| OLD | NEW |
| (Empty) |
| 1 /* | |
| 2 * aes_tables.c | |
| 3 * | |
| 4 * generate tables for the AES cipher | |
| 5 * | |
| 6 * David A. McGrew | |
| 7 * Cisco Systems, Inc. | |
| 8 */ | |
| 9 /* | |
| 10 * | |
| 11 * Copyright(c) 2001-2006 Cisco Systems, Inc. | |
| 12 * All rights reserved. | |
| 13 * | |
| 14 * Redistribution and use in source and binary forms, with or without | |
| 15 * modification, are permitted provided that the following conditions | |
| 16 * are met: | |
| 17 * | |
| 18 * Redistributions of source code must retain the above copyright | |
| 19 * notice, this list of conditions and the following disclaimer. | |
| 20 * | |
| 21 * Redistributions in binary form must reproduce the above | |
| 22 * copyright notice, this list of conditions and the following | |
| 23 * disclaimer in the documentation and/or other materials provided | |
| 24 * with the distribution. | |
| 25 * | |
| 26 * Neither the name of the Cisco Systems, Inc. nor the names of its | |
| 27 * contributors may be used to endorse or promote products derived | |
| 28 * from this software without specific prior written permission. | |
| 29 * | |
| 30 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS | |
| 31 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT | |
| 32 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS | |
| 33 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE | |
| 34 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, | |
| 35 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES | |
| 36 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR | |
| 37 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | |
| 38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, | |
| 39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | |
| 40 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED | |
| 41 * OF THE POSSIBILITY OF SUCH DAMAGE. | |
| 42 * | |
| 43 */ | |
| 44 | |
| 45 #ifdef HAVE_CONFIG_H | |
| 46 #include <config.h> | |
| 47 #endif | |
| 48 | |
| 49 #include <stdio.h> | |
| 50 #include "gf2_8.h" | |
| 51 #include "crypto_math.h" | |
| 52 | |
| 53 | |
| 54 unsigned char aes_sbox[256]; | |
| 55 | |
| 56 unsigned char aes_inv_sbox[256]; | |
| 57 | |
| 58 uint32_t T0[256], T1[256], T2[256], T3[256], T4[256]; | |
| 59 | |
| 60 | |
| 61 #define AES_INVERSE_TEST 0 /* set to 1 to test forward/backwards aes */ | |
| 62 | |
| 63 /* functions for precomputing AES values */ | |
| 64 | |
| 65 /* | |
| 66 * A[] is the 8 x 8 binary matrix (represented as an array of columns, | |
| 67 * where each column is an octet) which defines the affine | |
| 68 * transformation used in the AES substitution table (Section | |
| 69 * 4.2.1 of the spec). | |
| 70 */ | |
| 71 | |
| 72 uint8_t A[8] = { 31, 62, 124, 248, 241, 227, 199, 143 }; | |
| 73 | |
| 74 /* | |
| 75 * b is the 8 bit vector (represented as an octet) used in the affine | |
| 76 * transform described above. | |
| 77 */ | |
| 78 | |
| 79 uint8_t b = 99; | |
| 80 | |
| 81 | |
| 82 void | |
| 83 aes_init_sbox(void) { | |
| 84 unsigned int i; | |
| 85 uint8_t x; | |
| 86 | |
| 87 for (i=0; i < 256; i++) { | |
| 88 x = gf2_8_compute_inverse((gf2_8)i); | |
| 89 x = A_times_x_plus_b(A, x, b); | |
| 90 aes_sbox[i] = x; | |
| 91 aes_inv_sbox[x] = i; | |
