Index: base/strings/safe_sprintf.cc |
diff --git a/base/strings/safe_sprintf.cc b/base/strings/safe_sprintf.cc |
deleted file mode 100644 |
index dfe59a7a10e99efa0034901b5197f3a491293cae..0000000000000000000000000000000000000000 |
--- a/base/strings/safe_sprintf.cc |
+++ /dev/null |
@@ -1,681 +0,0 @@ |
-// Copyright 2013 The Chromium Authors. All rights reserved. |
-// Use of this source code is governed by a BSD-style license that can be |
-// found in the LICENSE file. |
- |
-#include "base/strings/safe_sprintf.h" |
- |
-#include <limits> |
- |
-#if !defined(NDEBUG) |
-// In debug builds, we use RAW_CHECK() to print useful error messages, if |
-// SafeSPrintf() is called with broken arguments. |
-// As our contract promises that SafeSPrintf() can be called from any |
-// restricted run-time context, it is not actually safe to call logging |
-// functions from it; and we only ever do so for debug builds and hope for the |
-// best. We should _never_ call any logging function other than RAW_CHECK(), |
-// and we should _never_ include any logging code that is active in production |
-// builds. Most notably, we should not include these logging functions in |
-// unofficial release builds, even though those builds would otherwise have |
-// DCHECKS() enabled. |
-// In other words; please do not remove the #ifdef around this #include. |
-// Instead, in production builds we opt for returning a degraded result, |
-// whenever an error is encountered. |
-// E.g. The broken function call |
-// SafeSPrintf("errno = %d (%x)", errno, strerror(errno)) |
-// will print something like |
-// errno = 13, (%x) |
-// instead of |
-// errno = 13 (Access denied) |
-// In most of the anticipated use cases, that's probably the preferred |
-// behavior. |
-#include "base/logging.h" |
-#define DEBUG_CHECK RAW_CHECK |
-#else |
-#define DEBUG_CHECK(x) do { if (x) { } } while (0) |
-#endif |
- |
-namespace base { |
-namespace strings { |
- |
-// The code in this file is extremely careful to be async-signal-safe. |
-// |
-// Most obviously, we avoid calling any code that could dynamically allocate |
-// memory. Doing so would almost certainly result in bugs and dead-locks. |
-// We also avoid calling any other STL functions that could have unintended |
-// side-effects involving memory allocation or access to other shared |
-// resources. |
-// |
-// But on top of that, we also avoid calling other library functions, as many |
-// of them have the side-effect of calling getenv() (in order to deal with |
-// localization) or accessing errno. The latter sounds benign, but there are |
-// several execution contexts where it isn't even possible to safely read let |
-// alone write errno. |
-// |
-// The stated design goal of the SafeSPrintf() function is that it can be |
-// called from any context that can safely call C or C++ code (i.e. anything |
-// that doesn't require assembly code). |
-// |
-// For a brief overview of some but not all of the issues with async-signal- |
-// safety, refer to: |
-// http://pubs.opengroup.org/onlinepubs/009695399/functions/xsh_chap02_04.html |
- |
-namespace { |
-const size_t kSSizeMaxConst = ((size_t)(ssize_t)-1) >> 1; |
- |
-const char kUpCaseHexDigits[] = "0123456789ABCDEF"; |
-const char kDownCaseHexDigits[] = "0123456789abcdef"; |
-} |
- |
-#if defined(NDEBUG) |
-// We would like to define kSSizeMax as std::numeric_limits<ssize_t>::max(), |
-// but C++ doesn't allow us to do that for constants. Instead, we have to |
-// use careful casting and shifting. We later use a COMPILE_ASSERT to |
-// verify that this worked correctly. |
-namespace { |
-const size_t kSSizeMax = kSSizeMaxConst; |
-} |
