on AUD. |
| 115 std::list<NalDescList::iterator> access_unit_list; |
| 116 FindAccessUnits(&access_unit_list); |
| 117 if (access_unit_list.empty()) { |
| 118 int old_size = raw_es_.size(); |
| 119 raw_es_.resize(old_size + size); |
| 120 memcpy(&raw_es_[old_size], buf, size); |
| 121 DiscardEs(raw_es_.size() - 4); |
| 122 } |
| 123 |
| 124 // Make sure that all the frames to be emitted are in the ES buffer. |
| 125 int last_position = (access_unit_list.back())->position; |
| 126 int copy_size = last_position - raw_es_.size(); |
| 127 if (copy_size > 0) { |
| 128 int copy_size = last_position - raw_es_.size(); |
| 129 int old_size = raw_es_.size(); |
| 130 raw_es_.resize(old_size + copy_size); |
| 131 memcpy(&raw_es_[old_size], buf, copy_size); |
| 132 buf += copy_size; |
| 133 size -= copy_size; |
| 134 } |
| 135 |
| 136 // Emit all frames. |
| 137 std::list<NalDescList::iterator>::iterator it0 = access_unit_list.begin(); |
| 138 std::list<NalDescList::iterator>::iterator it1 = it0; |
| 139 ++it1; |
| 140 LOG_IF(WARNING, (*it0)->position != 0) |
| 141 << "Needs to discard some ES data before getting the 1st access unit: " |
| 142 << (*it0)->position; |
| 143 for (; it1 != access_unit_list.end(); ++it0, ++it1) { |
| 144 int nxt_frame_position = (*it1)->position; |
| 145 EmitFrame(*it0, *it1, nxt_frame_position); |
| 146 } |
| 147 |
| 148 // Discard emitted frames. |
| 149 DiscardEs(last_position); |
| 150 |
| 151 // Finally copy the incomplete access unit to the ES buffer. |
| 152 int old_size = raw_es_.size(); |
| 153 raw_es_.resize(old_size + size); |
| 154 memcpy(&raw_es_[old_size], buf, size); |
| 155 } |
| 156 |
| 157 void EsParserH264::Flush() { |
| 158 // Find access units based on AUD. |
| 159 std::list<NalDescList::iterator> access_unit_list; |
| 160 FindAccessUnits(&access_unit_list); |
| 161 |
| 162 // At this point, there can be at most one access unit in the buffer. |
| 163 DCHECK_GE(access_unit_list.size(), 1u); |
| 164 if (!access_unit_list.empty()) { |
| 165 // Force emitting the last access unit (even it might be incomplete). |
| 166 int nxt_frame_position = raw_es_.size(); |
| 167 NalDescList::iterator cur_frame = *(access_unit_list.begin()); |
| 168 NalDescList::iterator nxt_frame = nal_desc_list_.end(); |
| 169 EmitFrame(cur_frame, nxt_frame, nxt_frame_position); |
| 170 } |
| 171 } |
| 172 |
| 173 void EsParserH264::FindNals(const uint8* buf, int size) { |
| 174 ByteReaderChainedBuffer byte_reader( |
| 175 &raw_es_[0], raw_es_.size(), |
| 176 buf, size); |
| 177 |
| 178 DCHECK_GE(nal_es_pos_, 0); |
| 179 DCHECK_LT(nal_es_pos_, byte_reader.GetSize()); |
| 180 |
| 181 // Resume NAL segmentation where it was left. |
| 182 for ( ; nal_es_pos_ < byte_reader.GetSize() - 4; nal_es_pos_++) { |
| 183 // Make sure the syncword is either 00 00 00 01 or 00 00 01 |
| 184 if (byte_reader.Get(nal_es_pos_ + 0) != 0 || |
| 185 byte_reader.Get(nal_es_pos_ + 1) != 0) { |
| 186 continue; |
| 187 } |
