| Index: source/libvpx/vp9/common/vp9_loopfilter.c
|
| ===================================================================
|
| --- source/libvpx/vp9/common/vp9_loopfilter.c (revision 223100)
|
| +++ source/libvpx/vp9/common/vp9_loopfilter.c (working copy)
|
| @@ -22,6 +22,210 @@
|
| const uint8_t *hev_thr;
|
| };
|
|
|
| +// This structure holds bit masks for all 8x8 blocks in a 64x64 region.
|
| +// Each 1 bit represents a position in which we want to apply the loop filter.
|
| +// Left_ entries refer to whether we apply a filter on the border to the
|
| +// left of the block. Above_ entries refer to whether or not to apply a
|
| +// filter on the above border. Int_ entries refer to whether or not to
|
| +// apply borders on the 4x4 edges within the 8x8 block that each bit
|
| +// represents.
|
| +// Since each transform is accompanied by a potentially different type of
|
| +// loop filter there is a different entry in the array for each transform size.
|
| +typedef struct {
|
| + uint64_t left_y[TX_SIZES];
|
| + uint64_t above_y[TX_SIZES];
|
| + uint64_t int_4x4_y;
|
| + uint16_t left_uv[TX_SIZES];
|
| + uint16_t above_uv[TX_SIZES];
|
| + uint16_t int_4x4_uv;
|
| +} LOOP_FILTER_MASK;
|
| +
|
| +// 64 bit masks for left transform size. Each 1 represents a position where
|
| +// we should apply a loop filter across the left border of an 8x8 block
|
| +// boundary.
|
| +//
|
| +// In the case of TX_16X16-> ( in low order byte first we end up with
|
| +// a mask that looks like this
|
| +//
|
| +// 10101010
|
| +// 10101010
|
| +// 10101010
|
| +// 10101010
|
| +// 10101010
|
| +// 10101010
|
| +// 10101010
|
| +// 10101010
|
| +//
|
| +// A loopfilter should be applied to every other 8x8 horizontally.
|
| +static const uint64_t left_64x64_txform_mask[TX_SIZES]= {
|
| + 0xffffffffffffffff, // TX_4X4
|
| + 0xffffffffffffffff, // TX_8x8
|
| + 0x5555555555555555, // TX_16x16
|
| + 0x1111111111111111, // TX_32x32
|
| +};
|
| +
|
| +// 64 bit masks for above transform size. Each 1 represents a position where
|
| +// we should apply a loop filter across the top border of an 8x8 block
|
| +// boundary.
|
| +//
|
| +// In the case of TX_32x32 -> ( in low order byte first we end up with
|
| +// a mask that looks like this
|
| +//
|
| +// 11111111
|
| +// 00000000
|
| +// 00000000
|
| +// 00000000
|
| +// 11111111
|
| +// 00000000
|
| +// 00000000
|
| +// 00000000
|
| +//
|
| +// A loopfilter should be applied to every other 4 the row vertically.
|
| +static const uint64_t above_64x64_txform_mask[TX_SIZES]= {
|
| + 0xffffffffffffffff, // TX_4X4
|
| + 0xffffffffffffffff, // TX_8x8
|
| + 0x00ff00ff00ff00ff, // TX_16x16
|
| + 0x000000ff000000ff, // TX_32x32
|
| +};
|
| +
|
| +// 64 bit masks for prediction sizes (left). Each 1 represents a position
|
| +// where left border of an 8x8 block. These are aligned to the right most
|
| +// appropriate bit, and then shifted into place.
|
| +//
|
| +// In the case of TX_16x32 -> ( low order byte first ) we end up with
|
| +// a mask that looks like this :
|
| +//
|
| +// 10000000
|
| +// 10000000
|
| +// 10000000
|
| +// 10000000
|
| +// 00000000
|
| +// 00000000
|
| +// 00000000
|
| +// 00000000
|
| +static const uint64_t left_prediction_mask[BLOCK_SIZES] = {
|
| + 0x0000000000000001, // BLOCK_4X4,
|
| + 0x0000000000000001, // BLOCK_4X8,
|
| + 0x0000000000000001, // BLOCK_8X4,
|
| + 0x0000000000000001, // BLOCK_8X8,
|
| + 0x0000000000000101, // BLOCK_8X16,
|
| + 0x0000000000000001, // BLOCK_16X8,
|
| + 0x0000000000000101, // BLOCK_16X16,
|
| + 0x0000000001010101, // BLOCK_16X32,
|
| + 0x0000000000000101, // BLOCK_32X16,
|
| + 0x0000000001010101, // BLOCK_32X32,
|
| + 0x0101010101010101, // BLOCK_32X64,
|
| + 0x0000000001010101, // BLOCK_64X32,
|
| + 0x0101010101010101, // BLOCK_64X64
|
| +};
|
| +
|
| +// 64 bit mask to shift and set for each prediction size.
