Index: source/libvpx/vp9/common/vp9_loopfilter.c |
=================================================================== |
--- source/libvpx/vp9/common/vp9_loopfilter.c (revision 223100) |
+++ source/libvpx/vp9/common/vp9_loopfilter.c (working copy) |
@@ -22,6 +22,210 @@ |
const uint8_t *hev_thr; |
}; |
+// This structure holds bit masks for all 8x8 blocks in a 64x64 region. |
+// Each 1 bit represents a position in which we want to apply the loop filter. |
+// Left_ entries refer to whether we apply a filter on the border to the |
+// left of the block. Above_ entries refer to whether or not to apply a |
+// filter on the above border. Int_ entries refer to whether or not to |
+// apply borders on the 4x4 edges within the 8x8 block that each bit |
+// represents. |
+// Since each transform is accompanied by a potentially different type of |
+// loop filter there is a different entry in the array for each transform size. |
+typedef struct { |
+ uint64_t left_y[TX_SIZES]; |
+ uint64_t above_y[TX_SIZES]; |
+ uint64_t int_4x4_y; |
+ uint16_t left_uv[TX_SIZES]; |
+ uint16_t above_uv[TX_SIZES]; |
+ uint16_t int_4x4_uv; |
+} LOOP_FILTER_MASK; |
+ |
+// 64 bit masks for left transform size. Each 1 represents a position where |
+// we should apply a loop filter across the left border of an 8x8 block |
+// boundary. |
+// |
+// In the case of TX_16X16-> ( in low order byte first we end up with |
+// a mask that looks like this |
+// |
+// 10101010 |
+// 10101010 |
+// 10101010 |
+// 10101010 |
+// 10101010 |
+// 10101010 |
+// 10101010 |
+// 10101010 |
+// |
+// A loopfilter should be applied to every other 8x8 horizontally. |
+static const uint64_t left_64x64_txform_mask[TX_SIZES]= { |
+ 0xffffffffffffffff, // TX_4X4 |
+ 0xffffffffffffffff, // TX_8x8 |
+ 0x5555555555555555, // TX_16x16 |
+ 0x1111111111111111, // TX_32x32 |
+}; |
+ |
+// 64 bit masks for above transform size. Each 1 represents a position where |
+// we should apply a loop filter across the top border of an 8x8 block |
+// boundary. |
+// |
+// In the case of TX_32x32 -> ( in low order byte first we end up with |
+// a mask that looks like this |
+// |
+// 11111111 |
+// 00000000 |
+// 00000000 |
+// 00000000 |
+// 11111111 |
+// 00000000 |
+// 00000000 |
+// 00000000 |
+// |
+// A loopfilter should be applied to every other 4 the row vertically. |
+static const uint64_t above_64x64_txform_mask[TX_SIZES]= { |
+ 0xffffffffffffffff, // TX_4X4 |
+ 0xffffffffffffffff, // TX_8x8 |
+ 0x00ff00ff00ff00ff, // TX_16x16 |
+ 0x000000ff000000ff, // TX_32x32 |
+}; |
+ |
+// 64 bit masks for prediction sizes (left). Each 1 represents a position |
+// where left border of an 8x8 block. These are aligned to the right most |
+// appropriate bit, and then shifted into place. |
+// |
+// In the case of TX_16x32 -> ( low order byte first ) we end up with |
+// a mask that looks like this : |
+// |
+// 10000000 |
+// 10000000 |
+// 10000000 |
+// 10000000 |
+// 00000000 |
+// 00000000 |
+// 00000000 |
+// 00000000 |
+static const uint64_t left_prediction_mask[BLOCK_SIZES] = { |
+ 0x0000000000000001, // BLOCK_4X4, |
+ 0x0000000000000001, // BLOCK_4X8, |
+ 0x0000000000000001, // BLOCK_8X4, |
+ 0x0000000000000001, // BLOCK_8X8, |
+ 0x0000000000000101, // BLOCK_8X16, |
+ 0x0000000000000001, // BLOCK_16X8, |
+ 0x0000000000000101, // BLOCK_16X16, |
+ 0x0000000001010101, // BLOCK_16X32, |
+ 0x0000000000000101, // BLOCK_32X16, |
