| Index: srtp/crypto/hash/sha1.c
 | 
| diff --git a/srtp/crypto/hash/sha1.c b/srtp/crypto/hash/sha1.c
 | 
| deleted file mode 100644
 | 
| index c200437b72a9f4b7644a4e13481b49a72112077c..0000000000000000000000000000000000000000
 | 
| --- a/srtp/crypto/hash/sha1.c
 | 
| +++ /dev/null
 | 
| @@ -1,408 +0,0 @@
 | 
| -/*
 | 
| - * sha1.c
 | 
| - *
 | 
| - * an implementation of the Secure Hash Algorithm v.1 (SHA-1),
 | 
| - * specified in FIPS 180-1
 | 
| - *
 | 
| - * David A. McGrew
 | 
| - * Cisco Systems, Inc.
 | 
| - */
 | 
| -
 | 
| -/*
 | 
| - *	
 | 
| - * Copyright (c) 2001-2006, Cisco Systems, Inc.
 | 
| - * All rights reserved.
 | 
| - * 
 | 
| - * Redistribution and use in source and binary forms, with or without
 | 
| - * modification, are permitted provided that the following conditions
 | 
| - * are met:
 | 
| - * 
 | 
| - *   Redistributions of source code must retain the above copyright
 | 
| - *   notice, this list of conditions and the following disclaimer.
 | 
| - * 
 | 
| - *   Redistributions in binary form must reproduce the above
 | 
| - *   copyright notice, this list of conditions and the following
 | 
| - *   disclaimer in the documentation and/or other materials provided
 | 
| - *   with the distribution.
 | 
| - * 
 | 
| - *   Neither the name of the Cisco Systems, Inc. nor the names of its
 | 
| - *   contributors may be used to endorse or promote products derived
 | 
| - *   from this software without specific prior written permission.
 | 
| - * 
 | 
| - * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 | 
| - * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 | 
| - * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
 | 
| - * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
 | 
| - * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
 | 
| - * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
 | 
| - * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
 | 
| - * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 | 
| - * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
 | 
| - * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 | 
| - * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
 | 
| - * OF THE POSSIBILITY OF SUCH DAMAGE.
 | 
| - *
 | 
| - */
 | 
| -
 | 
| -#ifdef HAVE_CONFIG_H
 | 
| -    #include <config.h>
 | 
| -#endif
 | 
| -
 | 
| -#include "sha1.h"
 | 
| -
 | 
| -debug_module_t mod_sha1 = {
 | 
| -  0,                 /* debugging is off by default */
 | 
| -  "sha-1"            /* printable module name       */
 | 
| -};
 | 
| -
 | 
| -/* SN == Rotate left N bits */
 | 
| -#define S1(X)  ((X << 1)  | (X >> 31))
 | 
| -#define S5(X)  ((X << 5)  | (X >> 27))
 | 
| -#define S30(X) ((X << 30) | (X >> 2))
 | 
| -
 | 
| -#define f0(B,C,D) ((B & C) | (~B & D))              
 | 
| -#define f1(B,C,D) (B ^ C ^ D)
 | 
| -#define f2(B,C,D) ((B & C) | (B & D) | (C & D))
