Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(1032)

Unified Diff: source/libvpx/vp9/common/vp9_loopfilter.c

Issue 23530058: libvpx: Pull from upstream (Closed) Base URL: svn://chrome-svn/chrome/trunk/deps/third_party/libvpx/
Patch Set: Created 7 years, 3 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View side-by-side diff with in-line comments
Download patch
« no previous file with comments | « source/libvpx/vp9/common/vp9_findnearmv.c ('k') | source/libvpx/vp9/common/vp9_mvref_common.c » ('j') | no next file with comments »
Expand Comments ('e') | Collapse Comments ('c') | Show Comments Hide Comments ('s')
Index: source/libvpx/vp9/common/vp9_loopfilter.c
===================================================================
--- source/libvpx/vp9/common/vp9_loopfilter.c (revision 223100)
+++ source/libvpx/vp9/common/vp9_loopfilter.c (working copy)
@@ -22,6 +22,210 @@
const uint8_t *hev_thr;
};
+// This structure holds bit masks for all 8x8 blocks in a 64x64 region.
+// Each 1 bit represents a position in which we want to apply the loop filter.
+// Left_ entries refer to whether we apply a filter on the border to the
+// left of the block. Above_ entries refer to whether or not to apply a
+// filter on the above border. Int_ entries refer to whether or not to
+// apply borders on the 4x4 edges within the 8x8 block that each bit
+// represents.
+// Since each transform is accompanied by a potentially different type of
+// loop filter there is a different entry in the array for each transform size.
+typedef struct {
+ uint64_t left_y[TX_SIZES];
+ uint64_t above_y[TX_SIZES];
+ uint64_t int_4x4_y;
+ uint16_t left_uv[TX_SIZES];
+ uint16_t above_uv[TX_SIZES];
+ uint16_t int_4x4_uv;
+} LOOP_FILTER_MASK;
+
+// 64 bit masks for left transform size. Each 1 represents a position where
+// we should apply a loop filter across the left border of an 8x8 block
+// boundary.
+//
+// In the case of TX_16X16-> ( in low order byte first we end up with
+// a mask that looks like this
+//
+// 10101010
+// 10101010
+// 10101010
+// 10101010
+// 10101010
+// 10101010
+// 10101010
+// 10101010
+//
+// A loopfilter should be applied to every other 8x8 horizontally.
+static const uint64_t left_64x64_txform_mask[TX_SIZES]= {
+ 0xffffffffffffffff, // TX_4X4
+ 0xffffffffffffffff, // TX_8x8
+ 0x5555555555555555, // TX_16x16
+ 0x1111111111111111, // TX_32x32
+};
+
+// 64 bit masks for above transform size. Each 1 represents a position where
+// we should apply a loop filter across the top border of an 8x8 block
+// boundary.
+//
+// In the case of TX_32x32 -> ( in low order byte first we end up with
+// a mask that looks like this
+//
+// 11111111
+// 00000000
+// 00000000
+// 00000000
+// 11111111
+// 00000000
+// 00000000
+// 00000000
+//
+// A loopfilter should be applied to every other 4 the row vertically.
+static const uint64_t above_64x64_txform_mask[TX_SIZES]= {
+ 0xffffffffffffffff, // TX_4X4
+ 0xffffffffffffffff, // TX_8x8
+ 0x00ff00ff00ff00ff, // TX_16x16
+ 0x000000ff000000ff, // TX_32x32
+};
+
+// 64 bit masks for prediction sizes (left). Each 1 represents a position
+// where left border of an 8x8 block. These are aligned to the right most
+// appropriate bit, and then shifted into place.
+//
+// In the case of TX_16x32 -> ( low order byte first ) we end up with
+// a mask that looks like this :
+//
+// 10000000
+// 10000000
+// 10000000
+// 10000000
+// 00000000
+// 00000000
+// 00000000
+// 00000000
+static const uint64_t left_prediction_mask[BLOCK_SIZES] = {
+ 0x0000000000000001, // BLOCK_4X4,
+ 0x0000000000000001, // BLOCK_4X8,
+ 0x0000000000000001, // BLOCK_8X4,
+ 0x0000000000000001, // BLOCK_8X8,
+ 0x0000000000000101, // BLOCK_8X16,
+ 0x0000000000000001, // BLOCK_16X8,
+ 0x0000000000000101, // BLOCK_16X16,
+ 0x0000000001010101, // BLOCK_16X32,
+ 0x0000000000000101, // BLOCK_32X16,
+ 0x0000000001010101, // BLOCK_32X32,
+ 0x0101010101010101, // BLOCK_32X64,
+ 0x0000000001010101, // BLOCK_64X32,
+ 0x0101010101010101, // BLOCK_64X64
+};
+
+// 64 bit mask to shift and set for each prediction size.
