Chromium Code Reviews| Index: components/ntp_snippets/user_classifier.cc |
| diff --git a/components/ntp_snippets/user_classifier.cc b/components/ntp_snippets/user_classifier.cc |
| index ef179b320a6bcba3e06b1a5530f06a9810dd557e..9e74f3a2e806376ca704f9b42c3282b0c259402c 100644 |
| --- a/components/ntp_snippets/user_classifier.cc |
| +++ b/components/ntp_snippets/user_classifier.cc |
| @@ -33,6 +33,15 @@ const double kMaxHours = 7 * 24; |
| // do not count again). |
| const double kMinHours = 0.5; |
| +// Classification constants. |
| +const double kFrequentUserScrollsAtLeastOncePerHours = 24; |
| +const double kOccasionalUserOpensNTPAtMostOncePerHours = 72; |
| + |
| +// Default lengths of the intervals for new users. |
| +const double kNTPFrequencyOfANewUserInHours = 24; |
| +const double kShowFrequencyOfANewUserInHours = 36; |
| +const double kUseFrequencyOfANewUserInHours = 48; |
| + |
| const char kHistogramAverageHoursToOpenNTP[] = |
| "NewTabPage.UserClassifier.AverageHoursToOpenNTP"; |
| const char kHistogramAverageHoursToShowSuggestions[] = |
| @@ -40,26 +49,90 @@ const char kHistogramAverageHoursToShowSuggestions[] = |
| const char kHistogramAverageHoursToUseSuggestions[] = |
| "NewTabPage.UserClassifier.AverageHoursToUseSuggestions"; |
| +// Computes the discount rate. |
| +double GetDiscountRatePerHour() { |
| + static double discount_rate_per_hour = 0.0; |
| + |
| + if (discount_rate_per_hour == 0.0) { |
| + // Compute discount_rate_per_hour such that |
| + // kDiscountFactorPerDay = 1 - e^{-discount_rate_per_hour * 24}. |
| + discount_rate_per_hour = |
| + std::log(1.0 / (1.0 - kDiscountFactorPerDay)) / 24.0; |
| + } |
| + |
| + return discount_rate_per_hour; |
| +} |
| + |
| +// Returns the new value of the metric using its |old_value|, assuming |
| +// |hours_since_last_time| hours have passed since it was last recomputed. |
| +// If |event_now| is true, the event is assumed to have happened right now, |
| +// otherwise no event is assumed to happen within the last |
| +// |hours_since_last_time| hours. |
| +double RecomputeMetric(double old_value, |
| + double hours_since_last_time, |
| + bool event_now) { |
| + // Compute and store the new discounted average according to the formula |
| + // avg_events := 1 + e^{-discount_rate_per_hour * hours_since} * avg_events. |
| + return (event_now ? 1 : 0) + |
| + std::exp(-GetDiscountRatePerHour() * hours_since_last_time) * |
| + old_value; |
| +} |
| + |
| +// Compute the number of hours between two events for the given metric value |
| +// assuming the events were equally distributed. |
| +double GetEstimateHoursBetweenEvents(const double metric_value) { |
| + // Right after the first update, the metric is equal to 1. |
| + if (metric_value <= 1) |
| + return kMaxHours; |
| + |
| + // This is the estimate with the assumption that last event happened right |
| + // now and the system is in the steady-state. Solve estimate_hours in the |
| + // steady-state equation: |
| + // metric_value = 1 + e^{-discount_rate * estimate_hours} * metric_value, |
| + // i.e. |
| + // -discount_rate * estimate_hours = log((avg_events - 1) / avg_events), |
| + // discount_rate * estimate_hours = log(avg_events / (avg_events - 1)), |