-#else // defined(NDEBUG) |
-// For efficiency, we really need kSSizeMax to be a constant. But for unit |
-// tests, it should be adjustable. This allows us to verify edge cases without |
-// having to fill the entire available address space. As a compromise, we make |
-// kSSizeMax adjustable in debug builds, and then only compile that particular |
-// part of the unit test in debug builds. |
-namespace { |
-static size_t kSSizeMax = kSSizeMaxConst; |
-} |
- |
-namespace internal { |
-void SetSafeSPrintfSSizeMaxForTest(size_t max) { |
- kSSizeMax = max; |
-} |
- |
-size_t GetSafeSPrintfSSizeMaxForTest() { |
- return kSSizeMax; |
-} |
-} |
-#endif // defined(NDEBUG) |
- |
-namespace { |
-class Buffer { |
- public: |
- // |buffer| is caller-allocated storage that SafeSPrintf() writes to. It |
- // has |size| bytes of writable storage. It is the caller's responsibility |
- // to ensure that the buffer is at least one byte in size, so that it fits |
- // the trailing NUL that will be added by the destructor. The buffer also |
- // must be smaller or equal to kSSizeMax in size. |
- Buffer(char* buffer, size_t size) |
- : buffer_(buffer), |
- size_(size - 1), // Account for trailing NUL byte |
- count_(0) { |
-// This test should work on all C++11 compilers, but apparently something is |
-// not working on all versions of clang just yet (e.g. on Mac, IOS, and |
-// Android). We are conservative and exclude all of clang for the time being. |
-// TODO(markus): Check if this restriction can be lifted. |
-#if __cplusplus >= 201103 && !defined(__clang__) |
- COMPILE_ASSERT(kSSizeMaxConst == std::numeric_limits<ssize_t>::max(), |
- kSSizeMax_is_the_max_value_of_an_ssize_t); |
-#endif |
- DEBUG_CHECK(size > 0); |
- DEBUG_CHECK(size <= kSSizeMax); |
- } |
- |
- ~Buffer() { |
- // The code calling the constructor guaranteed that there was enough space |
- // to store a trailing NUL -- and in debug builds, we are actually |
- // verifying this with DEBUG_CHECK()s in the constructor. So, we can |
- // always unconditionally write the NUL byte in the destructor. We do not |
- // need to adjust the count_, as SafeSPrintf() copies snprintf() in not |
- // including the NUL byte in its return code. |
- *GetInsertionPoint() = '\000'; |
- } |
- |
- // Returns true, iff the buffer is filled all the way to |kSSizeMax-1|. The |
- // caller can now stop adding more data, as GetCount() has reached its |
- // maximum possible value. |
- inline bool OutOfAddressableSpace() const { |
- return count_ == static_cast<size_t>(kSSizeMax - 1); |
- } |
- |
- // Returns the number of bytes that would have been emitted to |buffer_| |
- // if it was sized sufficiently large. This number can be larger than |
- // |size_|, if the caller provided an insufficiently large output buffer. |
- // But it will never be bigger than |kSSizeMax-1|. |
- inline ssize_t GetCount() const { |
- DEBUG_CHECK(count_ < kSSizeMax); |
- return static_cast<ssize_t>(count_); |
- } |
- |
- // Emits one |ch| character into the |buffer_| and updates the |count_| of |
- // characters that are currently supposed to be in the buffer. |
- // Returns "false", iff the buffer was already full. |
- // N.B. |count_| increases even if no characters have been written. This is |
- // needed so that GetCount() can return the number of bytes that should |
- // have been allocated for the |buffer_|. |
- inline bool Out(char ch) { |
- if (size_ >= 1 && count_ < size_) { |
- buffer_[count_] = ch; |
- return IncrementCountByOne(); |
- } |
- // |count_| still needs to be updated, even if the buffer has been |
- // filled completely. This allows SafeSPrintf() to return the number of |
- // bytes that should have been emitted. |