 | 
| -#define f3(B,C,D) (B ^ C ^ D)
 | 
| -
 | 
| -/* 
 | 
| - * nota bene: the variable K0 appears in the curses library, so we 
 | 
| - * give longer names to these variables to avoid spurious warnings 
 | 
| - * on systems that uses curses
 | 
| - */
 | 
| -
 | 
| -uint32_t SHA_K0 = 0x5A827999;   /* Kt for 0  <= t <= 19 */
 | 
| -uint32_t SHA_K1 = 0x6ED9EBA1;   /* Kt for 20 <= t <= 39 */
 | 
| -uint32_t SHA_K2 = 0x8F1BBCDC;   /* Kt for 40 <= t <= 59 */
 | 
| -uint32_t SHA_K3 = 0xCA62C1D6;   /* Kt for 60 <= t <= 79 */
 | 
| -
 | 
| -void
 | 
| -sha1(const uint8_t *msg,  int octets_in_msg, uint32_t hash_value[5]) {
 | 
| -  sha1_ctx_t ctx;
 | 
| -
 | 
| -  sha1_init(&ctx);
 | 
| -  sha1_update(&ctx, msg, octets_in_msg);
 | 
| -  sha1_final(&ctx, hash_value);
 | 
| -
 | 
| -}
 | 
| -
 | 
| -/*
 | 
| - *  sha1_core(M, H) computes the core compression function, where M is
 | 
| - *  the next part of the message (in network byte order) and H is the
 | 
| - *  intermediate state { H0, H1, ...} (in host byte order)
 | 
| - *
 | 
| - *  this function does not do any of the padding required in the
 | 
| - *  complete SHA1 function
 | 
| - *
 | 
| - *  this function is used in the SEAL 3.0 key setup routines
 | 
| - *  (crypto/cipher/seal.c)
 | 
| - */
 | 
| -
 | 
| -void
 | 
| -sha1_core(const uint32_t M[16], uint32_t hash_value[5]) {
 | 
| -  uint32_t H0;
 | 
| -  uint32_t H1;
 | 
| -  uint32_t H2;
 | 
| -  uint32_t H3;
 | 
| -  uint32_t H4;
 | 
| -  uint32_t W[80];
 | 
| -  uint32_t A, B, C, D, E, TEMP;
 | 
| -  int t;
 | 
| -
 | 
| -  /* copy hash_value into H0, H1, H2, H3, H4 */
 | 
| -  H0 = hash_value[0];
 | 
| -  H1 = hash_value[1];
 | 
| -  H2 = hash_value[2];
 | 
| -  H3 = hash_value[3];
 | 
| -  H4 = hash_value[4];
 | 
| -
 | 
| -  /* copy/xor message into array */
 | 
| -
 | 
| -  W[0]  = be32_to_cpu(M[0]);
 | 
| -  W[1]  = be32_to_cpu(M[1]);
 | 
| -  W[2]  = be32_to_cpu(M[2]);
 | 
| -  W[3]  = be32_to_cpu(M[3]);
 | 
| -  W[4]  = be32_to_cpu(M[4]);
 | 
| -  W[5]  = be32_to_cpu(M[5]);
 | 
| -  W[6]  = be32_to_cpu(M[6]);
 | 
| -  W[7]  = be32_to_cpu(M[7]);
 | 
| -  W[8]  = be32_to_cpu(M[8]);
 | 
| -  W[9]  = be32_to_cpu(M[9]);
 | 
| -  W[10] = be32_to_cpu(M[10]);
 | 
| -  W[11] = be32_to_cpu(M[11]);
 | 
| -  W[12] = be32_to_cpu(M[12]);
 | 
| -  W[13] = be32_to_cpu(M[13]);
 | 
| -  W[14] = be32_to_cpu(M[14]);
 | 
| -  W[15] = be32_to_cpu(M[15]);
 | 
| -  TEMP = W[13] ^ W[8]  ^ W[2]  ^ W[0];  W[16] = S1(TEMP);
 | 
| -  TEMP = W[14] ^ W[9]  ^ W[3]  ^ W[1];  W[17] = S1(TEMP);
 | 
| -  TEMP = W[15] ^ W[10] ^ W[4]  ^ W[2];  W[18] = S1(TEMP);
 | 
| -  TEMP = W[16] ^ W[11] ^ W[5]  ^ W[3];  W[19] = S1(TEMP);
 | 
| -  TEMP = W[17] ^ W[12] ^ W[6]  ^ W[4];  W[20] = S1(TEMP);
 | 
| -  TEMP = W[18] ^ W[13] ^ W[7]  ^ W[5];  W[21] = S1(TEMP);
 | 
| -  TEMP = W[19] ^ W[14] ^ W[8]  ^ W[6];  W[22] = S1(TEMP);
 | 
