OLD | NEW |
---|---|
1 // Copyright 2012 the V8 project authors. All rights reserved. | 1 // Copyright 2012 the V8 project authors. All rights reserved. |
2 // Use of this source code is governed by a BSD-style license that can be | 2 // Use of this source code is governed by a BSD-style license that can be |
3 // found in the LICENSE file. | 3 // found in the LICENSE file. |
4 | 4 |
5 // The reason we write our own hash map instead of using unordered_map in STL, | 5 // The reason we write our own hash map instead of using unordered_map in STL, |
6 // is that STL containers use a mutex pool on debug build, which will lead to | 6 // is that STL containers use a mutex pool on debug build, which will lead to |
7 // deadlock when we are using async signal handler. | 7 // deadlock when we are using async signal handler. |
8 | 8 |
9 #ifndef V8_BASE_HASHMAP_H_ | 9 #ifndef V8_BASE_HASHMAP_H_ |
10 #define V8_BASE_HASHMAP_H_ | 10 #define V8_BASE_HASHMAP_H_ |
(...skipping 37 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... | |
48 | 48 |
49 ~TemplateHashMapImpl(); | 49 ~TemplateHashMapImpl(); |
50 | 50 |
51 // If an entry with matching key is found, returns that entry. | 51 // If an entry with matching key is found, returns that entry. |
52 // Otherwise, nullptr is returned. | 52 // Otherwise, nullptr is returned. |
53 Entry* Lookup(const Key& key, uint32_t hash) const; | 53 Entry* Lookup(const Key& key, uint32_t hash) const; |
54 | 54 |
55 // If an entry with matching key is found, returns that entry. | 55 // If an entry with matching key is found, returns that entry. |
56 // If no matching entry is found, a new entry is inserted with | 56 // If no matching entry is found, a new entry is inserted with |
57 // corresponding key, key hash, and default initialized value. | 57 // corresponding key, key hash, and default initialized value. |
58 Entry* LookupOrInsert(const Key& key, uint32_t hash, | 58 Entry* LookupOrInsert(const Key& key, uint32_t hash); |
59 AllocationPolicy allocator = AllocationPolicy()); | |
60 | 59 |
61 Entry* InsertNew(const Key& key, uint32_t hash, | 60 Entry* InsertNew(const Key& key, uint32_t hash); |
62 AllocationPolicy allocator = AllocationPolicy()); | |
63 | 61 |
64 // Removes the entry with matching key. | 62 // Removes the entry with matching key. |
65 // It returns the value of the deleted entry | 63 // It returns the value of the deleted entry |
66 // or null if there is no value for such key. | 64 // or null if there is no value for such key. |
67 Value Remove(const Key& key, uint32_t hash); | 65 Value Remove(const Key& key, uint32_t hash); |
68 | 66 |
69 // Empties the hash map (occupancy() == 0). | 67 // Empties the hash map (occupancy() == 0). |
70 void Clear(); | 68 void Clear(); |
71 | 69 |
72 // The number of (non-empty) entries in the table. | 70 // The number of (non-empty) entries in the table. |
(...skipping 15 matching lines...) Expand all Loading... | |
88 Entry* Start() const; | 86 Entry* Start() const; |
89 Entry* Next(Entry* p) const; | 87 Entry* Next(Entry* p) const; |
90 | 88 |
91 // Some match functions defined for convenience. | 89 // Some match functions defined for convenience. |
92 static bool PointersMatch(typename MatchFunHelper<Key>::KeyRef key1, | 90 static bool PointersMatch(typename MatchFunHelper<Key>::KeyRef key1, |
93 typename MatchFunHelper<Key>::KeyRef key2) { | 91 typename MatchFunHelper<Key>::KeyRef key2) { |
94 return key1 == key2; | 92 return key1 == key2; |
95 } | 93 } |
96 | 94 |
97 private: | 95 private: |
96 // Helper which holds the entry array as well as the allocation policy. | |
97 // AllocationPolicy is a base class rather than a field to take advantage of | |
98 // the empty base optimisation for state-free allocators, such as the | |
99 // DefaultAllocationPolicy above. | |
rmcilroy
2016/09/19 10:55:11
Let's make this a field instead of using the empty
Leszek Swirski
2016/09/19 12:20:56
Fair enough, done.
