| OLD | NEW |
| 1 /* | 1 /* |
| 2 * Copyright 2012 Google Inc. | 2 * Copyright 2012 Google Inc. |
| 3 * | 3 * |
| 4 * Use of this source code is governed by a BSD-style license that can be | 4 * Use of this source code is governed by a BSD-style license that can be |
| 5 * found in the LICENSE file. | 5 * found in the LICENSE file. |
| 6 */ | 6 */ |
| 7 | 7 |
| 8 #include "SkIntersections.h" | 8 #include "SkIntersections.h" |
| 9 #include "SkPathOpsCubic.h" | 9 #include "SkPathOpsCubic.h" |
| 10 #include "SkPathOpsLine.h" | 10 #include "SkPathOpsLine.h" |
| 11 #include "SkPathOpsPoint.h" | 11 #include "SkPathOpsPoint.h" |
| 12 #include "SkPathOpsQuad.h" | 12 #include "SkPathOpsQuad.h" |
| 13 #include "SkPathOpsRect.h" | 13 #include "SkPathOpsRect.h" |
| 14 #include "SkReduceOrder.h" | 14 #include "SkReduceOrder.h" |
| 15 #include "SkTSort.h" | 15 #include "SkTSort.h" |
| 16 | 16 |
| 17 #if ONE_OFF_DEBUG | 17 #if ONE_OFF_DEBUG |
| 18 static const double tLimits1[2][2] = {{0.388600450, 0.388600452}, {0.245852802,
0.245852804}}; | 18 static const double tLimits1[2][2] = {{0.3, 0.4}, {0.8, 0.9}}; |
| 19 static const double tLimits2[2][2] = {{-0.865211397, -0.865215212}, {-0.86520769
6, -0.865208078}}; | 19 static const double tLimits2[2][2] = {{-0.8, -0.9}, {-0.8, -0.9}}; |
| 20 #endif | 20 #endif |
| 21 | 21 |
| 22 #define DEBUG_QUAD_PART ONE_OFF_DEBUG && 1 | 22 #define DEBUG_QUAD_PART ONE_OFF_DEBUG && 1 |
| 23 #define DEBUG_QUAD_PART_SHOW_SIMPLE DEBUG_QUAD_PART && 0 | 23 #define DEBUG_QUAD_PART_SHOW_SIMPLE DEBUG_QUAD_PART && 0 |
| 24 #define SWAP_TOP_DEBUG 0 | 24 #define SWAP_TOP_DEBUG 0 |
| 25 | 25 |
| 26 static const int kCubicToQuadSubdivisionDepth = 8; // slots reserved for cubic t
o quads subdivision | 26 static const int kCubicToQuadSubdivisionDepth = 8; // slots reserved for cubic t
o quads subdivision |
| 27 | 27 |
| 28 static int quadPart(const SkDCubic& cubic, double tStart, double tEnd, SkReduceO
rder* reducer) { | 28 static int quadPart(const SkDCubic& cubic, double tStart, double tEnd, SkReduceO
rder* reducer) { |
| 29 SkDCubic part = cubic.subDivide(tStart, tEnd); | 29 SkDCubic part = cubic.subDivide(tStart, tEnd); |
| (...skipping 87 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
| 117 locals.allowNear(false); | 117 locals.allowNear(false); |
| 118 intersectWithOrder(s1.fQuad, o1, s2.fQuad, o2, locals); | 118 intersectWithOrder(s1.fQuad, o1, s2.fQuad, o2, locals); |
| 119 int tCount = locals.used(); | 119 int tCount = locals.used(); |
| 120 for (int tIdx = 0; tIdx < tCount; ++tIdx) { | 120 for (int tIdx = 0; tIdx < tCount; ++tIdx) { |
| 121 double to1 = t1Start + (t1 - t1Start) * locals[0][tIdx]; | 121 double to1 = t1Start + (t1 - t1Start) * locals[0][tIdx]; |
| 122 double to2 = t2Start + (t2 - t2Start) * locals[1][tIdx]; | 122 double to2 = t2Start + (t2 - t2Start) * locals[1][tIdx]; |
| 123 // if the computed t is not sufficiently precise, iterate | 123 // if the computed t is not sufficiently precise, iterate |