| + // estimate_hours = log(avg_events / (avg_events - 1)) / discount_rate. |
| + double estimate_hours = |
| + std::log(metric_value / (metric_value - 1)) / GetDiscountRatePerHour(); |
| + return std::max(kMinHours, std::min(kMaxHours, estimate_hours)); |
| +} |
| + |
| +// The inverse of GetEstimateHoursBetweenEvents(). |
| +double GetMetricValueForEstimateHoursBetweenEvents(double estimate_hours) { |
| + // Keep the input value within [kMinHours, kMaxHours]. |
| + estimate_hours = std::max(kMinHours, std::min(kMaxHours, estimate_hours)); |
| + |
| + // Return |metric_value| such that GetEstimateHoursBetweenEvents for |
| + // |metric_value| returns |estimate_hours|. Thus, solve |metric_value| in |
| + // metric_value = 1 + e^{-discount_rate * estimate_hours} * metric_value, |
| + // i.e. |
| + // metric_value = 1 / (1 - e^{-discount_rate * estimate_hours}). |
| + return 1.0 / (1.0 - std::exp(-GetDiscountRatePerHour() * estimate_hours)); |
| +} |
| + |
| } // namespace |
| namespace ntp_snippets { |
| UserClassifier::UserClassifier(PrefService* pref_service) |
| - : pref_service_(pref_service), |
| - // Compute discount_rate_per_hour such that |
| - // kDiscountFactorPerDay = 1 - e^{-discount_rate_per_hour * 24}. |
| - discount_rate_per_hour_(std::log(1 / (1 - kDiscountFactorPerDay)) / 24) {} |
| + : pref_service_(pref_service) {} |
| UserClassifier::~UserClassifier() {} |
| // static |
| void UserClassifier::RegisterProfilePrefs(PrefRegistrySimple* registry) { |
| + registry->RegisterDoublePref(prefs::kUserClassifierAverageNTPOpenedPerHour, |
| + GetMetricValueForEstimateHoursBetweenEvents( |
| + kNTPFrequencyOfANewUserInHours)); |
| registry->RegisterDoublePref( |
| - prefs::kUserClassifierAverageNTPOpenedPerHour, 1); |
| + prefs::kUserClassifierAverageSuggestionsShownPerHour, |
| + GetMetricValueForEstimateHoursBetweenEvents( |
| + kShowFrequencyOfANewUserInHours)); |
| registry->RegisterDoublePref( |
| - prefs::kUserClassifierAverageSuggestionsShownPerHour, 1); |
| - registry->RegisterDoublePref( |
| - prefs::kUserClassifierAverageSuggestionsUsedPerHour, 1); |
| + prefs::kUserClassifierAverageSuggestionsUsedPerHour, |
| + GetMetricValueForEstimateHoursBetweenEvents( |
| + kUseFrequencyOfANewUserInHours)); |
| registry->RegisterInt64Pref(prefs::kUserClassifierLastTimeToOpenNTP, 0); |
| registry->RegisterInt64Pref(prefs::kUserClassifierLastTimeToShowSuggestions, |
| @@ -69,78 +142,136 @@ void UserClassifier::RegisterProfilePrefs(PrefRegistrySimple* registry) { |
| } |
| void UserClassifier::OnNTPOpened() { |
| - UpdateMetricOnEvent(prefs::kUserClassifierAverageNTPOpenedPerHour, |
| - prefs::kUserClassifierLastTimeToOpenNTP); |
| + double metric = |
| + UpdateMetricOnEvent(prefs::kUserClassifierAverageNTPOpenedPerHour, |
| + prefs::kUserClassifierLastTimeToOpenNTP); |
| - double avg = GetEstimateHoursBetweenEvents( |
| - prefs::kUserClassifierAverageNTPOpenedPerHour); |
| + double avg = GetEstimateHoursBetweenEvents(metric); |
| UMA_HISTOGRAM_CUSTOM_COUNTS(kHistogramAverageHoursToOpenNTP, avg, 1, |
| kMaxHours, 50); |
| } |
| void UserClassifier::OnSuggestionsShown() { |
| - UpdateMetricOnEvent(prefs::kUserClassifierAverageSuggestionsShownPerHour, |