| 188 int syncword_length = 0; |
| 189 if (byte_reader.Get(nal_es_pos_ + 2) == 0 && |
| 190 byte_reader.Get(nal_es_pos_ + 3) == 1) { |
| 191 syncword_length = 4; |
| 192 } else if (byte_reader.Get(nal_es_pos_ + 2) == 1) { |
| 193 syncword_length = 3; |
| 194 } else { |
| 195 continue; |
| 196 } |
| 197 |
| 198 // Retrieve the NAL type. |
| 199 int nal_header = byte_reader.Get(nal_es_pos_ + syncword_length); |
| 200 int forbidden_zero_bit = (nal_header >> 7) & 0x1; |
| 201 NalDesc nal_desc; |
| 202 nal_desc.position = nal_es_pos_; |
| 203 nal_desc.nal_unit_type = static_cast<NalUnitType>(nal_header & 0x1f); |
| 204 if (forbidden_zero_bit != 0) { |
| 205 nal_desc.nal_unit_type = kNalUnitTypeInvalid; |
| 206 } |
| 207 VLOG(LOG_LEVEL_ES) << "nal: offset=" << nal_desc.position |
| 208 << " type=" << nal_desc.nal_unit_type; |
| 209 nal_desc_list_.push_back(nal_desc); |
| 210 nal_es_pos_ += syncword_length; |
| 211 } |
| 212 } |
| 213 |
| 214 void EsParserH264::FindAccessUnits( |
| 215 std::list<NalDescList::iterator>* access_unit_list) { |
| 216 // Get the H264 access units based on AUD. |
| 217 // Mpeg2TS spec: "2.14 Carriage of Rec. ITU-T H.264 | ISO/IEC 14496-10 video" |
| 218 // "Each AVC access unit shall contain an access unit delimiter NAL Unit;" |
| 219 for (NalDescList::iterator it = nal_desc_list_.begin(); |
| 220 it != nal_desc_list_.end(); ++it) { |
| 221 if (it->nal_unit_type == kNalUnitTypeAUD) { |
| 222 VLOG(LOG_LEVEL_ES) << "aud found @ pos=" << it->position; |
| 223 access_unit_list->push_back(it); |
| 224 } |
| 225 } |
| 226 } |
| 227 |
| 228 void EsParserH264::EmitFrame( |
| 229 NalDescList::iterator cur_frame, |
| 230 NalDescList::iterator nxt_frame, |
| 231 int nxt_frame_position) { |
| 232 // Current frame position = position of the 1st NAL of the frame. |
| 233 int cur_frame_position = cur_frame->position; |
| 234 int access_unit_size = nxt_frame_position - cur_frame_position; |
| 235 |
| 236 // Get the access unit timing info. |
| 237 TimingDesc current_timing_desc; |
| 238 while (!timing_desc_list_.empty() && |
| 239 timing_desc_list_.front().first <= cur_frame_position) { |
| 240 current_timing_desc = timing_desc_list_.front().second; |
| 241 timing_desc_list_.pop_front(); |
| 242 } |
| 243 |
| 244 // Check whether this is a key frame + light NAL parsing to get some |
| 245 // relevant information (e.g. SPS/PPS). |
| 246 // Note: it would have been nice to get the keyframe decision based |
| 247 // on the Mpeg2TS random_access_indicator but encoders sometimes just don't |
| 248 // bother setting this flag in the MPEG2 TS stream. |
| 249 bool is_key_frame = true; |
| 250 for (NalDescList::iterator it = cur_frame; it != nxt_frame; ++it) { |
| 251 if (it->nal_unit_type == kNalUnitTypeNonIdrSlice) { |
| 252 is_key_frame = false; |
| 253 } |
| 254 NalDescList::iterator next_nal_it = it; |
| 255 ++next_nal_it; |
| 256 int cur_nal_position = it->position; |