+ 0x0000000001010101, // BLOCK_32X32, |
+ 0x0101010101010101, // BLOCK_32X64, |
+ 0x0000000001010101, // BLOCK_64X32, |
+ 0x0101010101010101, // BLOCK_64X64 |
+}; |
+ |
+// 64 bit mask to shift and set for each prediction size. |
+static const uint64_t above_prediction_mask[BLOCK_SIZES] = { |
+ 0x0000000000000001, // BLOCK_4X4 |
+ 0x0000000000000001, // BLOCK_4X8 |
+ 0x0000000000000001, // BLOCK_8X4 |
+ 0x0000000000000001, // BLOCK_8X8 |
+ 0x0000000000000001, // BLOCK_8X16, |
+ 0x0000000000000003, // BLOCK_16X8 |
+ 0x0000000000000003, // BLOCK_16X16 |
+ 0x0000000000000003, // BLOCK_16X32, |
+ 0x000000000000000f, // BLOCK_32X16, |
+ 0x000000000000000f, // BLOCK_32X32, |
+ 0x000000000000000f, // BLOCK_32X64, |
+ 0x00000000000000ff, // BLOCK_64X32, |
+ 0x00000000000000ff, // BLOCK_64X64 |
+}; |
+// 64 bit mask to shift and set for each prediction size. A bit is set for |
+// each 8x8 block that would be in the left most block of the given block |
+// size in the 64x64 block. |
+static const uint64_t size_mask[BLOCK_SIZES] = { |
+ 0x0000000000000001, // BLOCK_4X4 |
+ 0x0000000000000001, // BLOCK_4X8 |
+ 0x0000000000000001, // BLOCK_8X4 |
+ 0x0000000000000001, // BLOCK_8X8 |
+ 0x0000000000000101, // BLOCK_8X16, |
+ 0x0000000000000003, // BLOCK_16X8 |
+ 0x0000000000000303, // BLOCK_16X16 |
+ 0x0000000003030303, // BLOCK_16X32, |
+ 0x0000000000000f0f, // BLOCK_32X16, |
+ 0x000000000f0f0f0f, // BLOCK_32X32, |
+ 0x0f0f0f0f0f0f0f0f, // BLOCK_32X64, |
+ 0x00000000ffffffff, // BLOCK_64X32, |
+ 0xffffffffffffffff, // BLOCK_64X64 |
+}; |
+ |
+// These are used for masking the left and above borders. |
+static const uint64_t left_border = 0x1111111111111111; |
+static const uint64_t above_border = 0x000000ff000000ff; |
+ |
+// 16 bit masks for uv transform sizes. |
+static const uint16_t left_64x64_txform_mask_uv[TX_SIZES]= { |
+ 0xffff, // TX_4X4 |
+ 0xffff, // TX_8x8 |
+ 0x5555, // TX_16x16 |
+ 0x1111, // TX_32x32 |
+}; |
+ |
+static const uint16_t above_64x64_txform_mask_uv[TX_SIZES]= { |
+ 0xffff, // TX_4X4 |
+ 0xffff, // TX_8x8 |
+ 0x0f0f, // TX_16x16 |
+ 0x000f, // TX_32x32 |
+}; |
+ |
+// 16 bit left mask to shift and set for each uv prediction size. |
+static const uint16_t left_prediction_mask_uv[BLOCK_SIZES] = { |
+ 0x0001, // BLOCK_4X4, |
+ 0x0001, // BLOCK_4X8, |
+ 0x0001, // BLOCK_8X4, |
+ 0x0001, // BLOCK_8X8, |
+ 0x0001, // BLOCK_8X16, |
+ 0x0001, // BLOCK_16X8, |
+ 0x0001, // BLOCK_16X16, |
+ 0x0011, // BLOCK_16X32, |
+ 0x0001, // BLOCK_32X16, |
+ 0x0011, // BLOCK_32X32, |
+ 0x1111, // BLOCK_32X64 |
+ 0x0011, // BLOCK_64X32, |
+ 0x1111, // BLOCK_64X64 |
+}; |
+// 16 bit above mask to shift and set for uv each prediction size. |
+static const uint16_t above_prediction_mask_uv[BLOCK_SIZES] = { |
+ 0x0001, // BLOCK_4X4 |
+ 0x0001, // BLOCK_4X8 |
+ 0x0001, // BLOCK_8X4 |
+ 0x0001, // BLOCK_8X8 |
+ 0x0001, // BLOCK_8X16, |
+ 0x0001, // BLOCK_16X8 |
+ 0x0001, // BLOCK_16X16 |
+ 0x0001, // BLOCK_16X32, |
+ 0x0003, // BLOCK_32X16, |
+ 0x0003, // BLOCK_32X32, |
+ 0x0003, // BLOCK_32X64, |
+ 0x000f, // BLOCK_64X32, |
+ 0x000f, // BLOCK_64X64 |
+}; |
+ |
+// 64 bit mask to shift and set for each uv prediction size |
+static const uint16_t size_mask_uv[BLOCK_SIZES] = { |
+ 0x0001, // BLOCK_4X4 |
+ 0x0001, // BLOCK_4X8 |
+ 0x0001, // BLOCK_8X4 |
+ 0x0001, // BLOCK_8X8 |
+ 0x0001, // BLOCK_8X16, |
+ 0x0001, // BLOCK_16X8 |
+ 0x0001, // BLOCK_16X16 |