| 124 SkDPoint p1 = cubic1.ptAtT(to1); | 124 SkDPoint p1 = cubic1.ptAtT(to1); |
| 125 SkDPoint p2 = cubic2.ptAtT(to2); | 125 SkDPoint p2 = cubic2.ptAtT(to2); |
| 126 if (p1.approximatelyEqual(p2)) { | 126 if (p1.approximatelyEqual(p2)) { |
| 127 SkASSERT(!locals.isCoincident(tIdx)); | 127 // FIXME: local edge may be coincident -- experiment with not propagating co
incidence to caller |
| 128 // SkASSERT(!locals.isCoincident(tIdx)); |
| 128 if (&cubic1 != &cubic2 || !approximately_equal(to1, to2)) { | 129 if (&cubic1 != &cubic2 || !approximately_equal(to1, to2)) { |
| 129 if (i.swapped()) { // FIXME: insert should respect swa
p | 130 if (i.swapped()) { // FIXME: insert should respect swa
p |
| 130 i.insert(to2, to1, p1); | 131 i.insert(to2, to1, p1); |
| 131 } else { | 132 } else { |
| 132 i.insert(to1, to2, p1); | 133 i.insert(to1, to2, p1); |
| 133 } | 134 } |
| 134 } | 135 } |
| 135 } else { | 136 } else { |
| 136 double offset = precisionScale / 16; // FIME: const is arbi
trary: test, refine | 137 double offset = precisionScale / 16; // FIME: const is arbi
trary: test, refine |
| 137 double c1Bottom = tIdx == 0 ? 0 : | 138 double c1Bottom = tIdx == 0 ? 0 : |
| (...skipping 104 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
| 242 // for that. | 243 // for that. |
| 243 } | 244 } |
| 244 } | 245 } |
| 245 t2Start = t2; | 246 t2Start = t2; |
| 246 } | 247 } |
| 247 t1Start = t1; | 248 t1Start = t1; |
| 248 } | 249 } |
| 249 i.downDepth(); | 250 i.downDepth(); |
| 250 } | 251 } |
| 251 | 252 |
| 253 // if two ends intersect, check middle for coincidence |
| 254 bool SkIntersections::cubicCheckCoincidence(const SkDCubic& c1, const SkDCubic&
c2) { |
| 255 if (fUsed < 2) { |
| 256 return false; |
| 257 } |
| 258 int last = fUsed - 1; |
| 259 double tRange1 = fT[0][last] - fT[0][0]; |
| 260 double tRange2 = fT[1][last] - fT[1][0]; |
| 261 for (int index = 1; index < 5; ++index) { |
| 262 double testT1 = fT[0][0] + tRange1 * index / 5; |
| 263 double testT2 = fT[1][0] + tRange2 * index / 5; |
| 264 SkDPoint testPt1 = c1.ptAtT(testT1); |
| 265 SkDPoint testPt2 = c2.ptAtT(testT2); |
| 266 if (!testPt1.approximatelyEqual(testPt2)) { |
| 267 return false; |
| 268 } |
| 269 } |
| 270 if (fUsed > 2) { |
| 271 fPt[1] = fPt[last]; |
| 272 fT[0][1] = fT[0][last]; |
| 273 fT[1][1] = fT[1][last]; |
| 274 fUsed = 2; |
| 275 } |
| 276 fIsCoincident[0] = fIsCoincident[1] = 0x03; |
| 277 return true; |
| 278 } |
| 279 |
| 252 #define LINE_FRACTION 0.1 | 280 #define LINE_FRACTION 0.1 |
| 253 | 281 |
| 254 // intersect the end of the cubic with the other. Try lines from the end to cont
rol and opposite | 282 // intersect the end of the cubic with the other. Try lines from the end to cont
rol and opposite |
| 255 // end to determine range of t on opposite cubic. | 283 // end to determine range of t on opposite cubic. |
| 256 static void intersectEnd(const SkDCubic& cubic1, bool start, const SkDCubic& cub