|
| +static const uint64_t above_prediction_mask[BLOCK_SIZES] = {
|
| + 0x0000000000000001, // BLOCK_4X4
|
| + 0x0000000000000001, // BLOCK_4X8
|
| + 0x0000000000000001, // BLOCK_8X4
|
| + 0x0000000000000001, // BLOCK_8X8
|
| + 0x0000000000000001, // BLOCK_8X16,
|
| + 0x0000000000000003, // BLOCK_16X8
|
| + 0x0000000000000003, // BLOCK_16X16
|
| + 0x0000000000000003, // BLOCK_16X32,
|
| + 0x000000000000000f, // BLOCK_32X16,
|
| + 0x000000000000000f, // BLOCK_32X32,
|
| + 0x000000000000000f, // BLOCK_32X64,
|
| + 0x00000000000000ff, // BLOCK_64X32,
|
| + 0x00000000000000ff, // BLOCK_64X64
|
| +};
|
| +// 64 bit mask to shift and set for each prediction size. A bit is set for
|
| +// each 8x8 block that would be in the left most block of the given block
|
| +// size in the 64x64 block.
|
| +static const uint64_t size_mask[BLOCK_SIZES] = {
|
| + 0x0000000000000001, // BLOCK_4X4
|
| + 0x0000000000000001, // BLOCK_4X8
|
| + 0x0000000000000001, // BLOCK_8X4
|
| + 0x0000000000000001, // BLOCK_8X8
|
| + 0x0000000000000101, // BLOCK_8X16,
|
| + 0x0000000000000003, // BLOCK_16X8
|
| + 0x0000000000000303, // BLOCK_16X16
|
| + 0x0000000003030303, // BLOCK_16X32,
|
| + 0x0000000000000f0f, // BLOCK_32X16,
|
| + 0x000000000f0f0f0f, // BLOCK_32X32,
|
| + 0x0f0f0f0f0f0f0f0f, // BLOCK_32X64,
|
| + 0x00000000ffffffff, // BLOCK_64X32,
|
| + 0xffffffffffffffff, // BLOCK_64X64
|
| +};
|
| +
|
| +// These are used for masking the left and above borders.
|
| +static const uint64_t left_border = 0x1111111111111111;
|
| +static const uint64_t above_border = 0x000000ff000000ff;
|
| +
|
| +// 16 bit masks for uv transform sizes.
|
| +static const uint16_t left_64x64_txform_mask_uv[TX_SIZES]= {
|
| + 0xffff, // TX_4X4
|
| + 0xffff, // TX_8x8
|
| + 0x5555, // TX_16x16
|
| + 0x1111, // TX_32x32
|
| +};
|
| +
|
| +static const uint16_t above_64x64_txform_mask_uv[TX_SIZES]= {
|
| + 0xffff, // TX_4X4
|
| + 0xffff, // TX_8x8
|
| + 0x0f0f, // TX_16x16
|
| + 0x000f, // TX_32x32
|
| +};
|
| +
|
| +// 16 bit left mask to shift and set for each uv prediction size.
|
| +static const uint16_t left_prediction_mask_uv[BLOCK_SIZES] = {
|
| + 0x0001, // BLOCK_4X4,
|
| + 0x0001, // BLOCK_4X8,
|
| + 0x0001, // BLOCK_8X4,
|
| + 0x0001, // BLOCK_8X8,
|
| + 0x0001, // BLOCK_8X16,
|
| + 0x0001, // BLOCK_16X8,
|
| + 0x0001, // BLOCK_16X16,
|
| + 0x0011, // BLOCK_16X32,
|
| + 0x0001, // BLOCK_32X16,
|
| + 0x0011, // BLOCK_32X32,
|
| + 0x1111, // BLOCK_32X64
|
| + 0x0011, // BLOCK_64X32,
|
| + 0x1111, // BLOCK_64X64
|
| +};
|
| +// 16 bit above mask to shift and set for uv each prediction size.
|
| +static const uint16_t above_prediction_mask_uv[BLOCK_SIZES] = {
|
| + 0x0001, // BLOCK_4X4
|
| + 0x0001, // BLOCK_4X8
|
| + 0x0001, // BLOCK_8X4
|
| + 0x0001, // BLOCK_8X8
|
| + 0x0001, // BLOCK_8X16,
|
| + 0x0001, // BLOCK_16X8
|
| + 0x0001, // BLOCK_16X16
|
| + 0x0001, // BLOCK_16X32,
|
| + 0x0003, // BLOCK_32X16,
|
| + 0x0003, // BLOCK_32X32,
|
| + 0x0003, // BLOCK_32X64,
|
| + 0x000f, // BLOCK_64X32,
|
| + 0x000f, // BLOCK_64X64
|
| +};
|
| +
|
| +// 64 bit mask to shift and set for each uv prediction size
|
| +static const uint16_t size_mask_uv[BLOCK_SIZES] = {
|
| + 0x0001, // BLOCK_4X4
|
| + 0x0001, // BLOCK_4X8
|
| + 0x0001, // BLOCK_8X4
|
| + 0x0001, // BLOCK_8X8
|
| + 0x0001, // BLOCK_8X16,
|
| + 0x0001, // BLOCK_16X8
|
| + 0x0001, // BLOCK_16X16
|
| + 0x0011, // BLOCK_16X32,
|
| + 0x0003, // BLOCK_32X16,
|
| + 0x0033, // BLOCK_32X32,
|
| + 0x3333, // BLOCK_32X64,
|
| + 0x00ff, // BLOCK_64X32,
|
| + 0xffff, // BLOCK_64X64
|
| +};
|
| +static const uint16_t left_border_uv = 0x1111;
|
| +static const uint16_t above_border_uv = 0x000f;
|
| +
|
| +
|
| static void lf_init_lut(loop_filter_info_n *lfi) {
|
| lfi->mode_lf_lut[DC_PRED] = 0;
|
| lfi->mode_lf_lut[D45_PRED] = 0;
|
| @@ -236,10 +440,360 @@
|
| }
|
| }
|
|
|
| -static void filter_block_plane(VP9_COMMON *cm,
|
| - struct macroblockd_plane *plane,
|
| - const MODE_INFO *mi,
|
| - int mi_row, int mi_col) {
|
| +// This function ors into the current lfm structure, where to do loop
|
| +// filters for the specific mi we are looking at. It uses information
|
| +// including the block_size_type (32x16, 32x32, etc), the transform size,
|
| +// whether there were any coefficients encoded, and the loop filter strength
|
| +// block we are currently looking at. Shift is used to position the
|
| +// 1's we produce.