+ 0x0011, // BLOCK_16X32, |
+ 0x0003, // BLOCK_32X16, |
+ 0x0033, // BLOCK_32X32, |
+ 0x3333, // BLOCK_32X64, |
+ 0x00ff, // BLOCK_64X32, |
+ 0xffff, // BLOCK_64X64 |
+}; |
+static const uint16_t left_border_uv = 0x1111; |
+static const uint16_t above_border_uv = 0x000f; |
+ |
+ |
static void lf_init_lut(loop_filter_info_n *lfi) { |
lfi->mode_lf_lut[DC_PRED] = 0; |
lfi->mode_lf_lut[D45_PRED] = 0; |
@@ -236,10 +440,360 @@ |
} |
} |
-static void filter_block_plane(VP9_COMMON *cm, |
- struct macroblockd_plane *plane, |
- const MODE_INFO *mi, |
- int mi_row, int mi_col) { |
+// This function ors into the current lfm structure, where to do loop |
+// filters for the specific mi we are looking at. It uses information |
+// including the block_size_type (32x16, 32x32, etc), the transform size, |
+// whether there were any coefficients encoded, and the loop filter strength |
+// block we are currently looking at. Shift is used to position the |
+// 1's we produce. |
+// TODO(JBB) Need another function for different resolution color.. |
+static void build_masks(const loop_filter_info_n *const lfi_n, |
+ const MODE_INFO *mi, const int shift_y, |
+ const int shift_uv, |
+ LOOP_FILTER_MASK *lfm) { |
+ const BLOCK_SIZE block_size = mi->mbmi.sb_type; |
+ const TX_SIZE tx_size_y = mi->mbmi.tx_size; |
+ const TX_SIZE tx_size_uv = get_uv_tx_size(&mi->mbmi); |
+ const int skip = mi->mbmi.skip_coeff; |
+ const int seg = mi->mbmi.segment_id; |
+ const int ref = mi->mbmi.ref_frame[0]; |
+ const int mode = lfi_n->mode_lf_lut[mi->mbmi.mode]; |
+ const int filter_level = lfi_n->lvl[seg][ref][mode]; |
+ uint64_t *left_y = &lfm->left_y[tx_size_y]; |
+ uint64_t *above_y = &lfm->above_y[tx_size_y]; |
+ uint64_t *int_4x4_y = &lfm->int_4x4_y; |
+ uint16_t *left_uv = &lfm->left_uv[tx_size_uv]; |
+ uint16_t *above_uv = &lfm->above_uv[tx_size_uv]; |
+ uint16_t *int_4x4_uv = &lfm->int_4x4_uv; |
+ |
+ // If filter level is 0 we don't loop filter. |
+ if (!filter_level) |
+ return; |
+ |
+ // These set 1 in the current block size for the block size edges. |
+ // For instance if the block size is 32x16, we'll set : |
+ // above = 1111 |
+ // 0000 |
+ // and |
+ // left = 1000 |
+ // = 1000 |
+ // NOTE : In this example the low bit is left most ( 1000 ) is stored as |
+ // 1, not 8... |
+ // |
+ // U and v set things on a 16 bit scale. |
+ // |
+ *above_y |= above_prediction_mask[block_size] << shift_y; |
+ *above_uv |= above_prediction_mask_uv[block_size] << shift_uv; |
+ *left_y |= left_prediction_mask[block_size] << shift_y; |
+ *left_uv |= left_prediction_mask_uv[block_size] << shift_uv; |
+ |
+ // If the block has no coefficients and is not intra we skip applying |
+ // the loop filter on block edges. |
+ if (skip && ref > INTRA_FRAME) |
+ return; |
+ |
+ // Here we are adding a mask for the transform size. The transform |
+ // size mask is set to be correct for a 64x64 prediction block size. We |
+ // mask to match the size of the block we are working on and then shift it |
+ // into place.. |
+ *above_y |= (size_mask[block_size] & |
+ above_64x64_txform_mask[tx_size_y]) << shift_y; |
+ *above_uv |= (size_mask_uv[block_size] & |
+ above_64x64_txform_mask_uv[tx_size_uv]) << shift_uv; |
+ |
+ *left_y |= (size_mask[block_size] & |
+ left_64x64_txform_mask[tx_size_y]) << shift_y; |
+ *left_uv |= (size_mask_uv[block_size] & |
+ left_64x64_txform_mask_uv[tx_size_uv]) << shift_uv; |