| |
100 struct AllocatedEntryHolder : public AllocationPolicy { | |
101 Entry* values; | |
102 explicit AllocatedEntryHolder(AllocationPolicy allocator) | |
103 : AllocationPolicy(allocator) {} | |
104 }; | |
105 | |
98 MatchFun match_; | 106 MatchFun match_; |
99 Entry* map_; | 107 AllocatedEntryHolder map_; |
100 uint32_t capacity_; | 108 uint32_t capacity_; |
101 uint32_t occupancy_; | 109 uint32_t occupancy_; |
102 | 110 |
103 Entry* map_end() const { return map_ + capacity_; } | 111 Entry* map_end() const { return map_.values + capacity_; } |
104 Entry* Probe(const Key& key, uint32_t hash) const; | 112 Entry* Probe(const Key& key, uint32_t hash) const; |
105 void Initialize(uint32_t capacity, AllocationPolicy allocator); | 113 void Initialize(uint32_t capacity); |
106 void Resize(AllocationPolicy allocator); | 114 void Resize(); |
107 }; | 115 }; |
108 | 116 |
109 template <typename Key> | 117 template <typename Key> |
110 struct MatchFunHelper { | 118 struct MatchFunHelper { |
111 typedef const Key& KeyRef; | 119 typedef const Key& KeyRef; |
112 typedef bool (*Fun)(KeyRef key1, KeyRef key2); | 120 typedef bool (*Fun)(KeyRef key1, KeyRef key2); |
113 }; | 121 }; |
114 | 122 |
115 template <typename Key> | 123 template <typename Key> |
116 struct MatchFunHelper<Key*> { | 124 struct MatchFunHelper<Key*> { |
117 typedef Key* KeyRef; | 125 typedef Key* KeyRef; |
118 typedef bool (*Fun)(KeyRef key1, KeyRef key2); | 126 typedef bool (*Fun)(KeyRef key1, KeyRef key2); |
119 }; | 127 }; |
120 | 128 |
121 typedef TemplateHashMapImpl<void*, void*, DefaultAllocationPolicy> HashMap; | 129 typedef TemplateHashMapImpl<void*, void*, DefaultAllocationPolicy> HashMap; |
122 | 130 |
123 template <typename Key, typename Value, class AllocationPolicy> | 131 template <typename Key, typename Value, class AllocationPolicy> |
124 TemplateHashMapImpl<Key, Value, AllocationPolicy>::TemplateHashMapImpl( | 132 TemplateHashMapImpl<Key, Value, AllocationPolicy>::TemplateHashMapImpl( |
125 MatchFun match, uint32_t initial_capacity, AllocationPolicy allocator) { | 133 MatchFun match, uint32_t initial_capacity, AllocationPolicy allocator) |
134 : map_(allocator) { | |
126 match_ = match; | 135 match_ = match; |
127 Initialize(initial_capacity, allocator); | 136 Initialize(initial_capacity); |
128 } | 137 } |
129 | 138 |
130 template <typename Key, typename Value, class AllocationPolicy> | 139 template <typename Key, typename Value, class AllocationPolicy> |
131 TemplateHashMapImpl<Key, Value, AllocationPolicy>::~TemplateHashMapImpl() { | 140 TemplateHashMapImpl<Key, Value, AllocationPolicy>::~TemplateHashMapImpl() { |
132 AllocationPolicy::Delete(map_); | 141 map_.AllocationPolicy::Delete(map_.values); |
133 } | 142 } |
134 | 143 |
135 template <typename Key, typename Value, class AllocationPolicy> | 144 template <typename Key, typename Value, class AllocationPolicy> |
136 typename TemplateHashMapImpl<Key, Value, AllocationPolicy>::Entry* | 145 typename TemplateHashMapImpl<Key, Value, AllocationPolicy>::Entry* |
137 TemplateHashMapImpl<Key, Value, AllocationPolicy>::Lookup(const Key& key, | 146 TemplateHashMapImpl<Key, Value, AllocationPolicy>::Lookup(const Key& key, |
138 uint32_t hash) const { | 147 uint32_t hash) const { |