| -  TEMP = W[20] ^ W[15] ^ W[9]  ^ W[7];  W[23] = S1(TEMP);
 | 
| -  TEMP = W[21] ^ W[16] ^ W[10] ^ W[8];  W[24] = S1(TEMP);
 | 
| -  TEMP = W[22] ^ W[17] ^ W[11] ^ W[9];  W[25] = S1(TEMP);
 | 
| -  TEMP = W[23] ^ W[18] ^ W[12] ^ W[10]; W[26] = S1(TEMP);
 | 
| -  TEMP = W[24] ^ W[19] ^ W[13] ^ W[11]; W[27] = S1(TEMP);
 | 
| -  TEMP = W[25] ^ W[20] ^ W[14] ^ W[12]; W[28] = S1(TEMP);
 | 
| -  TEMP = W[26] ^ W[21] ^ W[15] ^ W[13]; W[29] = S1(TEMP);
 | 
| -  TEMP = W[27] ^ W[22] ^ W[16] ^ W[14]; W[30] = S1(TEMP);
 | 
| -  TEMP = W[28] ^ W[23] ^ W[17] ^ W[15]; W[31] = S1(TEMP);
 | 
| -
 | 
| -  /* process the remainder of the array */
 | 
| -  for (t=32; t < 80; t++) {
 | 
| -    TEMP = W[t-3] ^ W[t-8] ^ W[t-14] ^ W[t-16];
 | 
| -    W[t] = S1(TEMP);      
 | 
| -  }
 | 
| -
 | 
| -  A = H0; B = H1; C = H2; D = H3; E = H4;
 | 
| -
 | 
| -  for (t=0; t < 20; t++) {
 | 
| -    TEMP = S5(A) + f0(B,C,D) + E + W[t] + SHA_K0;
 | 
| -    E = D; D = C; C = S30(B); B = A; A = TEMP;
 | 
| -  }
 | 
| -  for (   ; t < 40; t++) {
 | 
| -    TEMP = S5(A) + f1(B,C,D) + E + W[t] + SHA_K1;
 | 
| -    E = D; D = C; C = S30(B); B = A; A = TEMP;
 | 
| -  }
 | 
| -  for (   ; t < 60; t++) {
 | 
| -    TEMP = S5(A) + f2(B,C,D) + E + W[t] + SHA_K2;
 | 
| -    E = D; D = C; C = S30(B); B = A; A = TEMP;
 | 
| -  }
 | 
| -  for (   ; t < 80; t++) {
 | 
| -    TEMP = S5(A) + f3(B,C,D) + E + W[t] + SHA_K3;
 | 
| -    E = D; D = C; C = S30(B); B = A; A = TEMP;
 | 
| -  }
 | 
| -
 | 
| -  hash_value[0] = H0 + A;
 | 
| -  hash_value[1] = H1 + B;
 | 
| -  hash_value[2] = H2 + C;
 | 
| -  hash_value[3] = H3 + D;
 | 
| -  hash_value[4] = H4 + E;
 | 
| -
 | 
| -  return;
 | 
| -}
 | 
| -
 | 
| -void
 | 
| -sha1_init(sha1_ctx_t *ctx) {
 | 
| -
 | 
| -  /* initialize state vector */
 | 
| -  ctx->H[0] = 0x67452301;
 | 
| -  ctx->H[1] = 0xefcdab89;
 | 
| -  ctx->H[2] = 0x98badcfe;
 | 
| -  ctx->H[3] = 0x10325476;
 | 
| -  ctx->H[4] = 0xc3d2e1f0;
 | 
| -
 | 
| -  /* indicate that message buffer is empty */
 | 
| -  ctx->octets_in_buffer = 0;
 | 
| -
 | 
| -  /* reset message bit-count to zero */
 | 
| -  ctx->num_bits_in_msg = 0;
 | 
| -
 | 
| -}
 | 
| -
 | 
| -void
 | 
| -sha1_update(sha1_ctx_t *ctx, const uint8_t *msg, int octets_in_msg) {
 | 
| -  int i;
 | 
| -  uint8_t *buf = (uint8_t *)ctx->M;
 | 
| -
 | 
| -  /* update message bit-count */
 | 
| -  ctx->num_bits_in_msg += octets_in_msg * 8;
 | 
| -
 | 
| -  /* loop over 16-word blocks of M */
 | 
| -  while (octets_in_msg > 0) {
 | 
| -
 | 
| -    if (octets_in_msg + ctx->octets_in_buffer >= 64) {
 | 
| -
 | 
| -      /* 
 | 
| -       * copy words of M into msg buffer until that buffer is full,
 | 
| -       * converting them into host byte order as needed
 | 
| -       */
 | 
| -      octets_in_msg -= (64 - ctx->octets_in_buffer);
 | 
| -      for (i=ctx->octets_in_buffer; i < 64; i++) 
 | 
| -	buf[i] = *msg++;
 | 