| 257 int nxt_nal_position = (next_nal_it == nxt_frame) |
| 258 ? nxt_frame_position : next_nal_it->position; |
| 259 int nal_size = nxt_nal_position - cur_nal_position; |
| 260 DCHECK_LE(cur_nal_position + nal_size, static_cast<int>(raw_es_.size())); |
| 261 NalParser(&raw_es_[cur_nal_position], nal_size); |
| 262 } |
| 263 |
| 264 // Emit the current frame. |
| 265 VLOG(LOG_LEVEL_ES) << "is_key_frame = " << is_key_frame; |
| 266 scoped_refptr<StreamParserBuffer> stream_parser_buffer = |
| 267 StreamParserBuffer::CopyFrom( |
| 268 &raw_es_[cur_frame_position], |
| 269 access_unit_size, |
| 270 is_key_frame); |
| 271 stream_parser_buffer->SetDecodeTimestamp(current_timing_desc.dts); |
| 272 stream_parser_buffer->set_timestamp(current_timing_desc.pts); |
| 273 emit_buffer_cb_.Run(stream_parser_buffer); |
| 274 } |
| 275 |
| 276 void EsParserH264::DiscardEs(int nbytes) { |
| 277 if (nbytes <= 0) { |
| 278 return; |
| 279 } |
| 280 |
| 281 // Update the NAL list accordingly. |
| 282 while (!nal_desc_list_.empty() && |
| 283 nal_desc_list_.front().position < nbytes) { |
| 284 nal_desc_list_.pop_front(); |
| 285 } |
| 286 for (NalDescList::iterator it = nal_desc_list_.begin(); |
| 287 it != nal_desc_list_.end(); ++it) { |
| 288 DCHECK(it->position >= nbytes); |
| 289 it->position -= nbytes; |
| 290 } |
| 291 nal_es_pos_ -= nbytes; |
| 292 if (nal_es_pos_ < 0) { |
| 293 nal_es_pos_ = 0; |
| 294 } |
| 295 |
| 296 // Update the timing information accordingly. |
| 297 std::list<std::pair<int, TimingDesc> >::iterator timing_it |
| 298 = timing_desc_list_.begin(); |
| 299 for (; timing_it != timing_desc_list_.end(); ++timing_it) { |
| 300 timing_it->first -= nbytes; |
| 301 } |
| 302 |
| 303 // Discard |nbytes| of ES. |
| 304 int old_size = raw_es_.size(); |
| 305 int new_size = old_size - nbytes; |
| 306 CHECK_LE(nbytes, old_size); |
| 307 if (new_size > 0) { |
| 308 memmove(&raw_es_[0], &raw_es_[nbytes], new_size); |
| 309 } |
| 310 raw_es_.resize(new_size); |
| 311 } |
| 312 |
| 313 void EsParserH264::NalParser(const uint8* buf, int size) { |
| 314 // Discard the annexB syncword. |
| 315 if (size < 3) { |
| 316 LOG(WARNING) << "NalParser: incomplete NAL"; |
| 317 return; |
| 318 } |
| 319 DCHECK_EQ(buf[0], 0); |
| 320 DCHECK_EQ(buf[1], 0); |
| 321 if (buf[2] == 1) { |
| 322 buf += 3; |
| 323 size -= 3; |
| 324 } else { |
| 325 buf += 4; |
| 326 size -= 4; |
| 327 } |
| 328 |
| 329 // Get the NAL header. |
| 330 if (size < 1) { |
| 331 LOG(WARNING) << "NalParser: incomplete NAL"; |
| 332 return; |
| 333 } |
| 334 int nal_header = buf[0]; |
| 335 buf += 1; |
| 336 size -= 1; |
| 337 |
| 338 int forbidden_zero_bit = (nal_header >> 7) & 0x1; |
| 339 if (forbidden_zero_bit != 0) { |
| 340 return; |
| 341 } |
| 342 int nal_ref_idc = (nal_header >> 5) & 0x3; |
| 343 int nal_unit_type = nal_header & 0x1f; |
| 344 |
| 345 // TODO(damienv): |
| 346 // The nal start code emulation prevention should be un-done, |
| 347 // before parsing the NAL content. |