+static const uint64_t above_prediction_mask[BLOCK_SIZES] = {
+ 0x0000000000000001, // BLOCK_4X4
+ 0x0000000000000001, // BLOCK_4X8
+ 0x0000000000000001, // BLOCK_8X4
+ 0x0000000000000001, // BLOCK_8X8
+ 0x0000000000000001, // BLOCK_8X16,
+ 0x0000000000000003, // BLOCK_16X8
+ 0x0000000000000003, // BLOCK_16X16
+ 0x0000000000000003, // BLOCK_16X32,
+ 0x000000000000000f, // BLOCK_32X16,
+ 0x000000000000000f, // BLOCK_32X32,
+ 0x000000000000000f, // BLOCK_32X64,
+ 0x00000000000000ff, // BLOCK_64X32,
+ 0x00000000000000ff, // BLOCK_64X64
+};
+// 64 bit mask to shift and set for each prediction size. A bit is set for
+// each 8x8 block that would be in the left most block of the given block
+// size in the 64x64 block.
+static const uint64_t size_mask[BLOCK_SIZES] = {
+ 0x0000000000000001, // BLOCK_4X4
+ 0x0000000000000001, // BLOCK_4X8
+ 0x0000000000000001, // BLOCK_8X4
+ 0x0000000000000001, // BLOCK_8X8
+ 0x0000000000000101, // BLOCK_8X16,
+ 0x0000000000000003, // BLOCK_16X8
+ 0x0000000000000303, // BLOCK_16X16
+ 0x0000000003030303, // BLOCK_16X32,
+ 0x0000000000000f0f, // BLOCK_32X16,
+ 0x000000000f0f0f0f, // BLOCK_32X32,
+ 0x0f0f0f0f0f0f0f0f, // BLOCK_32X64,
+ 0x00000000ffffffff, // BLOCK_64X32,
+ 0xffffffffffffffff, // BLOCK_64X64
+};
+
+// These are used for masking the left and above borders.
+static const uint64_t left_border = 0x1111111111111111;
+static const uint64_t above_border = 0x000000ff000000ff;
+
+// 16 bit masks for uv transform sizes.
+static const uint16_t left_64x64_txform_mask_uv[TX_SIZES]= {
+ 0xffff, // TX_4X4
+ 0xffff, // TX_8x8
+ 0x5555, // TX_16x16
+ 0x1111, // TX_32x32
+};
+
+static const uint16_t above_64x64_txform_mask_uv[TX_SIZES]= {
+ 0xffff, // TX_4X4
+ 0xffff, // TX_8x8
+ 0x0f0f, // TX_16x16
+ 0x000f, // TX_32x32
+};
+
+// 16 bit left mask to shift and set for each uv prediction size.
+static const uint16_t left_prediction_mask_uv[BLOCK_SIZES] = {
+ 0x0001, // BLOCK_4X4,
+ 0x0001, // BLOCK_4X8,
+ 0x0001, // BLOCK_8X4,
+ 0x0001, // BLOCK_8X8,
+ 0x0001, // BLOCK_8X16,
+ 0x0001, // BLOCK_16X8,
+ 0x0001, // BLOCK_16X16,
+ 0x0011, // BLOCK_16X32,
+ 0x0001, // BLOCK_32X16,
+ 0x0011, // BLOCK_32X32,
+ 0x1111, // BLOCK_32X64
+ 0x0011, // BLOCK_64X32,
+ 0x1111, // BLOCK_64X64
+};
+// 16 bit above mask to shift and set for uv each prediction size.