| -      ctx->octets_in_buffer = 0;
 | 
| -
 | 
| -      /* process a whole block */
 | 
| -
 | 
| -      debug_print(mod_sha1, "(update) running sha1_core()", NULL);
 | 
| -
 | 
| -      sha1_core(ctx->M, ctx->H);
 | 
| -
 | 
| -    } else {
 | 
| -
 | 
| -      debug_print(mod_sha1, "(update) not running sha1_core()", NULL);
 | 
| -
 | 
| -      for (i=ctx->octets_in_buffer; 
 | 
| -	   i < (ctx->octets_in_buffer + octets_in_msg); i++)
 | 
| -	buf[i] = *msg++;
 | 
| -      ctx->octets_in_buffer += octets_in_msg;
 | 
| -      octets_in_msg = 0;
 | 
| -    }
 | 
| -
 | 
| -  }
 | 
| -
 | 
| -}
 | 
| -
 | 
| -/*
 | 
| - * sha1_final(ctx, output) computes the result for ctx and copies it
 | 
| - * into the twenty octets located at *output
 | 
| - */
 | 
| -
 | 
| -void
 | 
| -sha1_final(sha1_ctx_t *ctx, uint32_t *output) {
 | 
| -  uint32_t A, B, C, D, E, TEMP;
 | 
| -  uint32_t W[80];  
 | 
| -  int i, t;
 | 
| -
 | 
| -  /*
 | 
| -   * process the remaining octets_in_buffer, padding and terminating as
 | 
| -   * necessary
 | 
| -   */
 | 
| -  {
 | 
| -    int tail = ctx->octets_in_buffer % 4;
 | 
| -
 | 
| -    /* copy/xor message into array */
 | 
| -    for (i=0; i < (ctx->octets_in_buffer+3)/4; i++) 
 | 
| -      W[i]  = be32_to_cpu(ctx->M[i]);
 | 
| -
 | 
| -    /* set the high bit of the octet immediately following the message */
 | 
| -    switch (tail) {
 | 
| -    case (3):
 | 
| -      W[i-1] = (be32_to_cpu(ctx->M[i-1]) & 0xffffff00) | 0x80;
 | 
| -      W[i] = 0x0;
 | 
| -      break;
 | 
| -    case (2):      
 | 
| -      W[i-1] = (be32_to_cpu(ctx->M[i-1]) & 0xffff0000) | 0x8000;
 | 
| -      W[i] = 0x0;
 | 
| -      break;
 | 
| -    case (1):
 | 
| -      W[i-1] = (be32_to_cpu(ctx->M[i-1]) & 0xff000000) | 0x800000;
 | 
| -      W[i] = 0x0;
 | 
| -      break;
 | 
| -    case (0):
 | 
| -      W[i] = 0x80000000;
 | 
| -      break;
 | 
| -    }
 | 
| -
 | 
| -    /* zeroize remaining words */
 | 
| -    for (i++   ; i < 15; i++)
 | 
| -      W[i] = 0x0;
 | 
| -
 | 
| -    /* 
 | 
| -     * if there is room at the end of the word array, then set the
 | 
| -     * last word to the bit-length of the message; otherwise, set that
 | 
| -     * word to zero and then we need to do one more run of the
 | 
| -     * compression algo.
 | 
| -     */
 | 
| -    if (ctx->octets_in_buffer < 56) 
 | 
| -      W[15] = ctx->num_bits_in_msg;
 | 
| -    else if (ctx->octets_in_buffer < 60)
 | 
| -      W[15] = 0x0;
 | 
| -
 | 
| -    /* process the word array */
 | 
| -    for (t=16; t < 80; t++) {
 | 
| -      TEMP = W[t-3] ^ W[t-8] ^ W[t-14] ^ W[t-16];
 | 
| -      W[t] = S1(TEMP);
 | 
| -    }
 | 
| -
 | 
| -    A = ctx->H[0]; 
 | 
| -    B = ctx->H[1]; 
 | 
| -    C = ctx->H[2]; 
 | 
| -    D = ctx->H[3]; 
 | 
| -    E = ctx->H[4];
 | 
| -
 | 
| -    for (t=0; t < 20; t++) {
 | 
| -      TEMP = S5(A) + f0(B,C,D) + E + W[t] + SHA_K0;
 | 