| 348 |
| 349 // Process the NAL content. |
| 350 if (nal_unit_type == kNalUnitTypeSPS) { |
| 351 VLOG(LOG_LEVEL_ES) << "NAL: SPS"; |
| 352 if (nal_ref_idc == 0) { |
| 353 // Should not be 0 for a SPS. |
| 354 return; |
| 355 } |
| 356 ProcessSPS(buf, size); |
| 357 } else if (nal_unit_type == kNalUnitTypeIdrSlice) { |
| 358 VLOG(LOG_LEVEL_ES) << "NAL: IDR slice"; |
| 359 ProcessSliceLayer(buf, size); |
| 360 } else if (nal_unit_type == kNalUnitTypeNonIdrSlice) { |
| 361 VLOG(LOG_LEVEL_ES) << "NAL: Non IDR slice"; |
| 362 ProcessSliceLayer(buf, size); |
| 363 } else if (nal_unit_type == kNalUnitTypePPS) { |
| 364 VLOG(LOG_LEVEL_ES) << "NAL: PPS"; |
| 365 } else if (nal_unit_type == kNalUnitTypeAUD) { |
| 366 VLOG(LOG_LEVEL_ES) << "NAL: AUD"; |
| 367 } else { |
| 368 VLOG(LOG_LEVEL_ES) << "NAL: " << nal_unit_type; |
| 369 } |
| 370 } |
| 371 |
| 372 bool EsParserH264::ProcessSPS(const uint8* buf, int size) { |
| 373 if (size <= 0) { |
| 374 return false; |
| 375 } |
| 376 BitReader bit_reader(buf, size); |
| 377 |
| 378 int profile_idc; |
| 379 RCHECK(bit_reader.ReadBits(8, &profile_idc)); |
| 380 int constraint_setX_flag; |
| 381 RCHECK(bit_reader.ReadBits(8, &constraint_setX_flag)); |
| 382 int level_idc; |
| 383 RCHECK(bit_reader.ReadBits(8, &level_idc)); |
| 384 uint32 seq_parameter_set_id; |
| 385 RCHECK(ReadBitsExpGolomb(&bit_reader, &seq_parameter_set_id)); |
| 386 uint32 log2_max_frame_num_minus4; |
| 387 RCHECK(ReadBitsExpGolomb(&bit_reader, &log2_max_frame_num_minus4)); |
| 388 uint32 pic_order_cnt_type; |
| 389 RCHECK(ReadBitsExpGolomb(&bit_reader, &pic_order_cnt_type)); |
| 390 |
| 391 if (pic_order_cnt_type > 2) { |
| 392 // Bitstream error: pic_order_cnt_type shall be in the range of 0 to 2. |
| 393 return false; |
| 394 } |
| 395 if (pic_order_cnt_type == 0) { |
| 396 uint32 log2_max_pic_order_cnt_lsb_minus4; |
| 397 RCHECK(ReadBitsExpGolomb(&bit_reader, &log2_max_pic_order_cnt_lsb_minus4)); |
| 398 } else if (pic_order_cnt_type == 1) { |
| 399 NOTIMPLEMENTED(); |
| 400 LOG(FATAL) << "pic_order_cnt_type = 1 not supported yet"; |
| 401 } |
| 402 |
| 403 uint32 num_ref_frames; |
| 404 RCHECK(ReadBitsExpGolomb(&bit_reader, &num_ref_frames)); |
| 405 int gaps_in_frame_num_value_allowed_flag; |
| 406 RCHECK(bit_reader.ReadBits(1, &gaps_in_frame_num_value_allowed_flag)); |
| 407 uint32 pic_width_in_mbs_minus1; |
| 408 RCHECK(ReadBitsExpGolomb(&bit_reader, &pic_width_in_mbs_minus1)); |
| 409 uint32 pic_height_in_map_units_minus1; |
| 410 RCHECK(ReadBitsExpGolomb(&bit_reader, &pic_height_in_map_units_minus1)); |
| 411 |
| 412 int frame_mbs_only_flag; |
| 413 RCHECK(bit_reader.ReadBits(1, &frame_mbs_only_flag)); |
| 414 if (!frame_mbs_only_flag) { |
| 415 int mb_adaptive_frame_field_flag; |
| 416 RCHECK(bit_reader.ReadBits(1, &mb_adaptive_frame_field_flag)); |
| 417 } |
| 418 |
| 419 int direct_8x8_inference_flag; |
| 420 RCHECK(bit_reader.ReadBits(1, &direct_8x8_inference_flag)); |