+static const uint16_t above_prediction_mask_uv[BLOCK_SIZES] = {
+ 0x0001, // BLOCK_4X4
+ 0x0001, // BLOCK_4X8
+ 0x0001, // BLOCK_8X4
+ 0x0001, // BLOCK_8X8
+ 0x0001, // BLOCK_8X16,
+ 0x0001, // BLOCK_16X8
+ 0x0001, // BLOCK_16X16
+ 0x0001, // BLOCK_16X32,
+ 0x0003, // BLOCK_32X16,
+ 0x0003, // BLOCK_32X32,
+ 0x0003, // BLOCK_32X64,
+ 0x000f, // BLOCK_64X32,
+ 0x000f, // BLOCK_64X64
+};
+
+// 64 bit mask to shift and set for each uv prediction size
+static const uint16_t size_mask_uv[BLOCK_SIZES] = {
+ 0x0001, // BLOCK_4X4
+ 0x0001, // BLOCK_4X8
+ 0x0001, // BLOCK_8X4
+ 0x0001, // BLOCK_8X8
+ 0x0001, // BLOCK_8X16,
+ 0x0001, // BLOCK_16X8
+ 0x0001, // BLOCK_16X16
+ 0x0011, // BLOCK_16X32,
+ 0x0003, // BLOCK_32X16,
+ 0x0033, // BLOCK_32X32,
+ 0x3333, // BLOCK_32X64,
+ 0x00ff, // BLOCK_64X32,
+ 0xffff, // BLOCK_64X64
+};
+static const uint16_t left_border_uv = 0x1111;
+static const uint16_t above_border_uv = 0x000f;
+
+
static void lf_init_lut(loop_filter_info_n *lfi) {
lfi->mode_lf_lut[DC_PRED] = 0;
lfi->mode_lf_lut[D45_PRED] = 0;
@@ -236,10 +440,360 @@
}
}
-static void filter_block_plane(VP9_COMMON *cm,
- struct macroblockd_plane *plane,
- const MODE_INFO *mi,
- int mi_row, int mi_col) {
+// This function ors into the current lfm structure, where to do loop
+// filters for the specific mi we are looking at. It uses information
+// including the block_size_type (32x16, 32x32, etc), the transform size,
+// whether there were any coefficients encoded, and the loop filter strength
+// block we are currently looking at. Shift is used to position the
+// 1's we produce.
+// TODO(JBB) Need another function for different resolution color..
+static void build_masks(const loop_filter_info_n *const lfi_n,
+ const MODE_INFO *mi, const int shift_y,
+ const int shift_uv,
+ LOOP_FILTER_MASK *lfm) {
+ const BLOCK_SIZE block_size = mi->mbmi.sb_type;
+ const TX_SIZE tx_size_y = mi->mbmi.tx_size;
+ const TX_SIZE tx_size_uv = get_uv_tx_size(&mi->mbmi);
+ const int skip = mi->mbmi.skip_coeff;
+ const int seg = mi->mbmi.segment_id;
+ const int ref = mi->mbmi.ref_frame[0];
+ const int mode = lfi_n->mode_lf_lut[mi->mbmi.mode];
+ const int filter_level = lfi_n->lvl[seg][ref][mode];
+ uint64_t *left_y = &lfm->left_y[tx_size_y];
+ uint64_t *above_y = &lfm->above_y[tx_size_y];
+ uint64_t *int_4x4_y = &lfm->int_4x4_y;
+ uint16_t *left_uv = &lfm->left_uv[tx_size_uv];
+ uint16_t *above_uv = &lfm->above_uv[tx_size_uv];
+ uint16_t *int_4x4_uv = &lfm->int_4x4_uv;
+
+ // If filter level is 0 we don't loop filter.
+ if (!filter_level)
+ return;
+
+ // These set 1 in the current block size for the block size edges.
+ // For instance if the block size is 32x16, we'll set :
+ // above = 1111
+ // 0000
+ // and
+ // left = 1000
+ // = 1000
+ // NOTE : In this example the low bit is left most ( 1000 ) is stored as
+ // 1, not 8...
+ //
+ // U and v set things on a 16 bit scale.
+ //
+ *above_y |= above_prediction_mask[block_size] << shift_y;
+ *above_uv |= above_prediction_mask_uv[block_size] << shift_uv;
+ *left_y |= left_prediction_mask[block_size] << shift_y;
+ *left_uv |= left_prediction_mask_uv[block_size] << shift_uv;
+
+ // If the block has no coefficients and is not intra we skip applying
+ // the loop filter on block edges.
+ if (skip && ref > INTRA_FRAME)
+ return;
+
+ // Here we are adding a mask for the transform size. The transform
+ // size mask is set to be correct for a 64x64 prediction block size. We
+ // mask to match the size of the block we are working on and then shift it
+ // into place..
+ *above_y |= (size_mask[block_size] &
+ above_64x64_txform_mask[tx_size_y]) << shift_y;
+ *above_uv |= (size_mask_uv[block_size] &
+ above_64x64_txform_mask_uv[tx_size_uv]) << shift_uv;
+
+ *left_y |= (size_mask[block_size] &
+ left_64x64_txform_mask[tx_size_y]) << shift_y;
+ *left_uv |= (size_mask_uv[block_size] &
+ left_64x64_txform_mask_uv[tx_size_uv]) << shift_uv;
+
+ // Here we are trying to determine what to do with the internal 4x4 block
+ // boundaries. These differ from the 4x4 boundaries on the outside edge of
+ // an 8x8 in that the internal ones can be skipped and don't depend on
+ // the prediction block size.