ic2, | 284 bool SkIntersections::cubicExactEnd(const SkDCubic& cubic1, bool start, const Sk
DCubic& cubic2) { |
| 257 const SkDRect& bounds2, bool selfIntersect, SkIntersect
ions& i) { | 285 int t1Index = start ? 0 : 3; |
| 286 double testT = (double) !start; |
| 287 bool swap = swapped(); |
| 288 // quad/quad at this point checks to see if exact matches have already been
found |
| 289 // cubic/cubic can't reject so easily since cubics can intersect same point
more than once |
| 290 SkDLine tmpLine; |
| 291 tmpLine[0] = tmpLine[1] = cubic2[t1Index]; |
| 292 tmpLine[1].fX += cubic2[2 - start].fY - cubic2[t1Index].fY; |
| 293 tmpLine[1].fY -= cubic2[2 - start].fX - cubic2[t1Index].fX; |
| 294 SkIntersections impTs; |
| 295 impTs.intersectRay(cubic1, tmpLine); |
| 296 for (int index = 0; index < impTs.used(); ++index) { |
| 297 SkDPoint realPt = impTs.pt(index); |
| 298 if (!tmpLine[0].approximatelyEqual(realPt)) { |
| 299 continue; |
| 300 } |
| 301 if (swap) { |
| 302 insert(testT, impTs[0][index], tmpLine[0]); |
| 303 } else { |
| 304 insert(impTs[0][index], testT, tmpLine[0]); |
| 305 } |
| 306 return true; |
| 307 } |
| 308 return false; |
| 309 } |
| 310 |
| 311 void SkIntersections::cubicNearEnd(const SkDCubic& cubic1, bool start, const SkD
Cubic& cubic2, |
| 312 const SkDRect& bounds2) { |
| 258 SkDLine line; | 313 SkDLine line; |
| 259 int t1Index = start ? 0 : 3; | 314 int t1Index = start ? 0 : 3; |
| 260 bool swap = i.swapped(); | |
| 261 double testT = (double) !start; | 315 double testT = (double) !start; |
| 262 // quad/quad at this point checks to see if exact matches have already been
found | 316 // don't bother if the two cubics are connnected |
| 263 // cubic/cubic can't reject so easily since cubics can intersect same point
more than once | |
| 264 if (!selfIntersect) { | |
| 265 SkDLine tmpLine; | |
| 266 tmpLine[0] = tmpLine[1] = cubic2[t1Index]; | |
| 267 tmpLine[1].fX += cubic2[2 - start].fY - cubic2[t1Index].fY; | |
| 268 tmpLine[1].fY -= cubic2[2 - start].fX - cubic2[t1Index].fX; | |
| 269 SkIntersections impTs; | |
| 270 impTs.intersectRay(cubic1, tmpLine); | |
| 271 for (int index = 0; index < impTs.used(); ++index) { | |
| 272 SkDPoint realPt = impTs.pt(index); | |
| 273 if (!tmpLine[0].approximatelyEqualHalf(realPt)) { | |
| 274 continue; | |
| 275 } | |
| 276 if (swap) { | |
| 277 i.insert(testT, impTs[0][index], tmpLine[0]); | |
| 278 } else { | |
| 279 i.insert(impTs[0][index], testT, tmpLine[0]); | |
| 280 } | |
| 281 return; | |
| 282 } | |
| 283 } | |
| 284 // don't bother if the two cubics are connnected | |
| 285 static const int kPointsInCubic = 4; // FIXME: move to DCubic, replace '4' w
ith this | 317 static const int kPointsInCubic = 4; // FIXME: move to DCubic, replace '4' w
ith this |
| 286 static const int kMaxLineCubicIntersections = 3; | 318 static const int kMaxLineCubicIntersections = 3; |
| 287 SkSTArray<(kMaxLineCubicIntersections - 1) * kMaxLineCubicIntersections, dou
