| Index: native_client_sdk/src/tests/nacl_io_socket_test/event_test.cc
|
| diff --git a/native_client_sdk/src/tests/nacl_io_socket_test/event_test.cc b/native_client_sdk/src/tests/nacl_io_socket_test/event_test.cc
|
| deleted file mode 100644
|
| index 7a854d7c2338135744bece690d82d3de71781467..0000000000000000000000000000000000000000
|
| --- a/native_client_sdk/src/tests/nacl_io_socket_test/event_test.cc
|
| +++ /dev/null
|
| @@ -1,480 +0,0 @@
|
| -/* Copyright (c) 2013 The Chromium Authors. All rights reserved.
|
| - * Use of this source code is governed by a BSD-style license that can be
|
| - * found in the LICENSE file.
|
| - */
|
| -
|
| -#include <errno.h>
|
| -#include <fcntl.h>
|
| -#include <stdio.h>
|
| -#include <sys/stat.h>
|
| -#include <sys/time.h>
|
| -
|
| -#include "gtest/gtest.h"
|
| -
|
| -#include "nacl_io/event_emitter.h"
|
| -#include "nacl_io/event_listener.h"
|
| -#include "nacl_io/kernel_intercept.h"
|
| -#include "nacl_io/kernel_proxy.h"
|
| -#include "nacl_io/kernel_wrap.h"
|
| -
|
| -
|
| -using namespace nacl_io;
|
| -using namespace sdk_util;
|
| -
|
| -class EventEmitterTester : public MountNode {
|
| - public:
|
| - EventEmitterTester() : MountNode(NULL), event_status_(0), event_cnt_(0) {}
|
| -
|
| - void SetEventStatus(uint32_t bits) { event_status_ = bits; }
|
| - uint32_t GetEventStatus() { return event_status_; }
|
| -
|
| - Error Ioctl(int request, char* arg) {
|
| - event_status_ = static_cast<uint32_t>(request);
|
| - return 0;
|
| - }
|
| -
|
| - int GetType() { return S_IFSOCK; }
|
| - int NumEvents() { return event_cnt_; }
|
| -
|
| - public:
|
| - // Make this function public for testing
|
| - void RaiseEvent(uint32_t events) {
|
| - EventEmitter::RaiseEvent(events);
|
| - }
|
| -
|
| - // Called after registering locally, but while lock is still held.
|
| - void ChainRegisterEventInfo(const ScopedEventInfo& event) {
|
| - event_cnt_++;
|
| - }
|
| -
|
| - // Called before unregistering locally, but while lock is still held.
|
| - void ChainUnregisterEventInfo(const ScopedEventInfo& event) {
|
| - event_cnt_--;
|
| - }
|
| -
|
| - protected:
|
| - uint32_t event_status_;
|
| - uint32_t event_cnt_;
|
| -};
|
| -
|
| -
|
| -const int MAX_EVENTS = 8;
|
| -
|
| -// IDs for Emitters
|
| -const int ID_EMITTER = 5;
|
| -const int ID_LISTENER = 6;
|
| -const int ID_EMITTER_DUP = 7;
|
| -
|
| -// Kernel Event values
|
| -const uint32_t KE_EXPECTED = 4;
|
| -const uint32_t KE_FILTERED = 2;
|
| -const uint32_t KE_NONE = 0;
|
| -
|
| -// User Data values
|
| -const uint64_t USER_DATA_A = 1;
|
| -const uint64_t USER_DATA_B = 5;
|
| -
|
| -// Timeout durations
|
| -const int TIMEOUT_IMMEDIATE = 0;
|
| -const int TIMEOUT_SHORT= 100;
|
| -const int TIMEOUT_LONG = 500;
|
| -const int TIMEOUT_NEVER = -1;
|
| -const int TIMEOUT_VERY_LONG = 1000;
|
| -
|
| -// We subtract TIMEOUT_SLOP from the expected minimum timed due to rounding
|
| -// and clock drift converting between absolute and relative time. This should
|
| -// only be 1 for Less Than, and 1 for rounding, but we use 10 since we don't
|
| -// care about real precision, aren't testing of the underlying
|
| -// implementations and don't want flakiness.