139 Entry* p = Probe(key, hash); | 148 Entry* p = Probe(key, hash); |
140 return p->exists() ? p : nullptr; | 149 return p->exists() ? p : nullptr; |
141 } | 150 } |
142 | 151 |
143 template <typename Key, typename Value, class AllocationPolicy> | 152 template <typename Key, typename Value, class AllocationPolicy> |
144 typename TemplateHashMapImpl<Key, Value, AllocationPolicy>::Entry* | 153 typename TemplateHashMapImpl<Key, Value, AllocationPolicy>::Entry* |
145 TemplateHashMapImpl<Key, Value, AllocationPolicy>::LookupOrInsert( | 154 TemplateHashMapImpl<Key, Value, AllocationPolicy>::LookupOrInsert( |
146 const Key& key, uint32_t hash, AllocationPolicy allocator) { | 155 const Key& key, uint32_t hash) { |
147 // Find a matching entry. | 156 // Find a matching entry. |
148 Entry* p = Probe(key, hash); | 157 Entry* p = Probe(key, hash); |
149 if (p->exists()) { | 158 if (p->exists()) { |
150 return p; | 159 return p; |
151 } | 160 } |
152 | 161 |
153 return InsertNew(key, hash, allocator); | 162 return InsertNew(key, hash); |
154 } | 163 } |
155 | 164 |
156 template <typename Key, typename Value, class AllocationPolicy> | 165 template <typename Key, typename Value, class AllocationPolicy> |
157 typename TemplateHashMapImpl<Key, Value, AllocationPolicy>::Entry* | 166 typename TemplateHashMapImpl<Key, Value, AllocationPolicy>::Entry* |
158 TemplateHashMapImpl<Key, Value, AllocationPolicy>::InsertNew( | 167 TemplateHashMapImpl<Key, Value, AllocationPolicy>::InsertNew(const Key& key, |
159 const Key& key, uint32_t hash, AllocationPolicy allocator) { | 168 uint32_t hash) { |
160 // Find a matching entry. | 169 // Find a matching entry. |
161 Entry* p = Probe(key, hash); | 170 Entry* p = Probe(key, hash); |
162 DCHECK(!p->exists()); | 171 DCHECK(!p->exists()); |
163 | 172 |
164 // No entry found; insert one. | 173 // No entry found; insert one. |
165 new (p) Entry(key, Value(), hash); | 174 new (p) Entry(key, Value(), hash); |
166 occupancy_++; | 175 occupancy_++; |
167 | 176 |
168 // Grow the map if we reached >= 80% occupancy. | 177 // Grow the map if we reached >= 80% occupancy. |
169 if (occupancy_ + occupancy_ / 4 >= capacity_) { | 178 if (occupancy_ + occupancy_ / 4 >= capacity_) { |
170 Resize(allocator); | 179 Resize(); |
171 p = Probe(key, hash); | 180 p = Probe(key, hash); |
172 } | 181 } |
173 | 182 |
174 return p; | 183 return p; |
175 } | 184 } |
176 | 185 |
177 template <typename Key, typename Value, class AllocationPolicy> | 186 template <typename Key, typename Value, class AllocationPolicy> |
178 Value TemplateHashMapImpl<Key, Value, AllocationPolicy>::Remove(const Key& key, | 187 Value TemplateHashMapImpl<Key, Value, AllocationPolicy>::Remove(const Key& key, |
179 uint32_t hash) { | 188 uint32_t hash) { |
180 // Lookup the entry for the key to remove. | 189 // Lookup the entry for the key to remove. |
(...skipping 19 matching lines...) Expand all Loading... | |
200 // This guarantees loop termination as there is at least one empty entry so | 209 // This guarantees loop termination as there is at least one empty entry so |
201 // eventually the removed entry will have an empty entry after it. | 210 // eventually the removed entry will have an empty entry after it. |