|
| +// TODO(JBB) Need another function for different resolution color..
|
| +static void build_masks(const loop_filter_info_n *const lfi_n,
|
| + const MODE_INFO *mi, const int shift_y,
|
| + const int shift_uv,
|
| + LOOP_FILTER_MASK *lfm) {
|
| + const BLOCK_SIZE block_size = mi->mbmi.sb_type;
|
| + const TX_SIZE tx_size_y = mi->mbmi.tx_size;
|
| + const TX_SIZE tx_size_uv = get_uv_tx_size(&mi->mbmi);
|
| + const int skip = mi->mbmi.skip_coeff;
|
| + const int seg = mi->mbmi.segment_id;
|
| + const int ref = mi->mbmi.ref_frame[0];
|
| + const int mode = lfi_n->mode_lf_lut[mi->mbmi.mode];
|
| + const int filter_level = lfi_n->lvl[seg][ref][mode];
|
| + uint64_t *left_y = &lfm->left_y[tx_size_y];
|
| + uint64_t *above_y = &lfm->above_y[tx_size_y];
|
| + uint64_t *int_4x4_y = &lfm->int_4x4_y;
|
| + uint16_t *left_uv = &lfm->left_uv[tx_size_uv];
|
| + uint16_t *above_uv = &lfm->above_uv[tx_size_uv];
|
| + uint16_t *int_4x4_uv = &lfm->int_4x4_uv;
|
| +
|
| + // If filter level is 0 we don't loop filter.
|
| + if (!filter_level)
|
| + return;
|
| +
|
| + // These set 1 in the current block size for the block size edges.
|
| + // For instance if the block size is 32x16, we'll set :
|
| + // above = 1111
|
| + // 0000
|
| + // and
|
| + // left = 1000
|
| + // = 1000
|
| + // NOTE : In this example the low bit is left most ( 1000 ) is stored as
|
| + // 1, not 8...
|
| + //
|
| + // U and v set things on a 16 bit scale.
|
| + //
|
| + *above_y |= above_prediction_mask[block_size] << shift_y;
|
| + *above_uv |= above_prediction_mask_uv[block_size] << shift_uv;
|
| + *left_y |= left_prediction_mask[block_size] << shift_y;
|
| + *left_uv |= left_prediction_mask_uv[block_size] << shift_uv;
|
| +
|
| + // If the block has no coefficients and is not intra we skip applying
|
| + // the loop filter on block edges.
|
| + if (skip && ref > INTRA_FRAME)
|
| + return;
|
| +
|
| + // Here we are adding a mask for the transform size. The transform
|
| + // size mask is set to be correct for a 64x64 prediction block size. We
|
| + // mask to match the size of the block we are working on and then shift it
|
| + // into place..
|
| + *above_y |= (size_mask[block_size] &
|
| + above_64x64_txform_mask[tx_size_y]) << shift_y;
|
| + *above_uv |= (size_mask_uv[block_size] &
|
| + above_64x64_txform_mask_uv[tx_size_uv]) << shift_uv;
|
| +
|
| + *left_y |= (size_mask[block_size] &
|
| + left_64x64_txform_mask[tx_size_y]) << shift_y;
|
| + *left_uv |= (size_mask_uv[block_size] &
|
| + left_64x64_txform_mask_uv[tx_size_uv]) << shift_uv;
|
| +
|
| + // Here we are trying to determine what to do with the internal 4x4 block
|
| + // boundaries. These differ from the 4x4 boundaries on the outside edge of
|
| + // an 8x8 in that the internal ones can be skipped and don't depend on
|
| + // the prediction block size.
|
| + if (tx_size_y == TX_4X4) {
|
| + *int_4x4_y |= (size_mask[block_size] & 0xffffffffffffffff) << shift_y;
|
| + }
|
| + if (tx_size_uv == TX_4X4) {
|
| + *int_4x4_uv |= (size_mask_uv[block_size] & 0xffff) << shift_uv;
|
| + }
|
| +}
|
| +
|
| +// This function does the same thing as the one above with the exception that
|
| +// it only affects the y masks. It exists because for blocks < 16x16 in size,
|
| +// we only update u and v masks on the first block.