| 421 |
| 422 bool frame_cropping_flag; |
| 423 uint32 frame_crop_left_offset = 0; |
| 424 uint32 frame_crop_right_offset = 0; |
| 425 uint32 frame_crop_top_offset = 0; |
| 426 uint32 frame_crop_bottom_offset = 0; |
| 427 RCHECK(bit_reader.ReadBits(1, &frame_cropping_flag)); |
| 428 if (frame_cropping_flag) { |
| 429 RCHECK(ReadBitsExpGolomb(&bit_reader, &frame_crop_left_offset)); |
| 430 RCHECK(ReadBitsExpGolomb(&bit_reader, &frame_crop_right_offset)); |
| 431 RCHECK(ReadBitsExpGolomb(&bit_reader, &frame_crop_top_offset)); |
| 432 RCHECK(ReadBitsExpGolomb(&bit_reader, &frame_crop_bottom_offset)); |
| 433 } |
| 434 |
| 435 bool vui_parameters_present_flag; |
| 436 RCHECK(bit_reader.ReadBits(1, &vui_parameters_present_flag)); |
| 437 int sar_width = 1; |
| 438 int sar_height = 1; |
| 439 if (vui_parameters_present_flag) { |
| 440 // Read only the aspect ratio information from the VUI section. |
| 441 // TODO(damienv): check whether other VUI info are useful. |
| 442 bool aspect_ratio_info_present_flag = false; |
| 443 RCHECK(bit_reader.ReadBits(1, &aspect_ratio_info_present_flag)); |
| 444 if (aspect_ratio_info_present_flag) { |
| 445 int aspect_ratio_idc; |
| 446 RCHECK(bit_reader.ReadBits(8, &aspect_ratio_idc)); |
| 447 if (aspect_ratio_idc == kExtendedSar) { |
| 448 RCHECK(bit_reader.ReadBits(16, &sar_width)); |
| 449 RCHECK(bit_reader.ReadBits(16, &sar_height)); |
| 450 } else if (aspect_ratio_idc < 14) { |
| 451 sar_width = kTableSarWidth[aspect_ratio_idc]; |
| 452 sar_height = kTableSarHeight[aspect_ratio_idc]; |
| 453 } |
| 454 } |
| 455 } |
| 456 |
| 457 LOG_IF(WARNING, sar_width != sar_height) |
| 458 << "Non square pixel not supported yet:" |
| 459 << " sar_width=" << sar_width |
| 460 << " sar_height=" << sar_height; |
| 461 |
| 462 if (is_video_config_known_ && |
| 463 profile_idc == profile_idc_ && |
| 464 level_idc == level_idc_ && |
| 465 pic_width_in_mbs_minus1 == pic_width_in_mbs_minus1_ && |
| 466 pic_height_in_map_units_minus1 == pic_height_in_map_units_minus1_) { |
| 467 // This is the same SPS as the previous one. |
| 468 return true; |
| 469 } |
| 470 is_video_config_known_ = true; |
| 471 profile_idc_ = profile_idc; |
| 472 level_idc_ = level_idc; |
| 473 pic_width_in_mbs_minus1_ = pic_width_in_mbs_minus1; |
| 474 pic_height_in_map_units_minus1_ = pic_height_in_map_units_minus1; |
| 475 |
| 476 // TODO(damienv): |
| 477 // Assuming the SPS is used right away by the PPS |
| 478 // and the slice headers is a strong assumption. |
| 479 // In theory, we should process the SPS and PPS |
| 480 // and only when one of the slice header is switching |
| 481 // the PPS id, the video decoder config should be changed. |
| 482 LOG(INFO) << "Profile IDC: " << profile_idc; |
| 483 LOG(INFO) << "Level IDC: " << level_idc; |
| 484 LOG(INFO) << "Pic width: " << (pic_width_in_mbs_minus1 + 1) * 16; |
| 485 LOG(INFO) << "Pic height: " << (pic_height_in_map_units_minus1 + 1) * 16; |