- IncrementCountByOne(); |
- return false; |
- } |
- |
- // Inserts |padding|-|len| bytes worth of padding into the |buffer_|. |
- // |count_| will also be incremented by the number of bytes that were meant |
- // to be emitted. The |pad| character is typically either a ' ' space |
- // or a '0' zero, but other non-NUL values are legal. |
- // Returns "false", iff the the |buffer_| filled up (i.e. |count_| |
- // overflowed |size_|) at any time during padding. |
- inline bool Pad(char pad, size_t padding, size_t len) { |
- DEBUG_CHECK(pad); |
- DEBUG_CHECK(padding >= 0 && padding <= kSSizeMax); |
- DEBUG_CHECK(len >= 0); |
- for (; padding > len; --padding) { |
- if (!Out(pad)) { |
- if (--padding) { |
- IncrementCount(padding-len); |
- } |
- return false; |
- } |
- } |
- return true; |
- } |
- |
- // POSIX doesn't define any async-signal-safe function for converting |
- // an integer to ASCII. Define our own version. |
- // |
- // This also gives us the ability to make the function a little more |
- // powerful and have it deal with |padding|, with truncation, and with |
- // predicting the length of the untruncated output. |
- // |
- // IToASCII() converts an integer |i| to ASCII. |
- // |
- // Unlike similar functions in the standard C library, it never appends a |
- // NUL character. This is left for the caller to do. |
- // |
- // While the function signature takes a signed int64_t, the code decides at |
- // run-time whether to treat the argument as signed (int64_t) or as unsigned |
- // (uint64_t) based on the value of |sign|. |
- // |
- // It supports |base|s 2 through 16. Only a |base| of 10 is allowed to have |
- // a |sign|. Otherwise, |i| is treated as unsigned. |
- // |
- // For bases larger than 10, |upcase| decides whether lower-case or upper- |
- // case letters should be used to designate digits greater than 10. |
- // |
- // Padding can be done with either '0' zeros or ' ' spaces. Padding has to |
- // be positive and will always be applied to the left of the output. |
- // |
- // Prepends a |prefix| to the number (e.g. "0x"). This prefix goes to |
- // the left of |padding|, if |pad| is '0'; and to the right of |padding| |
- // if |pad| is ' '. |
- // |
- // Returns "false", if the |buffer_| overflowed at any time. |
- bool IToASCII(bool sign, bool upcase, int64_t i, int base, |
- char pad, size_t padding, const char* prefix); |
- |
- private: |
- // Increments |count_| by |inc| unless this would cause |count_| to |
- // overflow |kSSizeMax-1|. Returns "false", iff an overflow was detected; |
- // it then clamps |count_| to |kSSizeMax-1|. |
- inline bool IncrementCount(size_t inc) { |
- // "inc" is either 1 or a "padding" value. Padding is clamped at |
- // run-time to at most kSSizeMax-1. So, we know that "inc" is always in |
- // the range 1..kSSizeMax-1. |
- // This allows us to compute "kSSizeMax - 1 - inc" without incurring any |
- // integer overflows. |
- DEBUG_CHECK(inc <= kSSizeMax - 1); |
- if (count_ > kSSizeMax - 1 - inc) { |
- count_ = kSSizeMax - 1; |
- return false; |
- } else { |
- count_ += inc; |
- return true; |
- } |
- } |
- |
- // Convenience method for the common case of incrementing |count_| by one. |
- inline bool IncrementCountByOne() { |
- return IncrementCount(1); |
- } |
- |
- // Return the current insertion point into the buffer. This is typically |
- // at |buffer_| + |count_|, but could be before that if truncation |
- // happened. It always points to one byte past the last byte that was |
- // successfully placed into the |buffer_|. |
- inline char* GetInsertionPoint() const { |
- size_t idx = count_; |
- if (idx > size_) { |
- idx = size_; |
- } |