ble, true> tVals; | 319 SkSTArray<(kMaxLineCubicIntersections - 1) * kMaxLineCubicIntersections, dou
ble, true> tVals; |
| 288 line[0] = cubic1[t1Index]; | 320 line[0] = cubic1[t1Index]; |
| 289 // this variant looks for intersections with the end point and lines paralle
l to other points | 321 // this variant looks for intersections with the end point and lines paralle
l to other points |
| 290 for (int index = 0; index < kPointsInCubic; ++index) { | 322 for (int index = 0; index < kPointsInCubic; ++index) { |
| 291 if (index == t1Index) { | 323 if (index == t1Index) { |
| 292 continue; | 324 continue; |
| 293 } | 325 } |
| 294 SkDVector dxy1 = cubic1[index] - line[0]; | 326 SkDVector dxy1 = cubic1[index] - line[0]; |
| 295 dxy1 /= SkDCubic::gPrecisionUnit; | 327 dxy1 /= SkDCubic::gPrecisionUnit; |
| 296 line[1] = line[0] + dxy1; | 328 line[1] = line[0] + dxy1; |
| 297 SkDRect lineBounds; | 329 SkDRect lineBounds; |
| 298 lineBounds.setBounds(line); | 330 lineBounds.setBounds(line); |
| 299 if (!bounds2.intersects(&lineBounds)) { | 331 if (!bounds2.intersects(&lineBounds)) { |
| 300 continue; | 332 continue; |
| 301 } | 333 } |
| 302 SkIntersections local; | 334 SkIntersections local; |
| 303 if (!local.intersect(cubic2, line)) { | 335 if (!local.intersect(cubic2, line)) { |
| 304 continue; | 336 continue; |
| 305 } | 337 } |
| 306 for (int idx2 = 0; idx2 < local.used(); ++idx2) { | 338 for (int idx2 = 0; idx2 < local.used(); ++idx2) { |
| 307 double foundT = local[0][idx2]; | 339 double foundT = local[0][idx2]; |
| 308 if (approximately_less_than_zero(foundT) | 340 if (approximately_less_than_zero(foundT) |
| 309 || approximately_greater_than_one(foundT)) { | 341 || approximately_greater_than_one(foundT)) { |
| 310 continue; | 342 continue; |
| 311 } | 343 } |
| 312 if (local.pt(idx2).approximatelyEqual(line[0])) { | 344 if (local.pt(idx2).approximatelyEqual(line[0])) { |
| 313 if (i.swapped()) { // FIXME: insert should respect swap | 345 if (swapped()) { // FIXME: insert should respect swap |
| 314 i.insert(foundT, testT, line[0]); | 346 insert(foundT, testT, line[0]); |
| 315 } else { | 347 } else { |
| 316 i.insert(testT, foundT, line[0]); | 348 insert(testT, foundT, line[0]); |
| 317 } | 349 } |
| 318 } else { | 350 } else { |
| 319 tVals.push_back(foundT); | 351 tVals.push_back(foundT); |
| 320 } | 352 } |
| 321 } | 353 } |
| 322 } | 354 } |
| 323 if (tVals.count() == 0) { | 355 if (tVals.count() == 0) { |
| 324 return; | 356 return; |
| 325 } | 357 } |
| 326 SkTQSort<double>(tVals.begin(), tVals.end() - 1); | 358 SkTQSort<double>(tVals.begin(), tVals.end() - 1); |
| 327 double tMin1 = start ? 0 : 1 - LINE_FRACTION; | 359 double tMin1 = start ? 0 : 1 - LINE_FRACTION; |
| 328 double tMax1 = start ? LINE_FRACTION : 1; | 360 double tMax1 = start ? LINE_FRACTION : 1; |
| 329 int tIdx = 0; | 361 int tIdx = 0; |
| 330 do { | 362 do { |
| 331 int tLast = tIdx; | 363 int tLast = tIdx; |
| 332 while (tLast + 1 < tVals.count() && roughly_equal(tVals[tLast + 1], tVal