|
| -const int TIMEOUT_SLOP = 10;
|
| -
|
| -TEST(EventTest, EmitterBasic) {
|
| - ScopedRef<EventEmitterTester> emitter(new EventEmitterTester());
|
| - ScopedRef<EventEmitter> null_emitter;
|
| -
|
| - ScopedEventListener listener(new EventListener);
|
| -
|
| - // Verify construction
|
| - EXPECT_EQ(0, emitter->NumEvents());
|
| - EXPECT_EQ(0, emitter->GetEventStatus());
|
| -
|
| - // Verify status
|
| - emitter->SetEventStatus(KE_EXPECTED);
|
| - EXPECT_EQ(KE_EXPECTED, emitter->GetEventStatus());
|
| -
|
| - // Fail to update or free an ID not in the set
|
| - EXPECT_EQ(ENOENT, listener->Update(ID_EMITTER, KE_EXPECTED, USER_DATA_A));
|
| - EXPECT_EQ(ENOENT, listener->Free(ID_EMITTER));
|
| -
|
| - // Fail to Track self
|
| - EXPECT_EQ(EINVAL, listener->Track(ID_LISTENER,
|
| - listener,
|
| - KE_EXPECTED,
|
| - USER_DATA_A));
|
| -
|
| - // Set the emitter filter and data
|
| - EXPECT_EQ(0, listener->Track(ID_EMITTER, emitter, KE_EXPECTED, USER_DATA_A));
|
| - EXPECT_EQ(1, emitter->NumEvents());
|
| -
|
| - // Fail to add the same ID
|
| - EXPECT_EQ(EEXIST,
|
| - listener->Track(ID_EMITTER, emitter, KE_EXPECTED, USER_DATA_A));
|
| - EXPECT_EQ(1, emitter->NumEvents());
|
| -
|
| - int event_cnt = 0;
|
| - EventData ev[MAX_EVENTS];
|
| -
|
| - // Do not allow a wait with a zero events count.
|
| - EXPECT_EQ(EINVAL, listener->Wait(ev, 0, TIMEOUT_IMMEDIATE, &event_cnt));
|
| -
|
| - // Do not allow a wait with a negative events count.
|
| - EXPECT_EQ(EINVAL, listener->Wait(ev, -1, TIMEOUT_IMMEDIATE, &event_cnt));
|
| -
|
| - // Do not allow a wait with a NULL EventData pointer
|
| - EXPECT_EQ(EFAULT,
|
| - listener->Wait(NULL, MAX_EVENTS, TIMEOUT_IMMEDIATE, &event_cnt));
|
| -
|
| - // Return with no events if the Emitter has no signals set.
|
| - memset(ev, 0, sizeof(ev));
|
| - event_cnt = 100;
|
| - emitter->SetEventStatus(KE_NONE);
|
| - EXPECT_EQ(0, listener->Wait(ev, MAX_EVENTS, TIMEOUT_IMMEDIATE, &event_cnt));
|
| - EXPECT_EQ(0, event_cnt);
|
| -
|
| - // Return with no events if the Emitter has a filtered signals set.
|
| - memset(ev, 0, sizeof(ev));
|
| - event_cnt = 100;
|
| - emitter->SetEventStatus(KE_FILTERED);
|
| - EXPECT_EQ(0, listener->Wait(ev, MAX_EVENTS, TIMEOUT_IMMEDIATE, &event_cnt));
|
| - EXPECT_EQ(0, event_cnt);
|
| -
|
| - // Return with one event if the Emitter has the expected signal set.
|
| - memset(ev, 0, sizeof(ev));
|
| - event_cnt = 100;
|
| - emitter->SetEventStatus(KE_EXPECTED);
|
| - EXPECT_EQ(0, listener->Wait(ev, MAX_EVENTS, TIMEOUT_IMMEDIATE, &event_cnt));
|
| - EXPECT_EQ(1, event_cnt);
|
| - EXPECT_EQ(USER_DATA_A, ev[0].user_data);
|
| - EXPECT_EQ(KE_EXPECTED, ev[0].events);
|
| -
|
| - // Return with one event containing only the expected signal.