| 486 LOG(INFO) << "log2_max_frame_num_minus4: " << log2_max_frame_num_minus4; |
| 487 |
| 488 // TODO(damienv): a MAP unit can be either 16 or 32 pixels. |
| 489 // although it's 16 pixels for progressive non MBAFF frames. |
| 490 gfx::Size coded_size((pic_width_in_mbs_minus1 + 1) * 16, |
| 491 (pic_height_in_map_units_minus1 + 1) * 16); |
| 492 gfx::Rect visible_rect( |
| 493 frame_crop_left_offset, |
| 494 frame_crop_top_offset, |
| 495 (coded_size.width() - frame_crop_right_offset) - frame_crop_left_offset, |
| 496 (coded_size.height() - frame_crop_bottom_offset) - frame_crop_top_offset); |
| 497 |
| 498 // TODO(damienv): calculate the natural size based |
| 499 // on the possible aspect ratio coded in the VUI parameters. |
| 500 gfx::Size natural_size(visible_rect.width(), |
| 501 visible_rect.height()); |
| 502 |
| 503 VideoDecoderConfig video_decoder_config( |
| 504 kCodecH264, |
| 505 VIDEO_CODEC_PROFILE_UNKNOWN, // TODO(damienv) |
| 506 VideoFrame::YV12, |
| 507 coded_size, |
| 508 visible_rect, |
| 509 natural_size, |
| 510 NULL, 0, |
| 511 false); |
| 512 new_video_config_cb_.Run(video_decoder_config); |
| 513 |
| 514 return true; |
| 515 } |
| 516 |
| 517 bool EsParserH264::ProcessSliceLayer(const uint8* buf, int size) { |
| 518 if (size <= 0) { |
| 519 return false; |
| 520 } |
| 521 BitReader bit_reader(buf, size); |
| 522 |
| 523 // Read only the slice header. |
| 524 // TODO(damienv): frame_num |
| 525 uint32 first_mb_in_slice; |
| 526 RCHECK(ReadBitsExpGolomb(&bit_reader, &first_mb_in_slice)); |
| 527 uint32 slice_type; |
| 528 RCHECK(ReadBitsExpGolomb(&bit_reader, &slice_type)); |
| 529 uint32 pic_parameter_set_id; |
| 530 RCHECK(ReadBitsExpGolomb(&bit_reader, &pic_parameter_set_id)); |
| 531 |
| 532 VLOG(LOG_LEVEL_ES) << "first_mb_in_slice: " << first_mb_in_slice; |
| 533 VLOG(LOG_LEVEL_ES) << "slice_type: " << slice_type; |
| 534 return true; |
| 535 } |
| 536 |
| 537 bool EsParserH264::ReadBitsExpGolomb( |
| 538 BitReader* bit_reader, uint32* exp_golomb_value) { |
| 539 // TODO(damienv): this should be a member function of BitReader. |
| 540 |
| 541 // Get the number of leading zeros. |
| 542 int zero_count = 0; |
| 543 for (zero_count = 0; ; zero_count++) { |
| 544 int one_bit; |
| 545 if (!bit_reader->ReadBits(1, &one_bit)) { |
| 546 return false; |
| 547 } |
| 548 if (one_bit != 0) { |
| 549 break; |
| 550 } |
| 551 } |
| 552 |
| 553 // Read the actual value. |
| 554 uint32 base_value = (1 << zero_count) - 1; |
| 555 uint32 value = 0; |
| 556 for (int bit_count = 0; bit_count < zero_count; bit_count++) { |
| 557 int one_bit; |
| 558 if (!bit_reader->ReadBits(1, &one_bit)) { |
| 559 return false; |
| 560 } |
| 561 if (one_bit != 0) { |
| 562 value += (1 << (zero_count-1 - bit_count)); |
| 563 } |
| 564 } |
| 565 |
| 566 *exp_golomb_value = base_value + value; |
| 567 return true; |
| 568 } |
| 569 |
| 570 } // namespace mpeg2ts |
| 571 } // namespace media |
| 572 |
OLD | NEW |