+ if (tx_size_y == TX_4X4) {
+ *int_4x4_y |= (size_mask[block_size] & 0xffffffffffffffff) << shift_y;
+ }
+ if (tx_size_uv == TX_4X4) {
+ *int_4x4_uv |= (size_mask_uv[block_size] & 0xffff) << shift_uv;
+ }
+}
+
+// This function does the same thing as the one above with the exception that
+// it only affects the y masks. It exists because for blocks < 16x16 in size,
+// we only update u and v masks on the first block.
+static void build_y_mask(const loop_filter_info_n *const lfi_n,
+ const MODE_INFO *mi, const int shift_y,
+ LOOP_FILTER_MASK *lfm) {
+ const BLOCK_SIZE block_size = mi->mbmi.sb_type;
+ const TX_SIZE tx_size_y = mi->mbmi.tx_size;
+ const int skip = mi->mbmi.skip_coeff;
+ const int seg = mi->mbmi.segment_id;
+ const int ref = mi->mbmi.ref_frame[0];
+ const int mode = lfi_n->mode_lf_lut[mi->mbmi.mode];
+ const int filter_level = lfi_n->lvl[seg][ref][mode];
+ uint64_t *left_y = &lfm->left_y[tx_size_y];
+ uint64_t *above_y = &lfm->above_y[tx_size_y];
+ uint64_t *int_4x4_y = &lfm->int_4x4_y;
+
+ if (!filter_level)
+ return;
+
+ *above_y |= above_prediction_mask[block_size] << shift_y;
+ *left_y |= left_prediction_mask[block_size] << shift_y;
+
+ if (skip && ref > INTRA_FRAME)
+ return;
+
+ *above_y |= (size_mask[block_size] &
+ above_64x64_txform_mask[tx_size_y]) << shift_y;
+
+ *left_y |= (size_mask[block_size] &
+ left_64x64_txform_mask[tx_size_y]) << shift_y;
+
+ if (tx_size_y == TX_4X4) {
+ *int_4x4_y |= (size_mask[block_size] & 0xffffffffffffffff) << shift_y;
+ }
+}
+
+// This function sets up the bit masks for the entire 64x64 region represented
+// by mi_row, mi_col.
+// TODO(JBB): This function only works for yv12.
+static void setup_mask(VP9_COMMON *const cm, const int mi_row, const int mi_col,
+ MODE_INFO **mi_8x8, const int mode_info_stride,
+ LOOP_FILTER_MASK *lfm) {
+ int idx_32, idx_16, idx_8;
+ const loop_filter_info_n *const lfi_n = &cm->lf_info;
+ MODE_INFO **mip = mi_8x8;
+ MODE_INFO **mip2 = mi_8x8;
+
+ // These are offsets to the next mi in the 64x64 block. It is what gets
+ // added to the mi ptr as we go through each loop. It helps us to avoids
+ // setting up special row and column counters for each index. The last step
+ // brings us out back to the starting position.
+ const int offset_32[] = {4, (mode_info_stride << 2) - 4, 4,
+ -(mode_info_stride << 2) - 4};
+ const int offset_16[] = {2, (mode_info_stride << 1) - 2, 2,
+ -(mode_info_stride << 1) - 2};
+ const int offset[] = {1, mode_info_stride - 1, 1, -mode_info_stride - 1};
+
+ // Following variables represent shifts to position the current block
+ // mask over the appropriate block. A shift of 36 to the left will move
+ // the bits for the final 32 by 32 block in the 64x64 up 4 rows and left
+ // 4 rows to the appropriate spot.
+ const int shift_32_y[] = {0, 4, 32, 36};
+ const int shift_16_y[] = {0, 2, 16, 18};
+ const int shift_8_y[] = {0, 1, 8, 9};
+ const int shift_32_uv[] = {0, 2, 8, 10};
+ const int shift_16_uv[] = {0, 1, 4, 5};
+ int i;
+ const int max_rows = (mi_row + MI_BLOCK_SIZE > cm->mi_rows ?
+ cm->mi_rows - mi_row : MI_BLOCK_SIZE);
+ const int max_cols = (mi_col + MI_BLOCK_SIZE > cm->mi_cols ?
+ cm->mi_cols - mi_col : MI_BLOCK_SIZE);
+
+ vp9_zero(*lfm);
+
+ // TODO(jimbankoski): Try moving most of the following code into decode
+ // loop and storing lfm in the mbmi structure so that we don't have to go
+ // through the recursive loop structure multiple times.