|
| - memset(ev, 0, sizeof(ev));
|
| - event_cnt = 100;
|
| - emitter->SetEventStatus(KE_EXPECTED | KE_FILTERED);
|
| - EXPECT_EQ(0, listener->Wait(ev, MAX_EVENTS, TIMEOUT_IMMEDIATE, &event_cnt));
|
| - EXPECT_EQ(1, event_cnt);
|
| - EXPECT_EQ(USER_DATA_A, ev[0].user_data);
|
| - EXPECT_EQ(KE_EXPECTED, ev[0].events);
|
| -
|
| - // Change the USER_DATA on an existing event
|
| - EXPECT_EQ(0, listener->Update(ID_EMITTER, KE_EXPECTED, USER_DATA_B));
|
| -
|
| - // Return with one event signaled with the alternate USER DATA
|
| - memset(ev, 0, sizeof(ev));
|
| - event_cnt = 100;
|
| - emitter->SetEventStatus(KE_EXPECTED | KE_FILTERED);
|
| - EXPECT_EQ(0, listener->Wait(ev, MAX_EVENTS, 0, &event_cnt));
|
| - EXPECT_EQ(1, event_cnt);
|
| - EXPECT_EQ(USER_DATA_B, ev[0].user_data);
|
| - EXPECT_EQ(KE_EXPECTED, ev[0].events);
|
| -
|
| - // Reset the USER_DATA.
|
| - EXPECT_EQ(0, listener->Update(ID_EMITTER, KE_EXPECTED, USER_DATA_A));
|
| -
|
| - // Support adding a DUP.
|
| - EXPECT_EQ(0, listener->Track(ID_EMITTER_DUP,
|
| - emitter,
|
| - KE_EXPECTED,
|
| - USER_DATA_A));
|
| - EXPECT_EQ(2, emitter->NumEvents());
|
| -
|
| - // Return unsignaled.
|
| - memset(ev, 0, sizeof(ev));
|
| - emitter->SetEventStatus(KE_NONE);
|
| - event_cnt = 100;
|
| - EXPECT_EQ(0, listener->Wait(ev, MAX_EVENTS, TIMEOUT_IMMEDIATE, &event_cnt));
|
| - EXPECT_EQ(0, event_cnt);
|
| -
|
| - // Return with two event signaled with expected data.
|
| - memset(ev, 0, sizeof(ev));
|
| - emitter->SetEventStatus(KE_EXPECTED);
|
| - event_cnt = 100;
|
| - EXPECT_EQ(0, listener->Wait(ev, MAX_EVENTS, TIMEOUT_IMMEDIATE, &event_cnt));
|
| - EXPECT_EQ(2, event_cnt);
|
| - EXPECT_EQ(USER_DATA_A, ev[0].user_data);
|
| - EXPECT_EQ(KE_EXPECTED, ev[0].events);
|
| - EXPECT_EQ(USER_DATA_A, ev[1].user_data);
|
| - EXPECT_EQ(KE_EXPECTED, ev[1].events);
|
| -}
|
| -
|
| -long Duration(struct timeval* start, struct timeval* end) {
|
| - if (start->tv_usec > end->tv_usec) {
|
| - end->tv_sec -= 1;
|
| - end->tv_usec += 1000000;
|
| - }
|
| - long cur_time = 1000 * (end->tv_sec - start->tv_sec);
|
| - cur_time += (end->tv_usec - start->tv_usec) / 1000;
|
| - return cur_time;
|
| -}
|
| -
|
| -
|
| -// Run a timed wait, and return the average of 8 iterations to reduce
|
| -// chance of false negative on outlier.