- return buffer_ + idx; |
- } |
- |
- // User-provided buffer that will receive the fully formatted output string. |
- char* buffer_; |
- |
- // Number of bytes that are available in the buffer excluding the trailing |
- // NUL byte that will be added by the destructor. |
- const size_t size_; |
- |
- // Number of bytes that would have been emitted to the buffer, if the buffer |
- // was sufficiently big. This number always excludes the trailing NUL byte |
- // and it is guaranteed to never grow bigger than kSSizeMax-1. |
- size_t count_; |
- |
- DISALLOW_COPY_AND_ASSIGN(Buffer); |
-}; |
- |
- |
-bool Buffer::IToASCII(bool sign, bool upcase, int64_t i, int base, |
- char pad, size_t padding, const char* prefix) { |
- // Sanity check for parameters. None of these should ever fail, but see |
- // above for the rationale why we can't call CHECK(). |
- DEBUG_CHECK(base >= 2); |
- DEBUG_CHECK(base <= 16); |
- DEBUG_CHECK(!sign || base == 10); |
- DEBUG_CHECK(pad == '0' || pad == ' '); |
- DEBUG_CHECK(padding >= 0); |
- DEBUG_CHECK(padding <= kSSizeMax); |
- DEBUG_CHECK(!(sign && prefix && *prefix)); |
- |
- // Handle negative numbers, if the caller indicated that |i| should be |
- // treated as a signed number; otherwise treat |i| as unsigned (even if the |
- // MSB is set!) |
- // Details are tricky, because of limited data-types, but equivalent pseudo- |
- // code would look like: |
- // if (sign && i < 0) |
- // prefix = "-"; |
- // num = abs(i); |
- int minint = 0; |
- uint64_t num; |
- if (sign && i < 0) { |
- prefix = "-"; |
- |
- // Turn our number positive. |
- if (i == std::numeric_limits<int64_t>::min()) { |
- // The most negative integer needs special treatment. |
- minint = 1; |
- num = static_cast<uint64_t>(-(i + 1)); |
- } else { |
- // "Normal" negative numbers are easy. |
- num = static_cast<uint64_t>(-i); |
- } |
- } else { |
- num = static_cast<uint64_t>(i); |
- } |
- |
- // If padding with '0' zero, emit the prefix or '-' character now. Otherwise, |
- // make the prefix accessible in reverse order, so that we can later output |
- // it right between padding and the number. |
- // We cannot choose the easier approach of just reversing the number, as that |
- // fails in situations where we need to truncate numbers that have padding |
- // and/or prefixes. |
- const char* reverse_prefix = NULL; |
- if (prefix && *prefix) { |
- if (pad == '0') { |
- while (*prefix) { |
- if (padding) { |
- --padding; |
- } |
- Out(*prefix++); |
- } |
- prefix = NULL; |
- } else { |
- for (reverse_prefix = prefix; *reverse_prefix; ++reverse_prefix) { |
- } |
- } |
- } else |
- prefix = NULL; |
- const size_t prefix_length = reverse_prefix - prefix; |
- |
- // Loop until we have converted the entire number. Output at least one |
- // character (i.e. '0'). |
- size_t start = count_; |
- size_t discarded = 0; |
- bool started = false; |
- do { |
- // Make sure there is still enough space left in our output buffer. |
- if (count_ >= size_) { |
- if (start < size_) { |
- // It is rare that we need to output a partial number. But if asked |
- // to do so, we will still make sure we output the correct number of |
- // leading digits. |
- // Since we are generating the digits in reverse order, we actually |
- // have to discard digits in the order that we have already emitted |
- // them. This is essentially equivalent to: |
- // memmove(buffer_ + start, buffer_ + start + 1, size_ - start - 1) |
- for (char* move = buffer_ + start, *end = buffer_ + size_ - 1; |
- move < end; |
- ++move) { |
- *move = move[1]; |
- } |
- ++discarded; |
- --count_; |
- } else if (count_ - size_ > 1) { |
- // Need to increment either |count_| or |discarded| to make progress. |