| - prefs::kUserClassifierLastTimeToShowSuggestions); |
| + double metric = |
| + UpdateMetricOnEvent(prefs::kUserClassifierAverageSuggestionsShownPerHour, |
| + prefs::kUserClassifierLastTimeToShowSuggestions); |
| - double avg = GetEstimateHoursBetweenEvents( |
| - prefs::kUserClassifierAverageSuggestionsShownPerHour); |
| + double avg = GetEstimateHoursBetweenEvents(metric); |
| UMA_HISTOGRAM_CUSTOM_COUNTS(kHistogramAverageHoursToShowSuggestions, avg, 1, |
| kMaxHours, 50); |
| } |
| void UserClassifier::OnSuggestionsUsed() { |
| - UpdateMetricOnEvent(prefs::kUserClassifierAverageSuggestionsUsedPerHour, |
| - prefs::kUserClassifierLastTimeToUseSuggestions); |
| + double metric = |
| + UpdateMetricOnEvent(prefs::kUserClassifierAverageSuggestionsUsedPerHour, |
| + prefs::kUserClassifierLastTimeToUseSuggestions); |
| - double avg = GetEstimateHoursBetweenEvents( |
| - prefs::kUserClassifierAverageSuggestionsUsedPerHour); |
| + double avg = GetEstimateHoursBetweenEvents(metric); |
| UMA_HISTOGRAM_CUSTOM_COUNTS(kHistogramAverageHoursToUseSuggestions, avg, 1, |
| kMaxHours, 50); |
| } |
| -void UserClassifier::UpdateMetricOnEvent(const char* metric_pref_name, |
| - const char* last_time_pref_name) { |
| +double UserClassifier::GetEstimatedAvgTimeToOpenNTP() const { |
| + double metric = |
| + GetUpToDateMetricValue(prefs::kUserClassifierAverageNTPOpenedPerHour, |
| + prefs::kUserClassifierLastTimeToOpenNTP); |
| + return GetEstimateHoursBetweenEvents(metric); |
| +} |
| + |
| +double UserClassifier::GetEstimatedAvgTimeToShowSuggestions() const { |
| + double metric = GetUpToDateMetricValue( |
| + prefs::kUserClassifierAverageSuggestionsShownPerHour, |
| + prefs::kUserClassifierLastTimeToShowSuggestions); |
| + return GetEstimateHoursBetweenEvents(metric); |
| +} |
| + |
| +double UserClassifier::GetEstimatedAvgTimeToUseSuggestions() const { |
| + double metric = GetUpToDateMetricValue( |
| + prefs::kUserClassifierAverageSuggestionsUsedPerHour, |
| + prefs::kUserClassifierLastTimeToUseSuggestions); |
| + return GetEstimateHoursBetweenEvents(metric); |
| +} |
| + |
| +UserClassifier::UserClass UserClassifier::GetUserClass() const { |
| + if (GetEstimatedAvgTimeToOpenNTP() >= |
| + kOccasionalUserOpensNTPAtMostOncePerHours) { |
| + return UserClass::OCCASIONAL_NTP_USER; |
| + } |
| + |
| + if (GetEstimatedAvgTimeToUseSuggestions() <= |
| + kFrequentUserScrollsAtLeastOncePerHours) { |
| + return UserClass::FREQUENT_NTP_USER; |
| + } |
| + |
| + return UserClass::NORMAL_NTP_USER; |
| +} |
| + |
| +std::string UserClassifier::GetUserClassDescriptionForDebugging() const { |
| + switch (GetUserClass()) { |
| + case UserClass::OCCASIONAL_NTP_USER: |
| + return "Occasional user of the NTP"; |
| + case UserClass::NORMAL_NTP_USER: |
| + return "Normal user of the NTP"; |
| + case UserClass::FREQUENT_NTP_USER: |
| + return "Frequent user of the NTP"; |
| + } |
| + NOTREACHED(); |
| + return "Unknown user class"; |
| +} |
| + |
| +void UserClassifier::ClearClassificationForDebugging() { |
| + pref_service_->ClearPref(prefs::kUserClassifierAverageNTPOpenedPerHour); |
| + pref_service_->ClearPref( |
| + prefs::kUserClassifierAverageSuggestionsShownPerHour); |
| + pref_service_->ClearPref(prefs::kUserClassifierAverageSuggestionsUsedPerHour); |