202 DCHECK(occupancy_ < capacity_); | 211 DCHECK(occupancy_ < capacity_); |
203 | 212 |
204 // p is the candidate entry to clear. q is used to scan forwards. | 213 // p is the candidate entry to clear. q is used to scan forwards. |
205 Entry* q = p; // Start at the entry to remove. | 214 Entry* q = p; // Start at the entry to remove. |
206 while (true) { | 215 while (true) { |
207 // Move q to the next entry. | 216 // Move q to the next entry. |
208 q = q + 1; | 217 q = q + 1; |
209 if (q == map_end()) { | 218 if (q == map_end()) { |
210 q = map_; | 219 q = map_.values; |
211 } | 220 } |
212 | 221 |
213 // All entries between p and q have their initial position between p and q | 222 // All entries between p and q have their initial position between p and q |
214 // and the entry p can be cleared without breaking the search for these | 223 // and the entry p can be cleared without breaking the search for these |
215 // entries. | 224 // entries. |
216 if (!q->exists()) { | 225 if (!q->exists()) { |
217 break; | 226 break; |
218 } | 227 } |
219 | 228 |
220 // Find the initial position for the entry at position q. | 229 // Find the initial position for the entry at position q. |
221 Entry* r = map_ + (q->hash & (capacity_ - 1)); | 230 Entry* r = map_.values + (q->hash & (capacity_ - 1)); |
222 | 231 |
223 // If the entry at position q has its initial position outside the range | 232 // If the entry at position q has its initial position outside the range |
224 // between p and q it can be moved forward to position p and will still be | 233 // between p and q it can be moved forward to position p and will still be |
225 // found. There is now a new candidate entry for clearing. | 234 // found. There is now a new candidate entry for clearing. |
226 if ((q > p && (r <= p || r > q)) || (q < p && (r <= p && r > q))) { | 235 if ((q > p && (r <= p || r > q)) || (q < p && (r <= p && r > q))) { |
227 *p = *q; | 236 *p = *q; |
228 p = q; | 237 p = q; |
229 } | 238 } |
230 } | 239 } |
231 | 240 |
232 // Clear the entry which is allowed to en emptied. | 241 // Clear the entry which is allowed to en emptied. |
233 p->clear(); | 242 p->clear(); |
234 occupancy_--; | 243 occupancy_--; |
235 return value; | 244 return value; |
236 } | 245 } |
237 | 246 |
238 template <typename Key, typename Value, class AllocationPolicy> | 247 template <typename Key, typename Value, class AllocationPolicy> |
239 void TemplateHashMapImpl<Key, Value, AllocationPolicy>::Clear() { | 248 void TemplateHashMapImpl<Key, Value, AllocationPolicy>::Clear() { |
240 // Mark all entries as empty. | 249 // Mark all entries as empty. |
241 const Entry* end = map_end(); | 250 const Entry* end = map_end(); |
242 for (Entry* p = map_; p < end; p++) { | 251 for (Entry* p = map_.values; p < end; p++) { |
243 p->clear(); | 252 p->clear(); |
244 } | 253 } |
245 occupancy_ = 0; | 254 occupancy_ = 0; |
246 } | 255 } |
247 | 256 |
248 template <typename Key, typename Value, class AllocationPolicy> | 257 template <typename Key, typename Value, class AllocationPolicy> |
249 typename TemplateHashMapImpl<Key, Value, AllocationPolicy>::Entry* | 258 typename TemplateHashMapImpl<Key, Value, AllocationPolicy>::Entry* |