- // The latter is more efficient, as it eventually triggers fast |
- // handling of padding. But we have to ensure we don't accidentally |
- // change the overall state (i.e. switch the state-machine from |
- // discarding to non-discarding). |count_| needs to always stay |
- // bigger than |size_|. |
- --count_; |
- ++discarded; |
- } |
- } |
- |
- // Output the next digit and (if necessary) compensate for the most |
- // negative integer needing special treatment. This works because, |
- // no matter the bit width of the integer, the lowest-most decimal |
- // integer always ends in 2, 4, 6, or 8. |
- if (!num && started) { |
- if (reverse_prefix > prefix) { |
- Out(*--reverse_prefix); |
- } else { |
- Out(pad); |
- } |
- } else { |
- started = true; |
- Out((upcase ? kUpCaseHexDigits : kDownCaseHexDigits)[num%base + minint]); |
- } |
- |
- minint = 0; |
- num /= base; |
- |
- // Add padding, if requested. |
- if (padding > 0) { |
- --padding; |
- |
- // Performance optimization for when we are asked to output excessive |
- // padding, but our output buffer is limited in size. Even if we output |
- // a 64bit number in binary, we would never write more than 64 plus |
- // prefix non-padding characters. So, once this limit has been passed, |
- // any further state change can be computed arithmetically; we know that |
- // by this time, our entire final output consists of padding characters |
- // that have all already been output. |
- if (discarded > 8*sizeof(num) + prefix_length) { |
- IncrementCount(padding); |
- padding = 0; |
- } |
- } |
- } while (num || padding || (reverse_prefix > prefix)); |
- |
- // Conversion to ASCII actually resulted in the digits being in reverse |
- // order. We can't easily generate them in forward order, as we can't tell |
- // the number of characters needed until we are done converting. |
- // So, now, we reverse the string (except for the possible '-' sign). |
- char* front = buffer_ + start; |
- char* back = GetInsertionPoint(); |
- while (--back > front) { |
- char ch = *back; |
- *back = *front; |
- *front++ = ch; |
- } |
- |
- IncrementCount(discarded); |
- return !discarded; |
-} |
- |
-} // anonymous namespace |
- |
-namespace internal { |
- |
-ssize_t SafeSNPrintf(char* buf, size_t sz, const char* fmt, const Arg* args, |
- const size_t max_args) { |
- // Make sure that at least one NUL byte can be written, and that the buffer |
- // never overflows kSSizeMax. Not only does that use up most or all of the |
- // address space, it also would result in a return code that cannot be |
- // represented. |
- if (static_cast<ssize_t>(sz) < 1) { |
- return -1; |
- } else if (sz > kSSizeMax) { |
- sz = kSSizeMax; |
- } |
- |
- // Iterate over format string and interpret '%' arguments as they are |
- // encountered. |
- Buffer buffer(buf, sz); |
- size_t padding; |
- char pad; |
- for (unsigned int cur_arg = 0; *fmt && !buffer.OutOfAddressableSpace(); ) { |
- if (*fmt++ == '%') { |
- padding = 0; |
- pad = ' '; |
- char ch = *fmt++; |
- format_character_found: |
- switch (ch) { |
- case '0': case '1': case '2': case '3': case '4': |
- case '5': case '6': case '7': case '8': case '9': |
- // Found a width parameter. Convert to an integer value and store in |
- // "padding". If the leading digit is a zero, change the padding |
- // character from a space ' ' to a zero '0'. |
- pad = ch == '0' ? '0' : ' '; |
- for (;;) { |
- // The maximum allowed padding fills all the available address |
- // space and leaves just enough space to insert the trailing NUL. |
- const size_t max_padding = kSSizeMax - 1; |
- if (padding > max_padding/10 || |