|
| +static void build_y_mask(const loop_filter_info_n *const lfi_n,
|
| + const MODE_INFO *mi, const int shift_y,
|
| + LOOP_FILTER_MASK *lfm) {
|
| + const BLOCK_SIZE block_size = mi->mbmi.sb_type;
|
| + const TX_SIZE tx_size_y = mi->mbmi.tx_size;
|
| + const int skip = mi->mbmi.skip_coeff;
|
| + const int seg = mi->mbmi.segment_id;
|
| + const int ref = mi->mbmi.ref_frame[0];
|
| + const int mode = lfi_n->mode_lf_lut[mi->mbmi.mode];
|
| + const int filter_level = lfi_n->lvl[seg][ref][mode];
|
| + uint64_t *left_y = &lfm->left_y[tx_size_y];
|
| + uint64_t *above_y = &lfm->above_y[tx_size_y];
|
| + uint64_t *int_4x4_y = &lfm->int_4x4_y;
|
| +
|
| + if (!filter_level)
|
| + return;
|
| +
|
| + *above_y |= above_prediction_mask[block_size] << shift_y;
|
| + *left_y |= left_prediction_mask[block_size] << shift_y;
|
| +
|
| + if (skip && ref > INTRA_FRAME)
|
| + return;
|
| +
|
| + *above_y |= (size_mask[block_size] &
|
| + above_64x64_txform_mask[tx_size_y]) << shift_y;
|
| +
|
| + *left_y |= (size_mask[block_size] &
|
| + left_64x64_txform_mask[tx_size_y]) << shift_y;
|
| +
|
| + if (tx_size_y == TX_4X4) {
|
| + *int_4x4_y |= (size_mask[block_size] & 0xffffffffffffffff) << shift_y;
|
| + }
|
| +}
|
| +
|
| +// This function sets up the bit masks for the entire 64x64 region represented
|
| +// by mi_row, mi_col.
|
| +// TODO(JBB): This function only works for yv12.
|
| +static void setup_mask(VP9_COMMON *const cm, const int mi_row, const int mi_col,
|
| + MODE_INFO **mi_8x8, const int mode_info_stride,
|
| + LOOP_FILTER_MASK *lfm) {
|
| + int idx_32, idx_16, idx_8;
|
| + const loop_filter_info_n *const lfi_n = &cm->lf_info;
|
| + MODE_INFO **mip = mi_8x8;
|
| + MODE_INFO **mip2 = mi_8x8;
|
| +
|
| + // These are offsets to the next mi in the 64x64 block. It is what gets
|
| + // added to the mi ptr as we go through each loop. It helps us to avoids
|
| + // setting up special row and column counters for each index. The last step
|
| + // brings us out back to the starting position.
|
| + const int offset_32[] = {4, (mode_info_stride << 2) - 4, 4,
|
| + -(mode_info_stride << 2) - 4};
|
| + const int offset_16[] = {2, (mode_info_stride << 1) - 2, 2,
|
| + -(mode_info_stride << 1) - 2};
|
| + const int offset[] = {1, mode_info_stride - 1, 1, -mode_info_stride - 1};
|
| +
|
| + // Following variables represent shifts to position the current block
|
| + // mask over the appropriate block. A shift of 36 to the left will move
|
| + // the bits for the final 32 by 32 block in the 64x64 up 4 rows and left
|
| + // 4 rows to the appropriate spot.
|
| + const int shift_32_y[] = {0, 4, 32, 36};
|
| + const int shift_16_y[] = {0, 2, 16, 18};
|
| + const int shift_8_y[] = {0, 1, 8, 9};
|
| + const int shift_32_uv[] = {0, 2, 8, 10};
|
| + const int shift_16_uv[] = {0, 1, 4, 5};
|
| + int i;
|
| + const int max_rows = (mi_row + MI_BLOCK_SIZE > cm->mi_rows ?
|
| + cm->mi_rows - mi_row : MI_BLOCK_SIZE);
|
| + const int max_cols = (mi_col + MI_BLOCK_SIZE > cm->mi_cols ?
|
| + cm->mi_cols - mi_col : MI_BLOCK_SIZE);
|
| +
|
| + vp9_zero(*lfm);
|
| +
|
| + // TODO(jimbankoski): Try moving most of the following code into decode
|
| + // loop and storing lfm in the mbmi structure so that we don't have to go
|
| + // through the recursive loop structure multiple times.