250 TemplateHashMapImpl<Key, Value, AllocationPolicy>::Start() const { | 259 TemplateHashMapImpl<Key, Value, AllocationPolicy>::Start() const { |
251 return Next(map_ - 1); | 260 return Next(map_.values - 1); |
252 } | 261 } |
253 | 262 |
254 template <typename Key, typename Value, class AllocationPolicy> | 263 template <typename Key, typename Value, class AllocationPolicy> |
255 typename TemplateHashMapImpl<Key, Value, AllocationPolicy>::Entry* | 264 typename TemplateHashMapImpl<Key, Value, AllocationPolicy>::Entry* |
256 TemplateHashMapImpl<Key, Value, AllocationPolicy>::Next(Entry* p) const { | 265 TemplateHashMapImpl<Key, Value, AllocationPolicy>::Next(Entry* p) const { |
257 const Entry* end = map_end(); | 266 const Entry* end = map_end(); |
258 DCHECK(map_ - 1 <= p && p < end); | 267 DCHECK(map_.values - 1 <= p && p < end); |
259 for (p++; p < end; p++) { | 268 for (p++; p < end; p++) { |
260 if (p->exists()) { | 269 if (p->exists()) { |
261 return p; | 270 return p; |
262 } | 271 } |
263 } | 272 } |
264 return nullptr; | 273 return nullptr; |
265 } | 274 } |
266 | 275 |
267 template <typename Key, typename Value, class AllocationPolicy> | 276 template <typename Key, typename Value, class AllocationPolicy> |
268 typename TemplateHashMapImpl<Key, Value, AllocationPolicy>::Entry* | 277 typename TemplateHashMapImpl<Key, Value, AllocationPolicy>::Entry* |
269 TemplateHashMapImpl<Key, Value, AllocationPolicy>::Probe(const Key& key, | 278 TemplateHashMapImpl<Key, Value, AllocationPolicy>::Probe(const Key& key, |
270 uint32_t hash) const { | 279 uint32_t hash) const { |
271 DCHECK(base::bits::IsPowerOfTwo32(capacity_)); | 280 DCHECK(base::bits::IsPowerOfTwo32(capacity_)); |
272 Entry* p = map_ + (hash & (capacity_ - 1)); | 281 Entry* p = map_.values + (hash & (capacity_ - 1)); |
273 const Entry* end = map_end(); | 282 const Entry* end = map_end(); |
274 DCHECK(map_ <= p && p < end); | 283 DCHECK(map_.values <= p && p < end); |
275 | 284 |
276 DCHECK(occupancy_ < capacity_); // Guarantees loop termination. | 285 DCHECK(occupancy_ < capacity_); // Guarantees loop termination. |
277 while (p->exists() && (hash != p->hash || !match_(key, p->key))) { | 286 while (p->exists() && (hash != p->hash || !match_(key, p->key))) { |
278 p++; | 287 p++; |
279 if (p >= end) { | 288 if (p >= end) { |
280 p = map_; | 289 p = map_.values; |
281 } | 290 } |
282 } | 291 } |
283 | 292 |
284 return p; | 293 return p; |
285 } | 294 } |
286 | 295 |
287 template <typename Key, typename Value, class AllocationPolicy> | 296 template <typename Key, typename Value, class AllocationPolicy> |
288 void TemplateHashMapImpl<Key, Value, AllocationPolicy>::Initialize( | 297 void TemplateHashMapImpl<Key, Value, AllocationPolicy>::Initialize( |
289 uint32_t capacity, AllocationPolicy allocator) { | 298 uint32_t capacity) { |
290 DCHECK(base::bits::IsPowerOfTwo32(capacity)); | 299 DCHECK(base::bits::IsPowerOfTwo32(capacity)); |
291 map_ = reinterpret_cast<Entry*>(allocator.New(capacity * sizeof(Entry))); | 300 map_.values = reinterpret_cast<Entry*>( |
292 if (map_ == nullptr) { | 301 map_.AllocationPolicy::New(capacity * sizeof(Entry))); |
302 if (map_.values == nullptr) { | |
293 FATAL("Out of memory: HashMap::Initialize"); | 303 FATAL("Out of memory: HashMap::Initialize"); |