- 10*padding > max_padding - (ch - '0')) { |
- DEBUG_CHECK(padding <= max_padding/10 && |
- 10*padding <= max_padding - (ch - '0')); |
- // Integer overflow detected. Skip the rest of the width until |
- // we find the format character, then do the normal error handling. |
- padding_overflow: |
- padding = max_padding; |
- while ((ch = *fmt++) >= '0' && ch <= '9') { |
- } |
- if (cur_arg < max_args) { |
- ++cur_arg; |
- } |
- goto fail_to_expand; |
- } |
- padding = 10*padding + ch - '0'; |
- if (padding > max_padding) { |
- // This doesn't happen for "sane" values of kSSizeMax. But once |
- // kSSizeMax gets smaller than about 10, our earlier range checks |
- // are incomplete. Unittests do trigger this artificial corner |
- // case. |
- DEBUG_CHECK(padding <= max_padding); |
- goto padding_overflow; |
- } |
- ch = *fmt++; |
- if (ch < '0' || ch > '9') { |
- // Reached the end of the width parameter. This is where the format |
- // character is found. |
- goto format_character_found; |
- } |
- } |
- break; |
- case 'c': { // Output an ASCII character. |
- // Check that there are arguments left to be inserted. |
- if (cur_arg >= max_args) { |
- DEBUG_CHECK(cur_arg < max_args); |
- goto fail_to_expand; |
- } |
- |
- // Check that the argument has the expected type. |
- const Arg& arg = args[cur_arg++]; |
- if (arg.type != Arg::INT && arg.type != Arg::UINT) { |
- DEBUG_CHECK(arg.type == Arg::INT || arg.type == Arg::UINT); |
- goto fail_to_expand; |
- } |
- |
- // Apply padding, if needed. |
- buffer.Pad(' ', padding, 1); |
- |
- // Convert the argument to an ASCII character and output it. |
- char ch = static_cast<char>(arg.i); |
- if (!ch) { |
- goto end_of_output_buffer; |
- } |
- buffer.Out(ch); |
- break; } |
- case 'd': // Output a possibly signed decimal value. |
- case 'o': // Output an unsigned octal value. |
- case 'x': // Output an unsigned hexadecimal value. |
- case 'X': |
- case 'p': { // Output a pointer value. |
- // Check that there are arguments left to be inserted. |
- if (cur_arg >= max_args) { |
- DEBUG_CHECK(cur_arg < max_args); |
- goto fail_to_expand; |
- } |
- |
- const Arg& arg = args[cur_arg++]; |
- int64_t i; |
- const char* prefix = NULL; |
- if (ch != 'p') { |
- // Check that the argument has the expected type. |
- if (arg.type != Arg::INT && arg.type != Arg::UINT) { |
- DEBUG_CHECK(arg.type == Arg::INT || arg.type == Arg::UINT); |
- goto fail_to_expand; |
- } |
- i = arg.i; |
- |
- if (ch != 'd') { |
- // The Arg() constructor automatically performed sign expansion on |
- // signed parameters. This is great when outputting a %d decimal |
- // number, but can result in unexpected leading 0xFF bytes when |
- // outputting a %x hexadecimal number. Mask bits, if necessary. |
- // We have to do this here, instead of in the Arg() constructor, as |
- // the Arg() constructor cannot tell whether we will output a %d |
- // or a %x. Only the latter should experience masking. |
- if (arg.width < sizeof(int64_t)) { |
- i &= (1LL << (8*arg.width)) - 1; |
- } |
- } |
- } else { |
- // Pointer values require an actual pointer or a string. |
- if (arg.type == Arg::POINTER) { |
- i = reinterpret_cast<uintptr_t>(arg.ptr); |
- } else if (arg.type == Arg::STRING) { |
- i = reinterpret_cast<uintptr_t>(arg.str); |
- } else if (arg.type == Arg::INT && arg.width == sizeof(void *) && |
- arg.i == 0) { // Allow C++'s version of NULL |
- i = 0; |
- } else { |
- DEBUG_CHECK(arg.type == Arg::POINTER || arg.type == Arg::STRING); |
- goto fail_to_expand; |
- } |
- |
- // Pointers always include the "0x" prefix. |
- prefix = "0x"; |
- } |
- |
- // Use IToASCII() to convert to ASCII representation. For decimal |