+ switch (mip[0]->mbmi.sb_type) {
+ case BLOCK_64X64:
+ build_masks(lfi_n, mip[0] , 0, 0, lfm);
+ break;
+ case BLOCK_64X32:
+ build_masks(lfi_n, mip[0], 0, 0, lfm);
+ mip2 = mip + mode_info_stride * 4;
+ if (4 >= max_rows)
+ break;
+ build_masks(lfi_n, mip2[0], 32, 8, lfm);
+ break;
+ case BLOCK_32X64:
+ build_masks(lfi_n, mip[0], 0, 0, lfm);
+ mip2 = mip + 4;
+ if (4 >= max_cols)
+ break;
+ build_masks(lfi_n, mip2[0], 4, 2, lfm);
+ break;
+ default:
+ for (idx_32 = 0; idx_32 < 4; mip += offset_32[idx_32], ++idx_32) {
+ const int shift_y = shift_32_y[idx_32];
+ const int shift_uv = shift_32_uv[idx_32];
+ const int mi_32_col_offset = ((idx_32 & 1) << 2);
+ const int mi_32_row_offset = ((idx_32 >> 1) << 2);
+ if (mi_32_col_offset >= max_cols || mi_32_row_offset >= max_rows)
+ continue;
+ switch (mip[0]->mbmi.sb_type) {
+ case BLOCK_32X32:
+ build_masks(lfi_n, mip[0], shift_y, shift_uv, lfm);
+ break;
+ case BLOCK_32X16:
+ build_masks(lfi_n, mip[0], shift_y, shift_uv, lfm);
+ if (mi_32_row_offset + 2 >= max_rows)
+ continue;
+ mip2 = mip + mode_info_stride * 2;
+ build_masks(lfi_n, mip2[0], shift_y + 16, shift_uv + 4, lfm);
+ break;
+ case BLOCK_16X32:
+ build_masks(lfi_n, mip[0], shift_y, shift_uv, lfm);
+ if (mi_32_col_offset + 2 >= max_cols)
+ continue;
+ mip2 = mip + 2;
+ build_masks(lfi_n, mip2[0], shift_y + 2, shift_uv + 1, lfm);
+ break;
+ default:
+ for (idx_16 = 0; idx_16 < 4; mip += offset_16[idx_16], ++idx_16) {
+ const int shift_y = shift_32_y[idx_32] + shift_16_y[idx_16];
+ const int shift_uv = shift_32_uv[idx_32] + shift_16_uv[idx_16];
+ const int mi_16_col_offset = mi_32_col_offset +
+ ((idx_16 & 1) << 1);
+ const int mi_16_row_offset = mi_32_row_offset +
+ ((idx_16 >> 1) << 1);
+
+ if (mi_16_col_offset >= max_cols || mi_16_row_offset >= max_rows)
+ continue;
+
+ switch (mip[0]->mbmi.sb_type) {
+ case BLOCK_16X16:
+ build_masks(lfi_n, mip[0], shift_y, shift_uv, lfm);
+ break;
+ case BLOCK_16X8:
+ build_masks(lfi_n, mip[0], shift_y, shift_uv, lfm);
+ if (mi_16_row_offset + 1 >= max_rows)
+ continue;
+ mip2 = mip + mode_info_stride;
+ build_y_mask(lfi_n, mip2[0], shift_y+8, lfm);
+ break;
+ case BLOCK_8X16:
+ build_masks(lfi_n, mip[0], shift_y, shift_uv, lfm);
+ if (mi_16_col_offset +1 >= max_cols)
+ continue;
+ mip2 = mip + 1;
+ build_y_mask(lfi_n, mip2[0], shift_y+1, lfm);
+ break;
+ default: {
+ const int shift_y = shift_32_y[idx_32] +
+ shift_16_y[idx_16] +
+ shift_8_y[0];
+ build_masks(lfi_n, mip[0], shift_y, shift_uv, lfm);
+ mip += offset[0];
+ for (idx_8 = 1; idx_8 < 4; mip += offset[idx_8], ++idx_8) {
+ const int shift_y = shift_32_y[idx_32] +
+ shift_16_y[idx_16] +
+ shift_8_y[idx_8];
+ const int mi_8_col_offset = mi_16_col_offset +
+ ((idx_8 & 1));
+ const int mi_8_row_offset = mi_16_row_offset +
+ ((idx_8 >> 1));
+
+ if (mi_8_col_offset >= max_cols ||
+ mi_8_row_offset >= max_rows)
+ continue;
+ build_y_mask(lfi_n, mip[0], shift_y, lfm);
+ }
+ break;
+ }
+ }
+ }
+ break;
+ }
+ }
+ break;
+ }
+ // The largest loopfilter we have is 16x16 so we use the 16x16 mask
+ // for 32x32 transforms also also.