s[tIdx])) { | 364 while (tLast + 1 < tVals.count() && roughly_equal(tVals[tLast + 1], tVal
s[tIdx])) { |
| 333 ++tLast; | 365 ++tLast; |
| 334 } | 366 } |
| 335 double tMin2 = SkTMax(tVals[tIdx] - LINE_FRACTION, 0.0); | 367 double tMin2 = SkTMax(tVals[tIdx] - LINE_FRACTION, 0.0); |
| 336 double tMax2 = SkTMin(tVals[tLast] + LINE_FRACTION, 1.0); | 368 double tMax2 = SkTMin(tVals[tLast] + LINE_FRACTION, 1.0); |
| 337 int lastUsed = i.used(); | 369 int lastUsed = used(); |
| 338 intersect(cubic1, tMin1, tMax1, cubic2, tMin2, tMax2, 1, i); | 370 ::intersect(cubic1, tMin1, tMax1, cubic2, tMin2, tMax2, 1, *this); |
| 339 if (lastUsed == i.used()) { | 371 if (lastUsed == used()) { |
| 340 tMin2 = SkTMax(tVals[tIdx] - (1.0 / SkDCubic::gPrecisionUnit), 0.0); | 372 tMin2 = SkTMax(tVals[tIdx] - (1.0 / SkDCubic::gPrecisionUnit), 0.0); |
| 341 tMax2 = SkTMin(tVals[tLast] + (1.0 / SkDCubic::gPrecisionUnit), 1.0)
; | 373 tMax2 = SkTMin(tVals[tLast] + (1.0 / SkDCubic::gPrecisionUnit), 1.0)
; |
| 342 intersect(cubic1, tMin1, tMax1, cubic2, tMin2, tMax2, 1, i); | 374 ::intersect(cubic1, tMin1, tMax1, cubic2, tMin2, tMax2, 1, *this); |
| 343 } | 375 } |
| 344 tIdx = tLast + 1; | 376 tIdx = tLast + 1; |
| 345 } while (tIdx < tVals.count()); | 377 } while (tIdx < tVals.count()); |
| 346 return; | 378 return; |
| 347 } | 379 } |
| 348 | 380 |
| 349 const double CLOSE_ENOUGH = 0.001; | 381 const double CLOSE_ENOUGH = 0.001; |
| 350 | 382 |
| 351 static bool closeStart(const SkDCubic& cubic, int cubicIndex, SkIntersections& i
, SkDPoint& pt) { | 383 static bool closeStart(const SkDCubic& cubic, int cubicIndex, SkIntersections& i
, SkDPoint& pt) { |
| 352 if (i[cubicIndex][0] != 0 || i[cubicIndex][1] > CLOSE_ENOUGH) { | 384 if (i[cubicIndex][0] != 0 || i[cubicIndex][1] > CLOSE_ENOUGH) { |
| (...skipping 44 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
| 397 } | 429 } |
| 398 } | 430 } |
| 399 return true; | 431 return true; |
| 400 tryNextHalfPlane: | 432 tryNextHalfPlane: |
| 401 ; | 433 ; |
| 402 } | 434 } |
| 403 return false; | 435 return false; |
| 404 } | 436 } |
| 405 | 437 |
| 406 int SkIntersections::intersect(const SkDCubic& c1, const SkDCubic& c2) { | 438 int SkIntersections::intersect(const SkDCubic& c1, const SkDCubic& c2) { |
| 439 if (fMax == 0) { |
| 440 fMax = 9; |
| 441 } |
| 407 bool selfIntersect = &c1 == &c2; | 442 bool selfIntersect = &c1 == &c2; |
| 408 if (selfIntersect) { | 443 if (selfIntersect) { |
| 409 if (c1[0].approximatelyEqualHalf(c1[3])) { | 444 if (c1[0].approximatelyEqual(c1[3])) { |
| 410 insert(0, 1, c1[0]); | 445 insert(0, 1, c1[0]); |
| 446 return fUsed; |
| 411 } | 447 } |
| 412 } else { | 448 } else { |
| 413 for (int i1 = 0; i1 < 4; i1 += 3) { | 449 for (int i1 = 0; i1 < 4; i1 += 3) { |
| 414 for (int i2 = 0; i2 < 4; i2 += 3) { | 450 for (int i2 = 0; i2 < 4; i2 += 3) { |
| 415 if (c1[i1].approximatelyEqualHalf(c2[i2])) { | 451 if (c1[i1].approximatelyEqual(c2[i2])) { |