+ |
+ // Here we are trying to determine what to do with the internal 4x4 block |
+ // boundaries. These differ from the 4x4 boundaries on the outside edge of |
+ // an 8x8 in that the internal ones can be skipped and don't depend on |
+ // the prediction block size. |
+ if (tx_size_y == TX_4X4) { |
+ *int_4x4_y |= (size_mask[block_size] & 0xffffffffffffffff) << shift_y; |
+ } |
+ if (tx_size_uv == TX_4X4) { |
+ *int_4x4_uv |= (size_mask_uv[block_size] & 0xffff) << shift_uv; |
+ } |
+} |
+ |
+// This function does the same thing as the one above with the exception that |
+// it only affects the y masks. It exists because for blocks < 16x16 in size, |
+// we only update u and v masks on the first block. |
+static void build_y_mask(const loop_filter_info_n *const lfi_n, |
+ const MODE_INFO *mi, const int shift_y, |
+ LOOP_FILTER_MASK *lfm) { |
+ const BLOCK_SIZE block_size = mi->mbmi.sb_type; |
+ const TX_SIZE tx_size_y = mi->mbmi.tx_size; |
+ const int skip = mi->mbmi.skip_coeff; |
+ const int seg = mi->mbmi.segment_id; |
+ const int ref = mi->mbmi.ref_frame[0]; |
+ const int mode = lfi_n->mode_lf_lut[mi->mbmi.mode]; |
+ const int filter_level = lfi_n->lvl[seg][ref][mode]; |
+ uint64_t *left_y = &lfm->left_y[tx_size_y]; |
+ uint64_t *above_y = &lfm->above_y[tx_size_y]; |
+ uint64_t *int_4x4_y = &lfm->int_4x4_y; |
+ |
+ if (!filter_level) |
+ return; |
+ |
+ *above_y |= above_prediction_mask[block_size] << shift_y; |
+ *left_y |= left_prediction_mask[block_size] << shift_y; |
+ |
+ if (skip && ref > INTRA_FRAME) |
+ return; |
+ |
+ *above_y |= (size_mask[block_size] & |
+ above_64x64_txform_mask[tx_size_y]) << shift_y; |
+ |
+ *left_y |= (size_mask[block_size] & |
+ left_64x64_txform_mask[tx_size_y]) << shift_y; |
+ |
+ if (tx_size_y == TX_4X4) { |
+ *int_4x4_y |= (size_mask[block_size] & 0xffffffffffffffff) << shift_y; |
+ } |
+} |
+ |
+// This function sets up the bit masks for the entire 64x64 region represented |
+// by mi_row, mi_col. |
+// TODO(JBB): This function only works for yv12. |
+static void setup_mask(VP9_COMMON *const cm, const int mi_row, const int mi_col, |
+ MODE_INFO **mi_8x8, const int mode_info_stride, |
+ LOOP_FILTER_MASK *lfm) { |
+ int idx_32, idx_16, idx_8; |
+ const loop_filter_info_n *const lfi_n = &cm->lf_info; |
+ MODE_INFO **mip = mi_8x8; |
+ MODE_INFO **mip2 = mi_8x8; |
+ |
+ // These are offsets to the next mi in the 64x64 block. It is what gets |
+ // added to the mi ptr as we go through each loop. It helps us to avoids |
+ // setting up special row and column counters for each index. The last step |
+ // brings us out back to the starting position. |
+ const int offset_32[] = {4, (mode_info_stride << 2) - 4, 4, |
+ -(mode_info_stride << 2) - 4}; |
+ const int offset_16[] = {2, (mode_info_stride << 1) - 2, 2, |
+ -(mode_info_stride << 1) - 2}; |
+ const int offset[] = {1, mode_info_stride - 1, 1, -mode_info_stride - 1}; |
+ |
+ // Following variables represent shifts to position the current block |
+ // mask over the appropriate block. A shift of 36 to the left will move |
+ // the bits for the final 32 by 32 block in the 64x64 up 4 rows and left |
+ // 4 rows to the appropriate spot. |
+ const int shift_32_y[] = {0, 4, 32, 36}; |
+ const int shift_16_y[] = {0, 2, 16, 18}; |
+ const int shift_8_y[] = {0, 1, 8, 9}; |
+ const int shift_32_uv[] = {0, 2, 8, 10}; |
+ const int shift_16_uv[] = {0, 1, 4, 5}; |