| + |
| + pref_service_->ClearPref(prefs::kUserClassifierLastTimeToOpenNTP); |
| + pref_service_->ClearPref(prefs::kUserClassifierLastTimeToShowSuggestions); |
| + pref_service_->ClearPref(prefs::kUserClassifierLastTimeToUseSuggestions); |
| +} |
| + |
| +double UserClassifier::UpdateMetricOnEvent(const char* metric_pref_name, |
| + const char* last_time_pref_name) { |
| + // The pref_service_ can be null in tests. |
| if (!pref_service_) |
| - return; |
| + return 0; |
| double hours_since_last_time = |
| std::min(kMaxHours, GetHoursSinceLastTime(last_time_pref_name)); |
| + // If the "last time" is not defined, set it. |
| + if (!hours_since_last_time) |
|
Marc Treib
2016/09/20 10:27:02
This will check for zero - is that what you want?
jkrcal
2016/09/20 13:10:13
I agree, this a bit obscure, to say the least :) N
|
| + SetLastTimeToNow(last_time_pref_name); |
| // Ignore events within the same "browsing session". |
| if (hours_since_last_time < kMinHours) |
| - return; |
| + return GetUpToDateMetricValue(metric_pref_name, last_time_pref_name); |
| + |
| SetLastTimeToNow(last_time_pref_name); |
| double avg_events_per_hour = pref_service_->GetDouble(metric_pref_name); |
| - // Compute and store the new discounted average according to the formula |
| - // avg_events := 1 + e^{-discount_rate_per_hour * hours_since} * avg_events. |
| double new_avg_events_per_hour = |
| - 1 + |
| - std::exp(discount_rate_per_hour_ * hours_since_last_time) * |
| - avg_events_per_hour; |
| + RecomputeMetric(avg_events_per_hour, hours_since_last_time, true); |
| pref_service_->SetDouble(metric_pref_name, new_avg_events_per_hour); |
| + return new_avg_events_per_hour; |
| } |
| -double UserClassifier::GetEstimateHoursBetweenEvents( |
| - const char* metric_pref_name) { |
| - double avg_events_per_hour = pref_service_->GetDouble(metric_pref_name); |
| +double UserClassifier::GetUpToDateMetricValue( |
| + const char* metric_pref_name, |
| + const char* last_time_pref_name) const { |
| + // The pref_service_ can be null in tests. |
| + if (!pref_service_) |
| + return 0; |
| - // Right after the first update, the metric is equal to 1. |
| - if (avg_events_per_hour <= 1) |
| - return kMaxHours; |
| + double hours_since_last_time = |
| + std::min(kMaxHours, GetHoursSinceLastTime(last_time_pref_name)); |
| - // This is the estimate with the assumption that last event happened right |
| - // now and the system is in the steady-state. Solve estimate_hours in the |
| - // steady-state equation: |
| - // avg_events = 1 + e^{-discount_rate * estimate_hours} * avg_events. |
| - return std::min(kMaxHours, |
| - std::log(avg_events_per_hour / (avg_events_per_hour - 1)) / |
| - discount_rate_per_hour_); |
| + double avg_events_per_hour = pref_service_->GetDouble(metric_pref_name); |
| + return RecomputeMetric(avg_events_per_hour, hours_since_last_time, true); |
| } |
| double UserClassifier::GetHoursSinceLastTime( |
| - const char* last_time_pref_name) { |
| + const char* last_time_pref_name) const { |
| if (!pref_service_->HasPrefPath(last_time_pref_name)) |
| - return DBL_MAX; |
| + return 0; |
| base::TimeDelta since_last_time = |
| base::Time::Now() - base::Time::FromInternalValue( |