+ lfm->left_y[TX_16X16] |= lfm->left_y[TX_32X32];
+ lfm->above_y[TX_16X16] |= lfm->above_y[TX_32X32];
+ lfm->left_uv[TX_16X16] |= lfm->left_uv[TX_32X32];
+ lfm->above_uv[TX_16X16] |= lfm->above_uv[TX_32X32];
+
+ // We do at least 8 tap filter on every 32x32 even if the transform size
+ // is 4x4. So if the 4x4 is set on a border pixel add it to the 8x8 and
+ // remove it from the 4x4.
+ lfm->left_y[TX_8X8] |= lfm->left_y[TX_4X4] & left_border;
+ lfm->left_y[TX_4X4] &= ~left_border;
+ lfm->above_y[TX_8X8] |= lfm->above_y[TX_4X4] & above_border;
+ lfm->above_y[TX_4X4] &= ~above_border;
+ lfm->left_uv[TX_8X8] |= lfm->left_uv[TX_4X4] & left_border_uv;
+ lfm->left_uv[TX_4X4] &= ~left_border_uv;
+ lfm->above_uv[TX_8X8] |= lfm->above_uv[TX_4X4] & above_border_uv;
+ lfm->above_uv[TX_4X4] &= ~above_border_uv;
+
+ // We do some special edge handling.
+ if (mi_row + MI_BLOCK_SIZE > cm->mi_rows) {
+ const uint64_t rows = cm->mi_rows - mi_row;
+
+ // Each pixel inside the border gets a 1,
+ const uint64_t mask_y = (((uint64_t) 1 << (rows << 3)) - 1);
+ const uint16_t mask_uv = (((uint16_t) 1 << (((rows + 1) >> 1) << 2)) - 1);
+
+ // Remove values completely outside our border.
+ for (i = 0; i < TX_32X32; i++) {
+ lfm->left_y[i] &= mask_y;
+ lfm->above_y[i] &= mask_y;
+ lfm->left_uv[i] &= mask_uv;
+ lfm->above_uv[i] &= mask_uv;
+ }
+ lfm->int_4x4_y &= mask_y;
+ lfm->int_4x4_uv &= mask_uv;
+
+ // We don't apply a wide loop filter on the last uv block row. If set
+ // apply the shorter one instead.
+ if (rows == 1) {
+ lfm->above_uv[TX_8X8] |= lfm->above_uv[TX_16X16];
+ lfm->above_uv[TX_16X16] = 0;
+ }
+ if (rows == 5) {
+ lfm->above_uv[TX_8X8] |= lfm->above_uv[TX_16X16] & 0xff00;
+ lfm->above_uv[TX_16X16] &= ~(lfm->above_uv[TX_16X16] & 0xff00);
+ }
+ }
+
+ if (mi_col + MI_BLOCK_SIZE > cm->mi_cols) {
+ const uint64_t columns = cm->mi_cols - mi_col;
+
+ // Each pixel inside the border gets a 1, the multiply copies the border
+ // to where we need it.
+ const uint64_t mask_y = (((1 << columns) - 1)) * 0x0101010101010101;
+ const uint16_t mask_uv = ((1 << ((columns + 1) >> 1)) - 1) * 0x1111;
+
+ // Internal edges are not applied on the last column of the image so
+ // we mask 1 more for the internal edges
+ const uint16_t mask_uv_int = ((1 << (columns >> 1)) - 1) * 0x1111;
+
+ // Remove the bits outside the image edge.
+ for (i = 0; i < TX_32X32; i++) {
+ lfm->left_y[i] &= mask_y;
+ lfm->above_y[i] &= mask_y;
+ lfm->left_uv[i] &= mask_uv;
+ lfm->above_uv[i] &= mask_uv;
+ }
+ lfm->int_4x4_y &= mask_y;
+ lfm->int_4x4_uv &= mask_uv_int;
+
+ // We don't apply a wide loop filter on the last uv column. If set
+ // apply the shorter one instead.
+ if (columns == 1) {
+ lfm->left_uv[TX_8X8] |= lfm->left_uv[TX_16X16];
+ lfm->left_uv[TX_16X16] = 0;
+ }
+ if (columns == 5) {
+ lfm->left_uv[TX_8X8] |= (lfm->left_uv[TX_16X16] & 0xcccc);
+ lfm->left_uv[TX_16X16] &= ~(lfm->left_uv[TX_16X16] & 0xcccc);
+ }
+ }
+ // We don't a loop filter on the first column in the image. Mask that out.