294 return; | 304 return; |
295 } | 305 } |
296 capacity_ = capacity; | 306 capacity_ = capacity; |
297 Clear(); | 307 Clear(); |
298 } | 308 } |
299 | 309 |
300 template <typename Key, typename Value, class AllocationPolicy> | 310 template <typename Key, typename Value, class AllocationPolicy> |
301 void TemplateHashMapImpl<Key, Value, AllocationPolicy>::Resize( | 311 void TemplateHashMapImpl<Key, Value, AllocationPolicy>::Resize() { |
302 AllocationPolicy allocator) { | 312 Entry* map = map_.values; |
303 Entry* map = map_; | |
304 uint32_t n = occupancy_; | 313 uint32_t n = occupancy_; |
305 | 314 |
306 // Allocate larger map. | 315 // Allocate larger map. |
307 Initialize(capacity_ * 2, allocator); | 316 Initialize(capacity_ * 2); |
308 | 317 |
309 // Rehash all current entries. | 318 // Rehash all current entries. |
310 for (Entry* p = map; n > 0; p++) { | 319 for (Entry* p = map; n > 0; p++) { |
311 if (p->exists()) { | 320 if (p->exists()) { |
312 Entry* entry = LookupOrInsert(p->key, p->hash, allocator); | 321 Entry* entry = LookupOrInsert(p->key, p->hash); |
313 entry->value = p->value; | 322 entry->value = p->value; |
314 n--; | 323 n--; |
315 } | 324 } |
316 } | 325 } |
317 | 326 |
318 // Delete old map. | 327 // Delete old map. |
319 AllocationPolicy::Delete(map); | 328 AllocationPolicy::Delete(map); |
320 } | 329 } |
321 | 330 |
322 // A hash map for pointer keys and values with an STL-like interface. | 331 // A hash map for pointer keys and values with an STL-like interface. |
(...skipping 34 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... | |
357 void*, void*, AllocationPolicy>::MatchFun match, | 366 void*, void*, AllocationPolicy>::MatchFun match, |
358 AllocationPolicy allocator = AllocationPolicy()) | 367 AllocationPolicy allocator = AllocationPolicy()) |
359 : TemplateHashMapImpl<void*, void*, AllocationPolicy>( | 368 : TemplateHashMapImpl<void*, void*, AllocationPolicy>( |
360 match, | 369 match, |
361 TemplateHashMapImpl<void*, void*, | 370 TemplateHashMapImpl<void*, void*, |
362 AllocationPolicy>::kDefaultHashMapCapacity, | 371 AllocationPolicy>::kDefaultHashMapCapacity, |
363 allocator) {} | 372 allocator) {} |
364 | 373 |
365 Iterator begin() const { return Iterator(this, this->Start()); } | 374 Iterator begin() const { return Iterator(this, this->Start()); } |
366 Iterator end() const { return Iterator(this, nullptr); } | 375 Iterator end() const { return Iterator(this, nullptr); } |
367 Iterator find(Key* key, bool insert = false, | 376 Iterator find(Key* key, bool insert = false) { |
368 AllocationPolicy allocator = AllocationPolicy()) { | |
369 if (insert) { | 377 if (insert) { |
370 return Iterator(this, this->LookupOrInsert(key, key->Hash(), allocator)); | 378 return Iterator(this, this->LookupOrInsert(key, key->Hash())); |
371 } | 379 } |
372 return Iterator(this, this->Lookup(key, key->Hash())); | 380 return Iterator(this, this->Lookup(key, key->Hash())); |
373 } | 381 } |
374 }; | 382 }; |
375 | 383 |
376 } // namespace base | 384 } // namespace base |
377 } // namespace v8 | 385 } // namespace v8 |
378 | 386 |
379 #endif // V8_BASE_HASHMAP_H_ | 387 #endif // V8_BASE_HASHMAP_H_ |
OLD | NEW |