| 416 insert(i1 >> 1, i2 >> 1, c1[i1]); | 452 insert(i1 >> 1, i2 >> 1, c1[i1]); |
| 417 } | 453 } |
| 418 } | 454 } |
| 419 } | 455 } |
| 420 } | 456 } |
| 421 SkASSERT(fUsed < 4); | 457 SkASSERT(fUsed < 4); |
| 422 if (!selfIntersect) { | 458 if (!selfIntersect) { |
| 423 if (only_end_pts_in_common(c1, c2)) { | 459 if (only_end_pts_in_common(c1, c2)) { |
| 424 return fUsed; | 460 return fUsed; |
| 425 } | 461 } |
| 426 if (only_end_pts_in_common(c2, c1)) { | 462 if (only_end_pts_in_common(c2, c1)) { |
| 427 return fUsed; | 463 return fUsed; |
| 428 } | 464 } |
| 429 } | 465 } |
| 430 // quad/quad does linear test here -- cubic does not | 466 // quad/quad does linear test here -- cubic does not |
| 431 // cubics which are really lines should have been detected in reduce step ea
rlier | 467 // cubics which are really lines should have been detected in reduce step ea
rlier |
| 432 SkDRect c1Bounds, c2Bounds; | 468 int exactEndBits = 0; |
| 433 // FIXME: pass in cached bounds from caller | |
| 434 c1Bounds.setBounds(c1); // OPTIMIZE use setRawBounds ? | |
| 435 c2Bounds.setBounds(c2); | |
| 436 intersectEnd(c1, false, c2, c2Bounds, selfIntersect, *this); | |
| 437 intersectEnd(c1, true, c2, c2Bounds, selfIntersect, *this); | |
| 438 if (selfIntersect) { | 469 if (selfIntersect) { |
| 439 if (fUsed) { | 470 if (fUsed) { |
| 440 return fUsed; | 471 return fUsed; |
| 441 } | 472 } |
| 442 } else { | 473 } else { |
| 474 exactEndBits |= cubicExactEnd(c1, false, c2) << 0; |
| 475 exactEndBits |= cubicExactEnd(c1, true, c2) << 1; |
| 443 swap(); | 476 swap(); |
| 444 intersectEnd(c2, false, c1, c1Bounds, false, *this); | 477 exactEndBits |= cubicExactEnd(c2, false, c1) << 2; |
| 445 intersectEnd(c2, true, c1, c1Bounds, false, *this); | 478 exactEndBits |= cubicExactEnd(c2, true, c1) << 3; |
| 446 swap(); | 479 swap(); |
| 447 } | 480 } |
| 448 // if two ends intersect, check middle for coincidence | 481 if (cubicCheckCoincidence(c1, c2)) { |
| 449 if (fUsed >= 2) { | |
| 450 SkASSERT(!selfIntersect); | 482 SkASSERT(!selfIntersect); |
| 451 int last = fUsed - 1; | |
| 452 double tRange1 = fT[0][last] - fT[0][0]; | |
| 453 double tRange2 = fT[1][last] - fT[1][0]; | |
| 454 for (int index = 1; index < 5; ++index) { | |
| 455 double testT1 = fT[0][0] + tRange1 * index / 5; | |
| 456 double testT2 = fT[1][0] + tRange2 * index / 5; | |
| 457 SkDPoint testPt1 = c1.ptAtT(testT1); | |
| 458 SkDPoint testPt2 = c2.ptAtT(testT2); | |
| 459 if (!testPt1.approximatelyEqual(testPt2)) { | |
| 460 goto skipCoincidence; | |
| 461 } | |
| 462 } | |
| 463 if (fUsed > 2) { | |
| 464 fPt[1] = fPt[last]; | |
| 465 fT[0][1] = fT[0][last]; | |
| 466 fT[1][1] = fT[1][last]; | |
| 467 fUsed = 2; | |
| 468 } | |
| 469 fIsCoincident[0] = fIsCoincident[1] = 0x03; | |
| 470 return fUsed; | 483 return fUsed; |
| 471 } | 484 } |
| 472 skipCoincidence: | 485 // FIXME: pass in cached bounds from caller |
| 486 SkDRect c1Bounds, c2Bounds; |
| 487 c1Bounds.setBounds(c1); // OPTIMIZE use setRawBounds ? |