+ int i; |
+ const int max_rows = (mi_row + MI_BLOCK_SIZE > cm->mi_rows ? |
+ cm->mi_rows - mi_row : MI_BLOCK_SIZE); |
+ const int max_cols = (mi_col + MI_BLOCK_SIZE > cm->mi_cols ? |
+ cm->mi_cols - mi_col : MI_BLOCK_SIZE); |
+ |
+ vp9_zero(*lfm); |
+ |
+ // TODO(jimbankoski): Try moving most of the following code into decode |
+ // loop and storing lfm in the mbmi structure so that we don't have to go |
+ // through the recursive loop structure multiple times. |
+ switch (mip[0]->mbmi.sb_type) { |
+ case BLOCK_64X64: |
+ build_masks(lfi_n, mip[0] , 0, 0, lfm); |
+ break; |
+ case BLOCK_64X32: |
+ build_masks(lfi_n, mip[0], 0, 0, lfm); |
+ mip2 = mip + mode_info_stride * 4; |
+ if (4 >= max_rows) |
+ break; |
+ build_masks(lfi_n, mip2[0], 32, 8, lfm); |
+ break; |
+ case BLOCK_32X64: |
+ build_masks(lfi_n, mip[0], 0, 0, lfm); |
+ mip2 = mip + 4; |
+ if (4 >= max_cols) |
+ break; |
+ build_masks(lfi_n, mip2[0], 4, 2, lfm); |
+ break; |
+ default: |
+ for (idx_32 = 0; idx_32 < 4; mip += offset_32[idx_32], ++idx_32) { |
+ const int shift_y = shift_32_y[idx_32]; |
+ const int shift_uv = shift_32_uv[idx_32]; |
+ const int mi_32_col_offset = ((idx_32 & 1) << 2); |
+ const int mi_32_row_offset = ((idx_32 >> 1) << 2); |
+ if (mi_32_col_offset >= max_cols || mi_32_row_offset >= max_rows) |
+ continue; |
+ switch (mip[0]->mbmi.sb_type) { |
+ case BLOCK_32X32: |
+ build_masks(lfi_n, mip[0], shift_y, shift_uv, lfm); |
+ break; |
+ case BLOCK_32X16: |
+ build_masks(lfi_n, mip[0], shift_y, shift_uv, lfm); |
+ if (mi_32_row_offset + 2 >= max_rows) |
+ continue; |
+ mip2 = mip + mode_info_stride * 2; |
+ build_masks(lfi_n, mip2[0], shift_y + 16, shift_uv + 4, lfm); |
+ break; |
+ case BLOCK_16X32: |
+ build_masks(lfi_n, mip[0], shift_y, shift_uv, lfm); |
+ if (mi_32_col_offset + 2 >= max_cols) |
+ continue; |
+ mip2 = mip + 2; |
+ build_masks(lfi_n, mip2[0], shift_y + 2, shift_uv + 1, lfm); |
+ break; |
+ default: |
+ for (idx_16 = 0; idx_16 < 4; mip += offset_16[idx_16], ++idx_16) { |
+ const int shift_y = shift_32_y[idx_32] + shift_16_y[idx_16]; |
+ const int shift_uv = shift_32_uv[idx_32] + shift_16_uv[idx_16]; |
+ const int mi_16_col_offset = mi_32_col_offset + |
+ ((idx_16 & 1) << 1); |
+ const int mi_16_row_offset = mi_32_row_offset + |
+ ((idx_16 >> 1) << 1); |
+ |
+ if (mi_16_col_offset >= max_cols || mi_16_row_offset >= max_rows) |
+ continue; |
+ |
+ switch (mip[0]->mbmi.sb_type) { |
+ case BLOCK_16X16: |
+ build_masks(lfi_n, mip[0], shift_y, shift_uv, lfm); |
+ break; |
+ case BLOCK_16X8: |
+ build_masks(lfi_n, mip[0], shift_y, shift_uv, lfm); |
+ if (mi_16_row_offset + 1 >= max_rows) |
+ continue; |
+ mip2 = mip + mode_info_stride; |
+ build_y_mask(lfi_n, mip2[0], shift_y+8, lfm); |
+ break; |
+ case BLOCK_8X16: |
+ build_masks(lfi_n, mip[0], shift_y, shift_uv, lfm); |
+ if (mi_16_col_offset +1 >= max_cols) |
+ continue; |
+ mip2 = mip + 1; |
+ build_y_mask(lfi_n, mip2[0], shift_y+1, lfm); |
+ break; |
+ default: { |
+ const int shift_y = shift_32_y[idx_32] + |
+ shift_16_y[idx_16] + |
+ shift_8_y[0]; |
+ build_masks(lfi_n, mip[0], shift_y, shift_uv, lfm); |
+ mip += offset[0]; |
+ for (idx_8 = 1; idx_8 < 4; mip += offset[idx_8], ++idx_8) { |
+ const int shift_y = shift_32_y[idx_32] + |
+ shift_16_y[idx_16] + |
+ shift_8_y[idx_8]; |
+ const int mi_8_col_offset = mi_16_col_offset + |
+ ((idx_8 & 1)); |
+ const int mi_8_row_offset = mi_16_row_offset + |