+ if (mi_col == 0) {
+ for (i = 0; i < TX_32X32; i++) {
+ lfm->left_y[i] &= 0xfefefefefefefefe;
+ lfm->left_uv[i] &= 0xeeee;
+ }
+ }
+}
+#if CONFIG_NON420
+static void filter_block_plane_non420(VP9_COMMON *cm,
+ struct macroblockd_plane *plane,
+ MODE_INFO **mi_8x8,
+ int mi_row, int mi_col) {
const int ss_x = plane->subsampling_x;
const int ss_y = plane->subsampling_y;
const int row_step = 1 << ss_x;
@@ -262,24 +816,25 @@
// Determine the vertical edges that need filtering
for (c = 0; c < MI_BLOCK_SIZE && mi_col + c < cm->mi_cols; c += col_step) {
- const int skip_this = mi[c].mbmi.skip_coeff
- && is_inter_block(&mi[c].mbmi);
+ const MODE_INFO *mi = mi_8x8[c];
+ const int skip_this = mi[0].mbmi.skip_coeff
+ && is_inter_block(&mi[0].mbmi);
// left edge of current unit is block/partition edge -> no skip
- const int block_edge_left = b_width_log2(mi[c].mbmi.sb_type) ?
- !(c & ((1 << (b_width_log2(mi[c].mbmi.sb_type)-1)) - 1)) : 1;
+ const int block_edge_left = b_width_log2(mi[0].mbmi.sb_type) ?
+ !(c & ((1 << (b_width_log2(mi[0].mbmi.sb_type)-1)) - 1)) : 1;
const int skip_this_c = skip_this && !block_edge_left;
// top edge of current unit is block/partition edge -> no skip
- const int block_edge_above = b_height_log2(mi[c].mbmi.sb_type) ?
- !(r & ((1 << (b_height_log2(mi[c].mbmi.sb_type)-1)) - 1)) : 1;
+ const int block_edge_above = b_height_log2(mi[0].mbmi.sb_type) ?
+ !(r & ((1 << (b_height_log2(mi[0].mbmi.sb_type)-1)) - 1)) : 1;
const int skip_this_r = skip_this && !block_edge_above;
const TX_SIZE tx_size = (plane->plane_type == PLANE_TYPE_UV)
- ? get_uv_tx_size(&mi[c].mbmi)
- : mi[c].mbmi.txfm_size;
+ ? get_uv_tx_size(&mi[0].mbmi)
+ : mi[0].mbmi.tx_size;
const int skip_border_4x4_c = ss_x && mi_col + c == cm->mi_cols - 1;
const int skip_border_4x4_r = ss_y && mi_row + r == cm->mi_rows - 1;
// Filter level can vary per MI
- if (!build_lfi(&cm->lf_info, &mi[c].mbmi, lfi[r] + (c >> ss_x)))
+ if (!build_lfi(&cm->lf_info, &mi[0].mbmi, lfi[r] + (c >> ss_x)))
continue;
// Build masks based on the transform size of each block
@@ -338,7 +893,7 @@
mask_4x4_c & border_mask,
mask_4x4_int[r], lfi[r]);
dst->buf += 8 * dst->stride;
- mi += row_step_stride;
+ mi_8x8 += row_step_stride;
}
// Now do horizontal pass
@@ -355,22 +910,124 @@
dst->buf += 8 * dst->stride;
}
}
+#endif
+static void filter_block_plane(VP9_COMMON *const cm,
+ struct macroblockd_plane *const plane,
+ MODE_INFO **mi_8x8,
+ int mi_row, int mi_col,
+ LOOP_FILTER_MASK *lfm) {
+ const int ss_x = plane->subsampling_x;
+ const int ss_y = plane->subsampling_y;
+ const int row_step = 1 << ss_x;
+ const int col_step = 1 << ss_y;
+ const int row_step_stride = cm->mode_info_stride * row_step;
+ struct buf_2d *const dst = &plane->dst;
+ uint8_t* const dst0 = dst->buf;
+ unsigned int mask_4x4_int[MI_BLOCK_SIZE] = {0};
+ struct loop_filter_info lfi[MI_BLOCK_SIZE][MI_BLOCK_SIZE];
+ int r, c;
+ int row_shift = 3 - ss_x;
+ int row_mask = 0xff >> (ss_x << 2);
+
+#define MASK_ROW(value) ((value >> (r_sampled << row_shift)) & row_mask)
+
+ for (r = 0; r < MI_BLOCK_SIZE && mi_row + r < cm->mi_rows; r += row_step) {
+ int r_sampled = r >> ss_x;
+
+ // Determine the vertical edges that need filtering
+ for (c = 0; c < MI_BLOCK_SIZE && mi_col + c < cm->mi_cols; c += col_step) {