| 488 c2Bounds.setBounds(c2); |
| 489 if (!(exactEndBits & 1)) { |
| 490 cubicNearEnd(c1, false, c2, c2Bounds); |
| 491 } |
| 492 if (!(exactEndBits & 2)) { |
| 493 cubicNearEnd(c1, true, c2, c2Bounds); |
| 494 } |
| 495 if (!selfIntersect) { |
| 496 swap(); |
| 497 if (!(exactEndBits & 4)) { |
| 498 cubicNearEnd(c2, false, c1, c1Bounds); |
| 499 } |
| 500 if (!(exactEndBits & 8)) { |
| 501 cubicNearEnd(c2, true, c1, c1Bounds); |
| 502 } |
| 503 swap(); |
| 504 } |
| 505 if (cubicCheckCoincidence(c1, c2)) { |
| 506 SkASSERT(!selfIntersect); |
| 507 return fUsed; |
| 508 } |
| 473 ::intersect(c1, 0, 1, c2, 0, 1, 1, *this); | 509 ::intersect(c1, 0, 1, c2, 0, 1, 1, *this); |
| 474 // If an end point and a second point very close to the end is returned, the
second | 510 // If an end point and a second point very close to the end is returned, the
second |
| 475 // point may have been detected because the approximate quads | 511 // point may have been detected because the approximate quads |
| 476 // intersected at the end and close to it. Verify that the second point is v
alid. | 512 // intersected at the end and close to it. Verify that the second point is v
alid. |
| 477 if (fUsed <= 1) { | 513 if (fUsed <= 1) { |
| 478 return fUsed; | 514 return fUsed; |
| 479 } | 515 } |
| 480 SkDPoint pt[2]; | 516 SkDPoint pt[2]; |
| 481 if (closeStart(c1, 0, *this, pt[0]) && closeStart(c2, 1, *this, pt[1]) | 517 if (closeStart(c1, 0, *this, pt[0]) && closeStart(c2, 1, *this, pt[1]) |
| 482 && pt[0].approximatelyEqual(pt[1])) { | 518 && pt[0].approximatelyEqual(pt[1])) { |
| (...skipping 11 matching lines...) Expand all Loading... |
| 494 for (int index = 0; index < last; ++index) { | 530 for (int index = 0; index < last; ++index) { |
| 495 double mid1 = (fT[0][index] + fT[0][index + 1]) / 2; | 531 double mid1 = (fT[0][index] + fT[0][index + 1]) / 2; |
| 496 double mid2 = (fT[1][index] + fT[1][index + 1]) / 2; | 532 double mid2 = (fT[1][index] + fT[1][index + 1]) / 2; |
| 497 pt[0] = c1.ptAtT(mid1); | 533 pt[0] = c1.ptAtT(mid1); |
| 498 pt[1] = c2.ptAtT(mid2); | 534 pt[1] = c2.ptAtT(mid2); |
| 499 if (pt[0].approximatelyEqual(pt[1])) { | 535 if (pt[0].approximatelyEqual(pt[1])) { |
| 500 match |= 1 << index; | 536 match |= 1 << index; |
| 501 } | 537 } |
| 502 } | 538 } |
| 503 if (match) { | 539 if (match) { |
| 540 #if DEBUG_CONCIDENT |
| 504 if (((match + 1) & match) != 0) { | 541 if (((match + 1) & match) != 0) { |
| 505 SkDebugf("%s coincident hole\n", __FUNCTION__); | 542 SkDebugf("%s coincident hole\n", __FUNCTION__); |
| 506 } | 543 } |
| 544 #endif |
| 507 // for now, assume that everything from start to finish is coinciden
t | 545 // for now, assume that everything from start to finish is coinciden
t |
| 508 if (fUsed > 2) { | 546 if (fUsed > 2) { |
| 509 fPt[1] = fPt[last]; | 547 fPt[1] = fPt[last]; |
| 510 fT[0][1] = fT[0][last]; | 548 fT[0][1] = fT[0][last]; |
| 511 fT[1][1] = fT[1][last]; | 549 fT[1][1] = fT[1][last]; |