|
| + switch (mip[0]->mbmi.sb_type) {
|
| + case BLOCK_64X64:
|
| + build_masks(lfi_n, mip[0] , 0, 0, lfm);
|
| + break;
|
| + case BLOCK_64X32:
|
| + build_masks(lfi_n, mip[0], 0, 0, lfm);
|
| + mip2 = mip + mode_info_stride * 4;
|
| + if (4 >= max_rows)
|
| + break;
|
| + build_masks(lfi_n, mip2[0], 32, 8, lfm);
|
| + break;
|
| + case BLOCK_32X64:
|
| + build_masks(lfi_n, mip[0], 0, 0, lfm);
|
| + mip2 = mip + 4;
|
| + if (4 >= max_cols)
|
| + break;
|
| + build_masks(lfi_n, mip2[0], 4, 2, lfm);
|
| + break;
|
| + default:
|
| + for (idx_32 = 0; idx_32 < 4; mip += offset_32[idx_32], ++idx_32) {
|
| + const int shift_y = shift_32_y[idx_32];
|
| + const int shift_uv = shift_32_uv[idx_32];
|
| + const int mi_32_col_offset = ((idx_32 & 1) << 2);
|
| + const int mi_32_row_offset = ((idx_32 >> 1) << 2);
|
| + if (mi_32_col_offset >= max_cols || mi_32_row_offset >= max_rows)
|
| + continue;
|
| + switch (mip[0]->mbmi.sb_type) {
|
| + case BLOCK_32X32:
|
| + build_masks(lfi_n, mip[0], shift_y, shift_uv, lfm);
|
| + break;
|
| + case BLOCK_32X16:
|
| + build_masks(lfi_n, mip[0], shift_y, shift_uv, lfm);
|
| + if (mi_32_row_offset + 2 >= max_rows)
|
| + continue;
|
| + mip2 = mip + mode_info_stride * 2;
|
| + build_masks(lfi_n, mip2[0], shift_y + 16, shift_uv + 4, lfm);
|
| + break;
|
| + case BLOCK_16X32:
|
| + build_masks(lfi_n, mip[0], shift_y, shift_uv, lfm);
|
| + if (mi_32_col_offset + 2 >= max_cols)
|
| + continue;
|
| + mip2 = mip + 2;
|
| + build_masks(lfi_n, mip2[0], shift_y + 2, shift_uv + 1, lfm);
|
| + break;
|
| + default:
|
| + for (idx_16 = 0; idx_16 < 4; mip += offset_16[idx_16], ++idx_16) {
|
| + const int shift_y = shift_32_y[idx_32] + shift_16_y[idx_16];
|
| + const int shift_uv = shift_32_uv[idx_32] + shift_16_uv[idx_16];
|
| + const int mi_16_col_offset = mi_32_col_offset +
|
| + ((idx_16 & 1) << 1);
|
| + const int mi_16_row_offset = mi_32_row_offset +
|
| + ((idx_16 >> 1) << 1);
|
| +
|
| + if (mi_16_col_offset >= max_cols || mi_16_row_offset >= max_rows)
|
| + continue;
|
| +
|
| + switch (mip[0]->mbmi.sb_type) {
|
| + case BLOCK_16X16:
|
| + build_masks(lfi_n, mip[0], shift_y, shift_uv, lfm);
|
| + break;
|
| + case BLOCK_16X8:
|
| + build_masks(lfi_n, mip[0], shift_y, shift_uv, lfm);
|
| + if (mi_16_row_offset + 1 >= max_rows)
|
| + continue;
|
| + mip2 = mip + mode_info_stride;
|
| + build_y_mask(lfi_n, mip2[0], shift_y+8, lfm);
|
| + break;
|
| + case BLOCK_8X16:
|
| + build_masks(lfi_n, mip[0], shift_y, shift_uv, lfm);
|
| + if (mi_16_col_offset +1 >= max_cols)
|
| + continue;
|
| + mip2 = mip + 1;
|
| + build_y_mask(lfi_n, mip2[0], shift_y+1, lfm);
|
| + break;
|
| + default: {
|
| + const int shift_y = shift_32_y[idx_32] +
|
| + shift_16_y[idx_16] +
|
| + shift_8_y[0];
|
| + build_masks(lfi_n, mip[0], shift_y, shift_uv, lfm);
|
| + mip += offset[0];
|
| + for (idx_8 = 1; idx_8 < 4; mip += offset[idx_8], ++idx_8) {
|
| + const int shift_y = shift_32_y[idx_32] +
|
| + shift_16_y[idx_16] +
|
| + shift_8_y[idx_8];
|
| + const int mi_8_col_offset = mi_16_col_offset +
|
| + ((idx_8 & 1));
|
| + const int mi_8_row_offset = mi_16_row_offset +
|
| + ((idx_8 >> 1));
|
| +
|
| + if (mi_8_col_offset >= max_cols ||
|
| + mi_8_row_offset >= max_rows)
|
| + continue;
|
| + build_y_mask(lfi_n, mip[0], shift_y, lfm);
|
| + }
|
| + break;
|
| + }
|
| + }
|
| + }
|
| + break;
|
| + }
|
| + }
|
| + break;
|
| + }
|
| + // The largest loopfilter we have is 16x16 so we use the 16x16 mask
|
| + // for 32x32 transforms also also.
|
| + lfm->left_y[TX_16X16] |= lfm->left_y[TX_32X32];
|
| + lfm->above_y[TX_16X16] |= lfm->above_y[TX_32X32];
|
| + lfm->left_uv[TX_16X16] |= lfm->left_uv[TX_32X32];
|
| + lfm->above_uv[TX_16X16] |= lfm->above_uv[TX_32X32];
|
| +
|
| + // We do at least 8 tap filter on every 32x32 even if the transform size
|
| + // is 4x4. So if the 4x4 is set on a border pixel add it to the 8x8 and
|
| + // remove it from the 4x4.