|
| -const int TRIES_TO_AVERAGE = 8;
|
| -bool TimedListen(ScopedEventListener& listen,
|
| - EventData* ev,
|
| - int ev_max,
|
| - int ev_expect,
|
| - int ms_wait,
|
| - long* duration) {
|
| -
|
| - struct timeval start;
|
| - struct timeval end;
|
| - long total_time = 0;
|
| -
|
| - for (int a=0; a < TRIES_TO_AVERAGE; a++) {
|
| - gettimeofday(&start, NULL);
|
| -
|
| - int signaled;
|
| -
|
| - EXPECT_EQ(0, listen->Wait(ev, ev_max, ms_wait, &signaled));
|
| - EXPECT_EQ(signaled, ev_expect);
|
| -
|
| - if (signaled != ev_expect) {
|
| - return false;
|
| - }
|
| -
|
| - gettimeofday(&end, NULL);
|
| -
|
| - long cur_time = Duration(&start, &end);
|
| - total_time += cur_time;
|
| - }
|
| -
|
| - *duration = total_time / TRIES_TO_AVERAGE;
|
| - return true;
|
| -}
|
| -
|
| -
|
| -// NOTE: These timing tests are potentially flaky, the real test is
|
| -// for the zero timeout should be, has the ConditionVariable been waited on?
|
| -// Once we provide a debuggable SimpleCond and SimpleLock we can actually test
|
| -// the correct thing.
|
| -
|
| -// Normal scheduling would expect us to see ~10ms accuracy, but we'll
|
| -// use a much bigger number (yet smaller than the MAX_MS_TIMEOUT).
|
| -const int SCHEDULING_GRANULARITY = 100;
|
| -
|
| -const int EXPECT_ONE_EVENT = 1;
|
| -const int EXPECT_NO_EVENT = 0;
|
| -
|
| -TEST(EventTest, EmitterTimeout) {
|
| - ScopedRef<EventEmitterTester> emitter(new EventEmitterTester());
|
| - ScopedEventListener listener(new EventListener());
|
| - long duration;
|
| -
|
| - EventData ev[MAX_EVENTS];
|
| - memset(ev, 0, sizeof(ev));
|
| - EXPECT_EQ(0, listener->Track(ID_EMITTER, emitter, KE_EXPECTED, USER_DATA_A));
|
| -
|
| - // Return immediately when emitter is signaled, with no timeout
|
| - emitter->SetEventStatus(KE_EXPECTED);
|
| - memset(ev, 0, sizeof(ev));
|
| - EXPECT_TRUE(TimedListen(listener, ev, MAX_EVENTS, EXPECT_ONE_EVENT,
|
| - TIMEOUT_IMMEDIATE, &duration));
|
| - EXPECT_EQ(USER_DATA_A, ev[0].user_data);
|
| - EXPECT_EQ(KE_EXPECTED, ev[0].events);
|
| - EXPECT_EQ(0, duration);
|
| -
|
| - // Return immediately when emitter is signaled, even with timeout
|
| - emitter->SetEventStatus(KE_EXPECTED);
|
| - memset(ev, 0, sizeof(ev));
|
| - EXPECT_TRUE(TimedListen(listener, ev, MAX_EVENTS, EXPECT_ONE_EVENT,
|
| - TIMEOUT_LONG, &duration));
|
| - EXPECT_EQ(USER_DATA_A, ev[0].user_data);
|
| - EXPECT_EQ(KE_EXPECTED, ev[0].events);
|
| - EXPECT_GT(SCHEDULING_GRANULARITY, duration);
|
| -
|
| - // Return immediately if Emiiter is already signaled when blocking forever.
|
| - emitter->SetEventStatus(KE_EXPECTED);
|
| - memset(ev, 0, sizeof(ev));
|
| - EXPECT_TRUE(TimedListen(listener, ev, MAX_EVENTS, EXPECT_ONE_EVENT,
|
| - TIMEOUT_NEVER, &duration));
|
| - EXPECT_EQ(USER_DATA_A, ev[0].user_data);
|
| - EXPECT_EQ(KE_EXPECTED, ev[0].events);
|
| - EXPECT_GT(SCHEDULING_GRANULARITY, duration);
|
| -
|
| - // Return immediately if Emitter is no signaled when not blocking.