+ ((idx_8 >> 1)); |
+ |
+ if (mi_8_col_offset >= max_cols || |
+ mi_8_row_offset >= max_rows) |
+ continue; |
+ build_y_mask(lfi_n, mip[0], shift_y, lfm); |
+ } |
+ break; |
+ } |
+ } |
+ } |
+ break; |
+ } |
+ } |
+ break; |
+ } |
+ // The largest loopfilter we have is 16x16 so we use the 16x16 mask |
+ // for 32x32 transforms also also. |
+ lfm->left_y[TX_16X16] |= lfm->left_y[TX_32X32]; |
+ lfm->above_y[TX_16X16] |= lfm->above_y[TX_32X32]; |
+ lfm->left_uv[TX_16X16] |= lfm->left_uv[TX_32X32]; |
+ lfm->above_uv[TX_16X16] |= lfm->above_uv[TX_32X32]; |
+ |
+ // We do at least 8 tap filter on every 32x32 even if the transform size |
+ // is 4x4. So if the 4x4 is set on a border pixel add it to the 8x8 and |
+ // remove it from the 4x4. |
+ lfm->left_y[TX_8X8] |= lfm->left_y[TX_4X4] & left_border; |
+ lfm->left_y[TX_4X4] &= ~left_border; |
+ lfm->above_y[TX_8X8] |= lfm->above_y[TX_4X4] & above_border; |
+ lfm->above_y[TX_4X4] &= ~above_border; |
+ lfm->left_uv[TX_8X8] |= lfm->left_uv[TX_4X4] & left_border_uv; |
+ lfm->left_uv[TX_4X4] &= ~left_border_uv; |
+ lfm->above_uv[TX_8X8] |= lfm->above_uv[TX_4X4] & above_border_uv; |
+ lfm->above_uv[TX_4X4] &= ~above_border_uv; |
+ |
+ // We do some special edge handling. |
+ if (mi_row + MI_BLOCK_SIZE > cm->mi_rows) { |
+ const uint64_t rows = cm->mi_rows - mi_row; |
+ |
+ // Each pixel inside the border gets a 1, |
+ const uint64_t mask_y = (((uint64_t) 1 << (rows << 3)) - 1); |
+ const uint16_t mask_uv = (((uint16_t) 1 << (((rows + 1) >> 1) << 2)) - 1); |
+ |
+ // Remove values completely outside our border. |
+ for (i = 0; i < TX_32X32; i++) { |
+ lfm->left_y[i] &= mask_y; |
+ lfm->above_y[i] &= mask_y; |
+ lfm->left_uv[i] &= mask_uv; |
+ lfm->above_uv[i] &= mask_uv; |
+ } |
+ lfm->int_4x4_y &= mask_y; |
+ lfm->int_4x4_uv &= mask_uv; |
+ |
+ // We don't apply a wide loop filter on the last uv block row. If set |
+ // apply the shorter one instead. |
+ if (rows == 1) { |
+ lfm->above_uv[TX_8X8] |= lfm->above_uv[TX_16X16]; |
+ lfm->above_uv[TX_16X16] = 0; |
+ } |
+ if (rows == 5) { |
+ lfm->above_uv[TX_8X8] |= lfm->above_uv[TX_16X16] & 0xff00; |
+ lfm->above_uv[TX_16X16] &= ~(lfm->above_uv[TX_16X16] & 0xff00); |
+ } |
+ } |
+ |
+ if (mi_col + MI_BLOCK_SIZE > cm->mi_cols) { |
+ const uint64_t columns = cm->mi_cols - mi_col; |
+ |
+ // Each pixel inside the border gets a 1, the multiply copies the border |
+ // to where we need it. |
+ const uint64_t mask_y = (((1 << columns) - 1)) * 0x0101010101010101; |
+ const uint16_t mask_uv = ((1 << ((columns + 1) >> 1)) - 1) * 0x1111; |
+ |
+ // Internal edges are not applied on the last column of the image so |
+ // we mask 1 more for the internal edges |
+ const uint16_t mask_uv_int = ((1 << (columns >> 1)) - 1) * 0x1111; |
+ |
+ // Remove the bits outside the image edge. |
+ for (i = 0; i < TX_32X32; i++) { |
+ lfm->left_y[i] &= mask_y; |
+ lfm->above_y[i] &= mask_y; |
+ lfm->left_uv[i] &= mask_uv; |
+ lfm->above_uv[i] &= mask_uv; |
+ } |
+ lfm->int_4x4_y &= mask_y; |
+ lfm->int_4x4_uv &= mask_uv_int; |
+ |
+ // We don't apply a wide loop filter on the last uv column. If set |
+ // apply the shorter one instead. |
+ if (columns == 1) { |
+ lfm->left_uv[TX_8X8] |= lfm->left_uv[TX_16X16]; |
+ lfm->left_uv[TX_16X16] = 0; |
+ } |
+ if (columns == 5) { |
+ lfm->left_uv[TX_8X8] |= (lfm->left_uv[TX_16X16] & 0xcccc); |
+ lfm->left_uv[TX_16X16] &= ~(lfm->left_uv[TX_16X16] & 0xcccc); |