|
| + lfm->left_y[TX_8X8] |= lfm->left_y[TX_4X4] & left_border;
|
| + lfm->left_y[TX_4X4] &= ~left_border;
|
| + lfm->above_y[TX_8X8] |= lfm->above_y[TX_4X4] & above_border;
|
| + lfm->above_y[TX_4X4] &= ~above_border;
|
| + lfm->left_uv[TX_8X8] |= lfm->left_uv[TX_4X4] & left_border_uv;
|
| + lfm->left_uv[TX_4X4] &= ~left_border_uv;
|
| + lfm->above_uv[TX_8X8] |= lfm->above_uv[TX_4X4] & above_border_uv;
|
| + lfm->above_uv[TX_4X4] &= ~above_border_uv;
|
| +
|
| + // We do some special edge handling.
|
| + if (mi_row + MI_BLOCK_SIZE > cm->mi_rows) {
|
| + const uint64_t rows = cm->mi_rows - mi_row;
|
| +
|
| + // Each pixel inside the border gets a 1,
|
| + const uint64_t mask_y = (((uint64_t) 1 << (rows << 3)) - 1);
|
| + const uint16_t mask_uv = (((uint16_t) 1 << (((rows + 1) >> 1) << 2)) - 1);
|
| +
|
| + // Remove values completely outside our border.
|
| + for (i = 0; i < TX_32X32; i++) {
|
| + lfm->left_y[i] &= mask_y;
|
| + lfm->above_y[i] &= mask_y;
|
| + lfm->left_uv[i] &= mask_uv;
|
| + lfm->above_uv[i] &= mask_uv;
|
| + }
|
| + lfm->int_4x4_y &= mask_y;
|
| + lfm->int_4x4_uv &= mask_uv;
|
| +
|
| + // We don't apply a wide loop filter on the last uv block row. If set
|
| + // apply the shorter one instead.
|
| + if (rows == 1) {
|
| + lfm->above_uv[TX_8X8] |= lfm->above_uv[TX_16X16];
|
| + lfm->above_uv[TX_16X16] = 0;
|
| + }
|
| + if (rows == 5) {
|
| + lfm->above_uv[TX_8X8] |= lfm->above_uv[TX_16X16] & 0xff00;
|
| + lfm->above_uv[TX_16X16] &= ~(lfm->above_uv[TX_16X16] & 0xff00);
|
| + }
|
| + }
|
| +
|
| + if (mi_col + MI_BLOCK_SIZE > cm->mi_cols) {
|
| + const uint64_t columns = cm->mi_cols - mi_col;
|
| +
|
| + // Each pixel inside the border gets a 1, the multiply copies the border
|
| + // to where we need it.
|
| + const uint64_t mask_y = (((1 << columns) - 1)) * 0x0101010101010101;
|
| + const uint16_t mask_uv = ((1 << ((columns + 1) >> 1)) - 1) * 0x1111;
|
| +
|
| + // Internal edges are not applied on the last column of the image so
|
| + // we mask 1 more for the internal edges
|
| + const uint16_t mask_uv_int = ((1 << (columns >> 1)) - 1) * 0x1111;
|
| +
|
| + // Remove the bits outside the image edge.
|
| + for (i = 0; i < TX_32X32; i++) {
|
| + lfm->left_y[i] &= mask_y;
|
| + lfm->above_y[i] &= mask_y;
|
| + lfm->left_uv[i] &= mask_uv;
|
| + lfm->above_uv[i] &= mask_uv;
|
| + }
|
| + lfm->int_4x4_y &= mask_y;
|
| + lfm->int_4x4_uv &= mask_uv_int;
|
| +
|
| + // We don't apply a wide loop filter on the last uv column. If set
|
| + // apply the shorter one instead.
|
| + if (columns == 1) {
|
| + lfm->left_uv[TX_8X8] |= lfm->left_uv[TX_16X16];
|
| + lfm->left_uv[TX_16X16] = 0;
|
| + }
|
| + if (columns == 5) {
|
| + lfm->left_uv[TX_8X8] |= (lfm->left_uv[TX_16X16] & 0xcccc);
|
| + lfm->left_uv[TX_16X16] &= ~(lfm->left_uv[TX_16X16] & 0xcccc);
|
| + }
|
| + }
|
| + // We don't a loop filter on the first column in the image. Mask that out.