|
| - emitter->SetEventStatus(KE_NONE);
|
| - memset(ev, 0, sizeof(ev));
|
| - EXPECT_TRUE(TimedListen(listener, ev, MAX_EVENTS, EXPECT_NO_EVENT,
|
| - TIMEOUT_IMMEDIATE, &duration));
|
| - EXPECT_EQ(0, duration);
|
| -
|
| - // Wait TIMEOUT_LONG if the emitter is not in a signaled state.
|
| - emitter->SetEventStatus(KE_NONE);
|
| - memset(ev, 0, sizeof(ev));
|
| - EXPECT_TRUE(TimedListen(listener, ev, MAX_EVENTS, EXPECT_NO_EVENT,
|
| - TIMEOUT_LONG, &duration));
|
| - EXPECT_LT(TIMEOUT_LONG - TIMEOUT_SLOP, duration);
|
| - EXPECT_GT(TIMEOUT_LONG + SCHEDULING_GRANULARITY, duration);
|
| -}
|
| -
|
| -struct SignalInfo {
|
| - EventEmitterTester* em;
|
| - unsigned int ms_wait;
|
| - uint32_t events;
|
| -};
|
| -
|
| -static void *SignalEmitterThread(void *ptr) {
|
| - SignalInfo* info = (SignalInfo*) ptr;
|
| - struct timespec ts;
|
| - ts.tv_sec = 0;
|
| - ts.tv_nsec = info->ms_wait * 1000000;
|
| -
|
| - nanosleep(&ts, NULL);
|
| -
|
| - info->em->RaiseEvent(info->events);
|
| - return NULL;
|
| -}
|
| -
|
| -TEST(EventTest, EmitterSignalling) {
|
| - ScopedRef<EventEmitterTester> emitter(new EventEmitterTester());
|
| - ScopedEventListener listener(new EventListener);
|
| -
|
| - SignalInfo siginfo;
|
| - struct timeval start;
|
| - struct timeval end;
|
| - long duration;
|
| -
|
| - EventData ev[MAX_EVENTS];
|
| - memset(ev, 0, sizeof(ev));
|
| - EXPECT_EQ(0, listener->Track(ID_EMITTER, emitter, KE_EXPECTED, USER_DATA_A));
|
| -
|
| - // Setup another thread to wait 1/4 of the max time, and signal both
|
| - // an expected, and unexpected value.
|
| - siginfo.em = emitter.get();
|
| - siginfo.ms_wait = TIMEOUT_SHORT;
|
| - siginfo.events = KE_EXPECTED | KE_FILTERED;
|
| - pthread_t tid;
|
| - pthread_create(&tid, NULL, SignalEmitterThread, &siginfo);
|
| -
|
| - // Wait for the signal from the other thread and time it.
|
| - gettimeofday(&start, NULL);
|
| - int cnt = 0;
|
| - EXPECT_EQ(0, listener->Wait(ev, MAX_EVENTS, TIMEOUT_VERY_LONG, &cnt));
|
| - EXPECT_EQ(1, cnt);
|
| - gettimeofday(&end, NULL);
|
| -
|
| - // Verify the wait duration, and that we only recieved the expected signal.