| -      E = D; D = C; C = S30(B); B = A; A = TEMP;
 | 
| -    }
 | 
| -    for (   ; t < 40; t++) {
 | 
| -      TEMP = S5(A) + f1(B,C,D) + E + W[t] + SHA_K1;
 | 
| -      E = D; D = C; C = S30(B); B = A; A = TEMP;
 | 
| -    }
 | 
| -    for (   ; t < 60; t++) {
 | 
| -      TEMP = S5(A) + f2(B,C,D) + E + W[t] + SHA_K2;
 | 
| -      E = D; D = C; C = S30(B); B = A; A = TEMP;
 | 
| -    }
 | 
| -    for (   ; t < 80; t++) {
 | 
| -      TEMP = S5(A) + f3(B,C,D) + E + W[t] + SHA_K3;
 | 
| -      E = D; D = C; C = S30(B); B = A; A = TEMP;
 | 
| -    }
 | 
| -
 | 
| -    ctx->H[0] += A;
 | 
| -    ctx->H[1] += B;
 | 
| -    ctx->H[2] += C;
 | 
| -    ctx->H[3] += D;
 | 
| -    ctx->H[4] += E;
 | 
| -
 | 
| -  }
 | 
| -
 | 
| -  debug_print(mod_sha1, "(final) running sha1_core()", NULL);
 | 
| -
 | 
| -  if (ctx->octets_in_buffer >= 56) {
 | 
| -
 | 
| -    debug_print(mod_sha1, "(final) running sha1_core() again", NULL);
 | 
| -
 | 
| -    /* we need to do one final run of the compression algo */
 | 
| -
 | 
| -    /* 
 | 
| -     * set initial part of word array to zeros, and set the 
 | 
| -     * final part to the number of bits in the message
 | 
| -     */
 | 
| -    for (i=0; i < 15; i++)
 | 
| -      W[i] = 0x0;
 | 
| -    W[15] = ctx->num_bits_in_msg;
 | 
| -
 | 
| -    /* process the word array */
 | 
| -    for (t=16; t < 80; t++) {
 | 
| -      TEMP = W[t-3] ^ W[t-8] ^ W[t-14] ^ W[t-16];
 | 
| -      W[t] = S1(TEMP);
 | 
| -    }
 | 
| -
 | 
| -    A = ctx->H[0]; 
 | 
| -    B = ctx->H[1]; 
 | 
| -    C = ctx->H[2]; 
 | 
| -    D = ctx->H[3]; 
 | 
| -    E = ctx->H[4];
 | 
| -
 | 
| -    for (t=0; t < 20; t++) {
 | 
| -      TEMP = S5(A) + f0(B,C,D) + E + W[t] + SHA_K0;
 | 
| -      E = D; D = C; C = S30(B); B = A; A = TEMP;
 | 
| -    }
 | 
| -    for (   ; t < 40; t++) {
 | 
| -      TEMP = S5(A) + f1(B,C,D) + E + W[t] + SHA_K1;
 | 
| -      E = D; D = C; C = S30(B); B = A; A = TEMP;
 | 
| -    }
 | 
| -    for (   ; t < 60; t++) {
 | 
| -      TEMP = S5(A) + f2(B,C,D) + E + W[t] + SHA_K2;
 | 
| -      E = D; D = C; C = S30(B); B = A; A = TEMP;
 | 
| -    }
 | 
| -    for (   ; t < 80; t++) {
 | 
| -      TEMP = S5(A) + f3(B,C,D) + E + W[t] + SHA_K3;
 | 
| -      E = D; D = C; C = S30(B); B = A; A = TEMP;
 | 
| -    }
 | 
| -
 | 
| -    ctx->H[0] += A;
 | 
| -    ctx->H[1] += B;
 | 
| -    ctx->H[2] += C;
 | 
| -    ctx->H[3] += D;
 | 
| -    ctx->H[4] += E;
 | 
| -  }
 | 
| -
 | 
| -  /* copy result into output buffer */
 | 
| -  output[0] = be32_to_cpu(ctx->H[0]);
 | 
| -  output[1] = be32_to_cpu(ctx->H[1]);
 | 
| -  output[2] = be32_to_cpu(ctx->H[2]);
 | 
| -  output[3] = be32_to_cpu(ctx->H[3]);
 | 
| -  output[4] = be32_to_cpu(ctx->H[4]);
 | 
| -
 | 
| -  /* indicate that message buffer in context is empty */
 | 
| -  ctx->octets_in_buffer = 0;
 | 
| -
 | 
| -  return;
 | 
| -}
 | 
| -
 | 
| -
 | 
| -
 | 
| 
 |