- // numbers, optionally print a sign. For hexadecimal numbers, |
- // distinguish between upper and lower case. %p addresses are always |
- // printed as upcase. Supports base 8, 10, and 16. Prints padding |
- // and/or prefixes, if so requested. |
- buffer.IToASCII(ch == 'd' && arg.type == Arg::INT, |
- ch != 'x', i, |
- ch == 'o' ? 8 : ch == 'd' ? 10 : 16, |
- pad, padding, prefix); |
- break; } |
- case 's': { |
- // Check that there are arguments left to be inserted. |
- if (cur_arg >= max_args) { |
- DEBUG_CHECK(cur_arg < max_args); |
- goto fail_to_expand; |
- } |
- |
- // Check that the argument has the expected type. |
- const Arg& arg = args[cur_arg++]; |
- const char *s; |
- if (arg.type == Arg::STRING) |
- s = arg.str ? arg.str : "<NULL>"; |
- else if (arg.type == Arg::INT && arg.width == sizeof(void *) && |
- arg.i == 0) { // Allow C++'s version of NULL |
- s = "<NULL>"; |
- } else { |
- DEBUG_CHECK(arg.type == Arg::STRING); |
- goto fail_to_expand; |
- } |
- |
- // Apply padding, if needed. This requires us to first check the |
- // length of the string that we are outputting. |
- if (padding) { |
- size_t len = 0; |
- for (const char* src = s; *src++; ) { |
- ++len; |
- } |
- buffer.Pad(' ', padding, len); |
- } |
- |
- // Printing a string involves nothing more than copying it into the |
- // output buffer and making sure we don't output more bytes than |
- // available space; Out() takes care of doing that. |
- for (const char* src = s; *src; ) { |
- buffer.Out(*src++); |
- } |
- break; } |
- case '%': |
- // Quoted percent '%' character. |
- goto copy_verbatim; |
- fail_to_expand: |
- // C++ gives us tools to do type checking -- something that snprintf() |
- // could never really do. So, whenever we see arguments that don't |
- // match up with the format string, we refuse to output them. But |
- // since we have to be extremely conservative about being async- |
- // signal-safe, we are limited in the type of error handling that we |
- // can do in production builds (in debug builds we can use |
- // DEBUG_CHECK() and hope for the best). So, all we do is pass the |
- // format string unchanged. That should eventually get the user's |
- // attention; and in the meantime, it hopefully doesn't lose too much |
- // data. |
- default: |
- // Unknown or unsupported format character. Just copy verbatim to |
- // output. |
- buffer.Out('%'); |
- DEBUG_CHECK(ch); |
- if (!ch) { |
- goto end_of_format_string; |
- } |
- buffer.Out(ch); |
- break; |
- } |
- } else { |
- copy_verbatim: |
- buffer.Out(fmt[-1]); |
- } |
- } |
- end_of_format_string: |
- end_of_output_buffer: |
- return buffer.GetCount(); |
-} |
- |
-} // namespace internal |
- |
-ssize_t SafeSNPrintf(char* buf, size_t sz, const char* fmt) { |
- // Make sure that at least one NUL byte can be written, and that the buffer |
- // never overflows kSSizeMax. Not only does that use up most or all of the |
- // address space, it also would result in a return code that cannot be |
- // represented. |
- if (static_cast<ssize_t>(sz) < 1) { |
- return -1; |
- } else if (sz > kSSizeMax) { |
- sz = kSSizeMax; |
- } |
- |
- Buffer buffer(buf, sz); |
- |
- // In the slow-path, we deal with errors by copying the contents of |
- // "fmt" unexpanded. This means, if there are no arguments passed, the |
- // SafeSPrintf() function always degenerates to a version of strncpy() that |
- // de-duplicates '%' characters. |
- const char* src = fmt; |
- for (; *src; ++src) { |
- buffer.Out(*src); |
- DEBUG_CHECK(src[0] != '%' || src[1] == '%'); |
- if (src[0] == '%' && src[1] == '%') { |
- ++src; |
- } |
- } |
- return buffer.GetCount(); |
-} |
- |
-} // namespace strings |
-} // namespace base |