| 512 fIsCoincident[0] = 0x03; | 550 fIsCoincident[0] = 0x03; |
| 513 fIsCoincident[1] = 0x03; | 551 fIsCoincident[1] = 0x03; |
| 514 fUsed = 2; | 552 fUsed = 2; |
| 515 } | 553 } |
| 516 } | 554 } |
| 517 } | 555 } |
| 518 return fUsed; | 556 return fUsed; |
| 519 } | 557 } |
| 520 | 558 |
| 521 // Up promote the quad to a cubic. | 559 // Up promote the quad to a cubic. |
| 522 // OPTIMIZATION If this is a common use case, optimize by duplicating | 560 // OPTIMIZATION If this is a common use case, optimize by duplicating |
| 523 // the intersect 3 loop to avoid the promotion / demotion code | 561 // the intersect 3 loop to avoid the promotion / demotion code |
| 524 int SkIntersections::intersect(const SkDCubic& cubic, const SkDQuad& quad) { | 562 int SkIntersections::intersect(const SkDCubic& cubic, const SkDQuad& quad) { |
| 563 fMax = 6; |
| 525 SkDCubic up = quad.toCubic(); | 564 SkDCubic up = quad.toCubic(); |
| 526 (void) intersect(cubic, up); | 565 (void) intersect(cubic, up); |
| 527 return used(); | 566 return used(); |
| 528 } | 567 } |
| 529 | 568 |
| 530 /* http://www.ag.jku.at/compass/compasssample.pdf | 569 /* http://www.ag.jku.at/compass/compasssample.pdf |
| 531 ( Self-Intersection Problems and Approximate Implicitization by Jan B. Thomassen | 570 ( Self-Intersection Problems and Approximate Implicitization by Jan B. Thomassen |
| 532 Centre of Mathematics for Applications, University of Oslo http://www.cma.uio.no
janbth@math.uio.no | 571 Centre of Mathematics for Applications, University of Oslo http://www.cma.uio.no
janbth@math.uio.no |
| 533 SINTEF Applied Mathematics http://www.sintef.no ) | 572 SINTEF Applied Mathematics http://www.sintef.no ) |
| 534 describes a method to find the self intersection of a cubic by taking the gradie
nt of the implicit | 573 describes a method to find the self intersection of a cubic by taking the gradie
nt of the implicit |
| 535 form dotted with the normal, and solving for the roots. My math foo is too poor
to implement this.*/ | 574 form dotted with the normal, and solving for the roots. My math foo is too poor
to implement this.*/ |
| 536 | 575 |
| 537 int SkIntersections::intersect(const SkDCubic& c) { | 576 int SkIntersections::intersect(const SkDCubic& c) { |
| 577 fMax = 1; |
| 538 // check to see if x or y end points are the extrema. Are other quick reject
s possible? | 578 // check to see if x or y end points are the extrema. Are other quick reject
s possible? |
| 539 if (c.endsAreExtremaInXOrY()) { | 579 if (c.endsAreExtremaInXOrY()) { |
| 540 return false; | 580 return false; |
| 541 } | 581 } |
| 542 (void) intersect(c, c); | 582 (void) intersect(c, c); |
| 543 if (used() > 0) { | 583 if (used() > 0) { |
| 544 SkASSERT(used() == 1); | 584 SkASSERT(used() == 1); |
| 545 if (fT[0][0] > fT[1][0]) { | 585 if (fT[0][0] > fT[1][0]) { |
| 546 swapPts(); | 586 swapPts(); |
| 547 } | 587 } |
| 548 } | 588 } |
| 549 return used(); | 589 return used(); |
| 550 } | 590 } |
| OLD | NEW |