|
| + if (mi_col == 0) {
|
| + for (i = 0; i < TX_32X32; i++) {
|
| + lfm->left_y[i] &= 0xfefefefefefefefe;
|
| + lfm->left_uv[i] &= 0xeeee;
|
| + }
|
| + }
|
| +}
|
| +#if CONFIG_NON420
|
| +static void filter_block_plane_non420(VP9_COMMON *cm,
|
| + struct macroblockd_plane *plane,
|
| + MODE_INFO **mi_8x8,
|
| + int mi_row, int mi_col) {
|
| const int ss_x = plane->subsampling_x;
|
| const int ss_y = plane->subsampling_y;
|
| const int row_step = 1 << ss_x;
|
| @@ -262,24 +816,25 @@
|
|
|
| // Determine the vertical edges that need filtering
|
| for (c = 0; c < MI_BLOCK_SIZE && mi_col + c < cm->mi_cols; c += col_step) {
|
| - const int skip_this = mi[c].mbmi.skip_coeff
|
| - && is_inter_block(&mi[c].mbmi);
|
| + const MODE_INFO *mi = mi_8x8[c];
|
| + const int skip_this = mi[0].mbmi.skip_coeff
|
| + && is_inter_block(&mi[0].mbmi);
|
| // left edge of current unit is block/partition edge -> no skip
|
| - const int block_edge_left = b_width_log2(mi[c].mbmi.sb_type) ?
|
| - !(c & ((1 << (b_width_log2(mi[c].mbmi.sb_type)-1)) - 1)) : 1;
|
| + const int block_edge_left = b_width_log2(mi[0].mbmi.sb_type) ?
|
| + !(c & ((1 << (b_width_log2(mi[0].mbmi.sb_type)-1)) - 1)) : 1;
|
| const int skip_this_c = skip_this && !block_edge_left;
|
| // top edge of current unit is block/partition edge -> no skip
|
| - const int block_edge_above = b_height_log2(mi[c].mbmi.sb_type) ?
|
| - !(r & ((1 << (b_height_log2(mi[c].mbmi.sb_type)-1)) - 1)) : 1;
|
| + const int block_edge_above = b_height_log2(mi[0].mbmi.sb_type) ?
|
| + !(r & ((1 << (b_height_log2(mi[0].mbmi.sb_type)-1)) - 1)) : 1;
|
| const int skip_this_r = skip_this && !block_edge_above;
|
| const TX_SIZE tx_size = (plane->plane_type == PLANE_TYPE_UV)
|
| - ? get_uv_tx_size(&mi[c].mbmi)
|
| - : mi[c].mbmi.txfm_size;
|
| + ? get_uv_tx_size(&mi[0].mbmi)
|
| + : mi[0].mbmi.tx_size;
|
| const int skip_border_4x4_c = ss_x && mi_col + c == cm->mi_cols - 1;
|
| const int skip_border_4x4_r = ss_y && mi_row + r == cm->mi_rows - 1;
|
|
|
| // Filter level can vary per MI
|
| - if (!build_lfi(&cm->lf_info, &mi[c].mbmi, lfi[r] + (c >> ss_x)))
|
| + if (!build_lfi(&cm->lf_info, &mi[0].mbmi, lfi[r] + (c >> ss_x)))
|
| continue;
|
|
|
| // Build masks based on the transform size of each block
|
| @@ -338,7 +893,7 @@
|
| mask_4x4_c & border_mask,
|
| mask_4x4_int[r], lfi[r]);
|
| dst->buf += 8 * dst->stride;
|
| - mi += row_step_stride;
|
| + mi_8x8 += row_step_stride;
|
| }
|
|
|
| // Now do horizontal pass
|
| @@ -355,22 +910,124 @@
|
| dst->buf += 8 * dst->stride;
|
| }
|
| }
|
| +#endif
|
|
|
| +static void filter_block_plane(VP9_COMMON *const cm,
|
| + struct macroblockd_plane *const plane,
|
| + MODE_INFO **mi_8x8,
|
| + int mi_row, int mi_col,
|
| + LOOP_FILTER_MASK *lfm) {
|
| + const int ss_x = plane->subsampling_x;
|
| + const int ss_y = plane->subsampling_y;
|
| + const int row_step = 1 << ss_x;
|
| + const int col_step = 1 << ss_y;
|
| + const int row_step_stride = cm->mode_info_stride * row_step;
|
| + struct buf_2d *const dst = &plane->dst;
|
| + uint8_t* const dst0 = dst->buf;
|
| + unsigned int mask_4x4_int[MI_BLOCK_SIZE] = {0};
|
| + struct loop_filter_info lfi[MI_BLOCK_SIZE][MI_BLOCK_SIZE];
|
| + int r, c;
|
| + int row_shift = 3 - ss_x;
|
| + int row_mask = 0xff >> (ss_x << 2);
|
| +
|
| +#define MASK_ROW(value) ((value >> (r_sampled << row_shift)) & row_mask)
|
| +
|
| + for (r = 0; r < MI_BLOCK_SIZE && mi_row + r < cm->mi_rows; r += row_step) {
|
| + int r_sampled = r >> ss_x;
|
| +
|
| + // Determine the vertical edges that need filtering
|