|
| - duration = Duration(&start, &end);
|
| - EXPECT_GT(TIMEOUT_SHORT + SCHEDULING_GRANULARITY, duration);
|
| - EXPECT_LT(TIMEOUT_SHORT - TIMEOUT_SLOP, duration);
|
| - EXPECT_EQ(USER_DATA_A, ev[0].user_data);
|
| - EXPECT_EQ(KE_EXPECTED, ev[0].events);
|
| -}
|
| -
|
| -
|
| -namespace {
|
| -
|
| -class KernelProxyPolling : public KernelProxy {
|
| - public:
|
| - virtual int socket(int domain, int type, int protocol) {
|
| - ScopedMount mnt;
|
| - ScopedMountNode node(new EventEmitterTester());
|
| - ScopedKernelHandle handle(new KernelHandle(mnt, node));
|
| -
|
| - Error error = handle->Init(0);
|
| - if (error) {
|
| - errno = error;
|
| - return -1;
|
| - }
|
| -
|
| - return AllocateFD(handle);
|
| - }
|
| -};
|
| -
|
| -class KernelProxyPollingTest : public ::testing::Test {
|
| - public:
|
| - KernelProxyPollingTest() : kp_(new KernelProxyPolling) {
|
| - ki_init(kp_);
|
| - }
|
| -
|
| - ~KernelProxyPollingTest() {
|
| - ki_uninit();
|
| - delete kp_;
|
| - }
|
| -
|
| - KernelProxyPolling* kp_;
|
| -};
|
| -
|
| -} // namespace
|
| -
|
| -
|
| -#define SOCKET_CNT 4
|
| -void SetFDs(fd_set* set, int* fds) {
|
| - FD_ZERO(set);
|
| -
|
| - FD_SET(0, set);
|
| - FD_SET(1, set);
|
| - FD_SET(2, set);
|
| -
|
| - for (int index = 0; index < SOCKET_CNT; index++)
|
| - FD_SET(fds[index], set);
|
| -}
|
| -
|
| -TEST_F(KernelProxyPollingTest, Select) {
|
| - int fds[SOCKET_CNT];
|
| -
|
| - fd_set rd_set;
|
| - fd_set wr_set;
|
| -
|
| - FD_ZERO(&rd_set);
|
| - FD_ZERO(&wr_set);
|
| -
|
| - FD_SET(0, &rd_set);
|
| - FD_SET(1, &rd_set);
|
| - FD_SET(2, &rd_set);
|
| -
|
| - FD_SET(0, &wr_set);
|
| - FD_SET(1, &wr_set);
|
| - FD_SET(2, &wr_set);
|
| -
|
| - // Expect normal files to select as read, write, and error
|
| - int cnt = select(4, &rd_set, &rd_set, &rd_set, NULL);
|
| - EXPECT_EQ(3 * 3, cnt);
|
| - EXPECT_NE(0, FD_ISSET(0, &rd_set));
|
| - EXPECT_NE(0, FD_ISSET(1, &rd_set));
|
| - EXPECT_NE(0, FD_ISSET(2, &rd_set));
|
| -
|
| - for (int index = 0 ; index < SOCKET_CNT; index++) {
|
| - fds[index] = socket(0, 0, 0);
|
| - EXPECT_NE(-1, fds[index]);
|
| - }
|
| -
|
| - // Highest numbered fd
|
| - const int fdnum = fds[SOCKET_CNT - 1] + 1;
|
| -
|
| - // Expect only the normal files to select
|
| - SetFDs(&rd_set, fds);
|
| - cnt = select(fds[SOCKET_CNT-1] + 1, &rd_set, NULL, NULL, NULL);
|
| - EXPECT_EQ(3, cnt);
|
| - EXPECT_NE(0, FD_ISSET(0, &rd_set));
|
| - EXPECT_NE(0, FD_ISSET(1, &rd_set));
|
| - EXPECT_NE(0, FD_ISSET(2, &rd_set));
|
| - for (int index = 0 ; index < SOCKET_CNT; index++) {
|
| - EXPECT_EQ(0, FD_ISSET(fds[index], &rd_set));
|
| - }
|
| -
|
| - // Poke one of the pollable nodes to be READ ready
|
| - ioctl(fds[0], POLLIN, NULL);
|
| -
|
| - // Expect normal files to be read/write and one pollable node to be read.
|
| - SetFDs(&rd_set, fds);
|
| - SetFDs(&wr_set, fds);
|
| - cnt = select(fdnum, &rd_set, &wr_set, NULL, NULL);
|
| - EXPECT_EQ(7, cnt);
|
| - EXPECT_NE(0, FD_ISSET(fds[0], &rd_set));
|
| - EXPECT_EQ(0, FD_ISSET(fds[0], &wr_set));
|
| -}
|
| -
|
| -
|
|
|