+ } |
+ } |
+ // We don't a loop filter on the first column in the image. Mask that out. |
+ if (mi_col == 0) { |
+ for (i = 0; i < TX_32X32; i++) { |
+ lfm->left_y[i] &= 0xfefefefefefefefe; |
+ lfm->left_uv[i] &= 0xeeee; |
+ } |
+ } |
+} |
+#if CONFIG_NON420 |
+static void filter_block_plane_non420(VP9_COMMON *cm, |
+ struct macroblockd_plane *plane, |
+ MODE_INFO **mi_8x8, |
+ int mi_row, int mi_col) { |
const int ss_x = plane->subsampling_x; |
const int ss_y = plane->subsampling_y; |
const int row_step = 1 << ss_x; |
@@ -262,24 +816,25 @@ |
// Determine the vertical edges that need filtering |
for (c = 0; c < MI_BLOCK_SIZE && mi_col + c < cm->mi_cols; c += col_step) { |
- const int skip_this = mi[c].mbmi.skip_coeff |
- && is_inter_block(&mi[c].mbmi); |
+ const MODE_INFO *mi = mi_8x8[c]; |
+ const int skip_this = mi[0].mbmi.skip_coeff |
+ && is_inter_block(&mi[0].mbmi); |
// left edge of current unit is block/partition edge -> no skip |
- const int block_edge_left = b_width_log2(mi[c].mbmi.sb_type) ? |
- !(c & ((1 << (b_width_log2(mi[c].mbmi.sb_type)-1)) - 1)) : 1; |
+ const int block_edge_left = b_width_log2(mi[0].mbmi.sb_type) ? |
+ !(c & ((1 << (b_width_log2(mi[0].mbmi.sb_type)-1)) - 1)) : 1; |
const int skip_this_c = skip_this && !block_edge_left; |
// top edge of current unit is block/partition edge -> no skip |
- const int block_edge_above = b_height_log2(mi[c].mbmi.sb_type) ? |
- !(r & ((1 << (b_height_log2(mi[c].mbmi.sb_type)-1)) - 1)) : 1; |
+ const int block_edge_above = b_height_log2(mi[0].mbmi.sb_type) ? |
+ !(r & ((1 << (b_height_log2(mi[0].mbmi.sb_type)-1)) - 1)) : 1; |
const int skip_this_r = skip_this && !block_edge_above; |
const TX_SIZE tx_size = (plane->plane_type == PLANE_TYPE_UV) |
- ? get_uv_tx_size(&mi[c].mbmi) |
- : mi[c].mbmi.txfm_size; |
+ ? get_uv_tx_size(&mi[0].mbmi) |
+ : mi[0].mbmi.tx_size; |
const int skip_border_4x4_c = ss_x && mi_col + c == cm->mi_cols - 1; |
const int skip_border_4x4_r = ss_y && mi_row + r == cm->mi_rows - 1; |
// Filter level can vary per MI |
- if (!build_lfi(&cm->lf_info, &mi[c].mbmi, lfi[r] + (c >> ss_x))) |
+ if (!build_lfi(&cm->lf_info, &mi[0].mbmi, lfi[r] + (c >> ss_x))) |
continue; |
// Build masks based on the transform size of each block |
@@ -338,7 +893,7 @@ |
mask_4x4_c & border_mask, |
mask_4x4_int[r], lfi[r]); |
dst->buf += 8 * dst->stride; |
- mi += row_step_stride; |
+ mi_8x8 += row_step_stride; |
} |
// Now do horizontal pass |
@@ -355,22 +910,124 @@ |
dst->buf += 8 * dst->stride; |
} |
} |
+#endif |
+static void filter_block_plane(VP9_COMMON *const cm, |
+ struct macroblockd_plane *const plane, |
+ MODE_INFO **mi_8x8, |
+ int mi_row, int mi_col, |
+ LOOP_FILTER_MASK *lfm) { |
+ const int ss_x = plane->subsampling_x; |
+ const int ss_y = plane->subsampling_y; |
+ const int row_step = 1 << ss_x; |
+ const int col_step = 1 << ss_y; |
+ const int row_step_stride = cm->mode_info_stride * row_step; |
+ struct buf_2d *const dst = &plane->dst; |
+ uint8_t* const dst0 = dst->buf; |
+ unsigned int mask_4x4_int[MI_BLOCK_SIZE] = {0}; |
+ struct loop_filter_info lfi[MI_BLOCK_SIZE][MI_BLOCK_SIZE]; |
+ int r, c; |
+ int row_shift = 3 - ss_x; |
+ int row_mask = 0xff >> (ss_x << 2); |
+ |
+#define MASK_ROW(value) ((value >> (r_sampled << row_shift)) & row_mask) |
+ |
+ for (r = 0; r < MI_BLOCK_SIZE && mi_row + r < cm->mi_rows; r += row_step) { |
+ int r_sampled = r >> ss_x; |
+ |