| + for (c = 0; c < MI_BLOCK_SIZE && mi_col + c < cm->mi_cols; c += col_step) {
|
| + const MODE_INFO *mi = mi_8x8[c];
|
| + if (!build_lfi(&cm->lf_info, &mi[0].mbmi, lfi[r] + (c >> ss_x)))
|
| + continue;
|
| + }
|
| + if (!plane->plane_type) {
|
| + mask_4x4_int[r] = MASK_ROW(lfm->int_4x4_y);
|
| + // Disable filtering on the leftmost column
|
| + filter_selectively_vert(dst->buf, dst->stride,
|
| + MASK_ROW(lfm->left_y[TX_16X16]),
|
| + MASK_ROW(lfm->left_y[TX_8X8]),
|
| + MASK_ROW(lfm->left_y[TX_4X4]),
|
| + MASK_ROW(lfm->int_4x4_y),
|
| + lfi[r]);
|
| + } else {
|
| + mask_4x4_int[r] = MASK_ROW(lfm->int_4x4_uv);
|
| + // Disable filtering on the leftmost column
|
| + filter_selectively_vert(dst->buf, dst->stride,
|
| + MASK_ROW(lfm->left_uv[TX_16X16]),
|
| + MASK_ROW(lfm->left_uv[TX_8X8]),
|
| + MASK_ROW(lfm->left_uv[TX_4X4]),
|
| + MASK_ROW(lfm->int_4x4_uv),
|
| + lfi[r]);
|
| + }
|
| + dst->buf += 8 * dst->stride;
|
| + mi_8x8 += row_step_stride;
|
| + }
|
| +
|
| + // Now do horizontal pass
|
| + dst->buf = dst0;
|
| + for (r = 0; r < MI_BLOCK_SIZE && mi_row + r < cm->mi_rows; r += row_step) {
|
| + const int skip_border_4x4_r = ss_y && mi_row + r == cm->mi_rows - 1;
|
| + const unsigned int mask_4x4_int_r = skip_border_4x4_r ? 0 : mask_4x4_int[r];
|
| + int r_sampled = r >> ss_x;
|
| +
|
| + if (!plane->plane_type) {
|
| + filter_selectively_horiz(dst->buf, dst->stride,
|
| + MASK_ROW(lfm->above_y[TX_16X16]),
|
| + MASK_ROW(lfm->above_y[TX_8X8]),
|
| + MASK_ROW(lfm->above_y[TX_4X4]),
|
| + MASK_ROW(lfm->int_4x4_y),
|
| + mi_row + r == 0, lfi[r]);
|
| + } else {
|
| + filter_selectively_horiz(dst->buf, dst->stride,
|
| + MASK_ROW(lfm->above_uv[TX_16X16]),
|
| + MASK_ROW(lfm->above_uv[TX_8X8]),
|
| + MASK_ROW(lfm->above_uv[TX_4X4]),
|
| + mask_4x4_int_r,
|
| + mi_row + r == 0, lfi[r]);
|
| + }
|
| + dst->buf += 8 * dst->stride;
|
| + }
|
| +#undef MASK_ROW
|
| +}
|
| +
|
| void vp9_loop_filter_rows(const YV12_BUFFER_CONFIG *frame_buffer,
|
| VP9_COMMON *cm, MACROBLOCKD *xd,
|
| int start, int stop, int y_only) {
|
| const int num_planes = y_only ? 1 : MAX_MB_PLANE;
|
| int mi_row, mi_col;
|
| + LOOP_FILTER_MASK lfm;
|
| +#if CONFIG_NON420
|
| + int use_420 = y_only || (xd->plane[1].subsampling_y == 1 &&
|
| + xd->plane[1].subsampling_x == 1);
|
| +#endif
|
|
|
| for (mi_row = start; mi_row < stop; mi_row += MI_BLOCK_SIZE) {
|
| - MODE_INFO* const mi = cm->mi + mi_row * cm->mode_info_stride;
|
| + MODE_INFO **mi_8x8 = cm->mi_grid_visible + mi_row * cm->mode_info_stride;
|
|
|
| for (mi_col = 0; mi_col < cm->mi_cols; mi_col += MI_BLOCK_SIZE) {
|
| int plane;
|
|
|
| setup_dst_planes(xd, frame_buffer, mi_row, mi_col);
|
| +
|
| + // TODO(JBB): Make setup_mask work for non 420.
|
| +#if CONFIG_NON420
|
| + if (use_420)
|
| +#endif
|
| + setup_mask(cm, mi_row, mi_col, mi_8x8 + mi_col, cm->mode_info_stride,
|
| + &lfm);
|
| +
|
| for (plane = 0; plane < num_planes; ++plane) {
|
| - filter_block_plane(cm, &xd->plane[plane], mi + mi_col, mi_row, mi_col);
|
| +#if CONFIG_NON420
|
| + if (use_420)
|
| +#endif
|
| + filter_block_plane(cm, &xd->plane[plane], mi_8x8 + mi_col, mi_row,
|
| + mi_col, &lfm);
|
| +#if CONFIG_NON420
|
| + else
|
| + filter_block_plane_non420(cm, &xd->plane[plane], mi_8x8 + mi_col,
|
| + mi_row, mi_col);
|
| +#endif
|
| }
|
| }
|
| }
|
| @@ -381,7 +1038,6 @@
|
| int y_only, int partial) {
|
| int start_mi_row, end_mi_row, mi_rows_to_filter;
|
| if (!frame_filter_level) return;
|
| -
|
| start_mi_row = 0;
|
| mi_rows_to_filter = cm->mi_rows;
|
| if (partial && cm->mi_rows > 8) {
|
|
|