+ const MODE_INFO *mi = mi_8x8[c];
+ if (!build_lfi(&cm->lf_info, &mi[0].mbmi, lfi[r] + (c >> ss_x)))
+ continue;
+ }
+ if (!plane->plane_type) {
+ mask_4x4_int[r] = MASK_ROW(lfm->int_4x4_y);
+ // Disable filtering on the leftmost column
+ filter_selectively_vert(dst->buf, dst->stride,
+ MASK_ROW(lfm->left_y[TX_16X16]),
+ MASK_ROW(lfm->left_y[TX_8X8]),
+ MASK_ROW(lfm->left_y[TX_4X4]),
+ MASK_ROW(lfm->int_4x4_y),
+ lfi[r]);
+ } else {
+ mask_4x4_int[r] = MASK_ROW(lfm->int_4x4_uv);
+ // Disable filtering on the leftmost column
+ filter_selectively_vert(dst->buf, dst->stride,
+ MASK_ROW(lfm->left_uv[TX_16X16]),
+ MASK_ROW(lfm->left_uv[TX_8X8]),
+ MASK_ROW(lfm->left_uv[TX_4X4]),
+ MASK_ROW(lfm->int_4x4_uv),
+ lfi[r]);
+ }
+ dst->buf += 8 * dst->stride;
+ mi_8x8 += row_step_stride;
+ }
+
+ // Now do horizontal pass
+ dst->buf = dst0;
+ for (r = 0; r < MI_BLOCK_SIZE && mi_row + r < cm->mi_rows; r += row_step) {
+ const int skip_border_4x4_r = ss_y && mi_row + r == cm->mi_rows - 1;
+ const unsigned int mask_4x4_int_r = skip_border_4x4_r ? 0 : mask_4x4_int[r];
+ int r_sampled = r >> ss_x;
+
+ if (!plane->plane_type) {
+ filter_selectively_horiz(dst->buf, dst->stride,
+ MASK_ROW(lfm->above_y[TX_16X16]),
+ MASK_ROW(lfm->above_y[TX_8X8]),
+ MASK_ROW(lfm->above_y[TX_4X4]),
+ MASK_ROW(lfm->int_4x4_y),
+ mi_row + r == 0, lfi[r]);
+ } else {
+ filter_selectively_horiz(dst->buf, dst->stride,
+ MASK_ROW(lfm->above_uv[TX_16X16]),
+ MASK_ROW(lfm->above_uv[TX_8X8]),
+ MASK_ROW(lfm->above_uv[TX_4X4]),
+ mask_4x4_int_r,
+ mi_row + r == 0, lfi[r]);
+ }
+ dst->buf += 8 * dst->stride;
+ }
+#undef MASK_ROW
+}
+
void vp9_loop_filter_rows(const YV12_BUFFER_CONFIG *frame_buffer,
VP9_COMMON *cm, MACROBLOCKD *xd,
int start, int stop, int y_only) {
const int num_planes = y_only ? 1 : MAX_MB_PLANE;
int mi_row, mi_col;
+ LOOP_FILTER_MASK lfm;
+#if CONFIG_NON420
+ int use_420 = y_only || (xd->plane[1].subsampling_y == 1 &&
+ xd->plane[1].subsampling_x == 1);
+#endif
for (mi_row = start; mi_row < stop; mi_row += MI_BLOCK_SIZE) {
- MODE_INFO* const mi = cm->mi + mi_row * cm->mode_info_stride;
+ MODE_INFO **mi_8x8 = cm->mi_grid_visible + mi_row * cm->mode_info_stride;
for (mi_col = 0; mi_col < cm->mi_cols; mi_col += MI_BLOCK_SIZE) {
int plane;
setup_dst_planes(xd, frame_buffer, mi_row, mi_col);
+
+ // TODO(JBB): Make setup_mask work for non 420.
+#if CONFIG_NON420
+ if (use_420)
+#endif
+ setup_mask(cm, mi_row, mi_col, mi_8x8 + mi_col, cm->mode_info_stride,
+ &lfm);
+
for (plane = 0; plane < num_planes; ++plane) {
- filter_block_plane(cm, &xd->plane[plane], mi + mi_col, mi_row, mi_col);
+#if CONFIG_NON420
+ if (use_420)
+#endif
+ filter_block_plane(cm, &xd->plane[plane], mi_8x8 + mi_col, mi_row,
+ mi_col, &lfm);
+#if CONFIG_NON420
+ else
+ filter_block_plane_non420(cm, &xd->plane[plane], mi_8x8 + mi_col,
+ mi_row, mi_col);
+#endif
}
}
}
@@ -381,7 +1038,6 @@
int y_only, int partial) {
int start_mi_row, end_mi_row, mi_rows_to_filter;
if (!frame_filter_level) return;
-
start_mi_row = 0;
mi_rows_to_filter = cm->mi_rows;
if (partial && cm->mi_rows > 8) {
« no previous file with comments | « source/libvpx/vp9/common/vp9_findnearmv.c ('k') | source/libvpx/vp9/common/vp9_mvref_common.c » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698