+ // Determine the vertical edges that need filtering |
+ for (c = 0; c < MI_BLOCK_SIZE && mi_col + c < cm->mi_cols; c += col_step) { |
+ const MODE_INFO *mi = mi_8x8[c]; |
+ if (!build_lfi(&cm->lf_info, &mi[0].mbmi, lfi[r] + (c >> ss_x))) |
+ continue; |
+ } |
+ if (!plane->plane_type) { |
+ mask_4x4_int[r] = MASK_ROW(lfm->int_4x4_y); |
+ // Disable filtering on the leftmost column |
+ filter_selectively_vert(dst->buf, dst->stride, |
+ MASK_ROW(lfm->left_y[TX_16X16]), |
+ MASK_ROW(lfm->left_y[TX_8X8]), |
+ MASK_ROW(lfm->left_y[TX_4X4]), |
+ MASK_ROW(lfm->int_4x4_y), |
+ lfi[r]); |
+ } else { |
+ mask_4x4_int[r] = MASK_ROW(lfm->int_4x4_uv); |
+ // Disable filtering on the leftmost column |
+ filter_selectively_vert(dst->buf, dst->stride, |
+ MASK_ROW(lfm->left_uv[TX_16X16]), |
+ MASK_ROW(lfm->left_uv[TX_8X8]), |
+ MASK_ROW(lfm->left_uv[TX_4X4]), |
+ MASK_ROW(lfm->int_4x4_uv), |
+ lfi[r]); |
+ } |
+ dst->buf += 8 * dst->stride; |
+ mi_8x8 += row_step_stride; |
+ } |
+ |
+ // Now do horizontal pass |
+ dst->buf = dst0; |
+ for (r = 0; r < MI_BLOCK_SIZE && mi_row + r < cm->mi_rows; r += row_step) { |
+ const int skip_border_4x4_r = ss_y && mi_row + r == cm->mi_rows - 1; |
+ const unsigned int mask_4x4_int_r = skip_border_4x4_r ? 0 : mask_4x4_int[r]; |
+ int r_sampled = r >> ss_x; |
+ |
+ if (!plane->plane_type) { |
+ filter_selectively_horiz(dst->buf, dst->stride, |
+ MASK_ROW(lfm->above_y[TX_16X16]), |
+ MASK_ROW(lfm->above_y[TX_8X8]), |
+ MASK_ROW(lfm->above_y[TX_4X4]), |
+ MASK_ROW(lfm->int_4x4_y), |
+ mi_row + r == 0, lfi[r]); |
+ } else { |
+ filter_selectively_horiz(dst->buf, dst->stride, |
+ MASK_ROW(lfm->above_uv[TX_16X16]), |
+ MASK_ROW(lfm->above_uv[TX_8X8]), |
+ MASK_ROW(lfm->above_uv[TX_4X4]), |
+ mask_4x4_int_r, |
+ mi_row + r == 0, lfi[r]); |
+ } |
+ dst->buf += 8 * dst->stride; |
+ } |
+#undef MASK_ROW |
+} |
+ |
void vp9_loop_filter_rows(const YV12_BUFFER_CONFIG *frame_buffer, |
VP9_COMMON *cm, MACROBLOCKD *xd, |
int start, int stop, int y_only) { |
const int num_planes = y_only ? 1 : MAX_MB_PLANE; |
int mi_row, mi_col; |
+ LOOP_FILTER_MASK lfm; |
+#if CONFIG_NON420 |
+ int use_420 = y_only || (xd->plane[1].subsampling_y == 1 && |
+ xd->plane[1].subsampling_x == 1); |
+#endif |
for (mi_row = start; mi_row < stop; mi_row += MI_BLOCK_SIZE) { |
- MODE_INFO* const mi = cm->mi + mi_row * cm->mode_info_stride; |
+ MODE_INFO **mi_8x8 = cm->mi_grid_visible + mi_row * cm->mode_info_stride; |
for (mi_col = 0; mi_col < cm->mi_cols; mi_col += MI_BLOCK_SIZE) { |
int plane; |
setup_dst_planes(xd, frame_buffer, mi_row, mi_col); |
+ |
+ // TODO(JBB): Make setup_mask work for non 420. |
+#if CONFIG_NON420 |
+ if (use_420) |
+#endif |
+ setup_mask(cm, mi_row, mi_col, mi_8x8 + mi_col, cm->mode_info_stride, |
+ &lfm); |
+ |
for (plane = 0; plane < num_planes; ++plane) { |
- filter_block_plane(cm, &xd->plane[plane], mi + mi_col, mi_row, mi_col); |
+#if CONFIG_NON420 |
+ if (use_420) |
+#endif |
+ filter_block_plane(cm, &xd->plane[plane], mi_8x8 + mi_col, mi_row, |
+ mi_col, &lfm); |
+#if CONFIG_NON420 |
+ else |
+ filter_block_plane_non420(cm, &xd->plane[plane], mi_8x8 + mi_col, |
+ mi_row, mi_col); |
+#endif |
} |
} |
} |
@@ -381,7 +1038,6 @@ |
int y_only, int partial) { |
int start_mi_row, end_mi_row, mi_rows_to_filter; |
if (!frame_filter_level) return; |
- |
start_mi_row = 0; |
mi_rows_to_filter = cm->mi_rows; |
if (partial && cm->mi_rows > 8) { |