| 92 } | |
| 93 } | |
| 94 | |
| 95 void | |
| 96 aes_compute_tables(void) { | |
| 97 int i; | |
| 98 uint32_t x1, x2, x3; | |
| 99 v32_t tmp; | |
| 100 | |
| 101 /* initialize substitution table */ | |
| 102 aes_init_sbox(); | |
| 103 | |
| 104 /* combine sbox with linear operations to form 8-bit to 32-bit tables */ | |
| 105 for (i=0; i < 256; i++) { | |
| 106 x1 = aes_sbox[i]; | |
| 107 x2 = gf2_8_shift(x1); | |
| 108 x3 = x2 ^ x1; | |
| 109 | |
| 110 tmp.v8[0] = x2; | |
| 111 tmp.v8[1] = x1; | |
| 112 tmp.v8[2] = x1; | |
| 113 tmp.v8[3] = x3; | |
| 114 T0[i] = tmp.value; | |
| 115 | |
| 116 tmp.v8[0] = x3; | |
| 117 tmp.v8[1] = x2; | |
| 118 tmp.v8[2] = x1; | |
| 119 tmp.v8[3] = x1; | |
| 120 T1[i] = tmp.value; | |
| 121 | |
| 122 tmp.v8[0] = x1; | |
| 123 tmp.v8[1] = x3; | |
| 124 tmp.v8[2] = x2; | |
| 125 tmp.v8[3] = x1; | |
| 126 T2[i] = tmp.value; | |
| 127 | |
| 128 tmp.v8[0] = x1; | |
| 129 tmp.v8[1] = x1; | |
| 130 tmp.v8[2] = x3; | |
| 131 tmp.v8[3] = x2; | |
| 132 T3[i] = tmp.value; | |
| 133 | |
| 134 } | |
| 135 } | |
| 136 | |
| 137 | |
| 138 /* | |
| 139 * the tables U0, U1, U2, U3 implement the aes operations invSubBytes, | |
| 140 * invMixColumns, and invShiftRows | |
| 141 */ | |
| 142 | |
| 143 uint32_t U0[256], U1[256], U2[256], U3[256], U4[256]; | |
| 144 | |
| 145 extern uint8_t aes_inv_sbox[256]; | |
| 146 | |
| 147 void | |
| 148 aes_compute_inv_tables(void) { | |
| 149 int i; | |
| 150 uint8_t x, xe, x9, xd, xb; | |
| 151 v32_t tmp; | |
| 152 | |
| 153 /* combine sbox with linear operations to form 8-bit to 32-bit tables */ | |
| 154 for (i=0; i < 256; i++) { | |
| 155 x = aes_inv_sbox[i]; | |
| 156 | |
| 157 xe = gf2_8_multiply(0x0e, x); | |
| 158 x9 = gf2_8_multiply(0x09, x); | |
| 159 xd = gf2_8_multiply(0x0d, x); | |
| 160 xb = gf2_8_multiply(0x0b, x); | |
| 161 | |
| 162 tmp.v8[0] = xe; | |
| 163 tmp.v8[1] = x9; | |
| 164 tmp.v8[2] = xd; | |
| 165 tmp.v8[3] = xb; | |
| 166 U0[i] = tmp.value; | |
| 167 | |
| 168 tmp.v8[0] = xb; | |
| 169 tmp.v8[1] = xe; | |
| 170 tmp.v8[2] = x9; | |
| 171 tmp.v8[3] = xd; | |
| 172 U1[i] = tmp.value; | |
| 173 | |
| 174 tmp.v8[0] = xd; | |
| 175 tmp.v8[1] = xb; | |
| 176 tmp.v8[2] = xe; | |
| 177 tmp.v8[3] = x9; | |
| 178 U2[i] = tmp.value; | |
| 179 | |
| 180 tmp.v8[0] = x9; | |
| 181 tmp.v8[1] = xd; | |
| 182 tmp.v8[2] = xb; | |
| 183 tmp.v8[3] = xe; | |
| 184 U3[i] = tmp.value; | |
| 185 | |
| 186 tmp.v8[0] = tmp.v8[1] = tmp.v8[2] = tmp.v8[3] = x; | |
| 187 U4[i] = tmp.value; | |
| 188 } | |
| 189 } | |
| 190 | |
| 191 | |
| 192 /* | |
| 193 * aes_test_inverse() returns err_status_ok if aes | |
| 194 * encryption and decryption are true inverses of each other, and | |
| 195 * returns err_status_algo_fail otherwise | |
| 196 */ | |
| 197 | |
| 198 #include "err.h" | |
| 199 | |
| 200 err_status_t | |
| 201 aes_test_inverse(void); | |
| 202 | |
| 203 #define TABLES_32BIT 1 | |
| 204 | |
| 205 int | |
| 206 main(void) { | |
| 207 int i; | |
| 208 | |
| 209 aes_init_sbox(); | |
| 210 aes_compute_inv_tables(); | |
| 211 | |
| 212 #if TABLES_32BIT | |
| 213 printf("uint32_t U0 = {"); | |
| 214 for (i=0; i < 256; i++) { | |
| 215 if ((i % 4) == 0) | |
| 216 printf("\n"); | |
| 217 printf("0x%0x, ", U0[i]); | |
| 218 } | |
| 219 printf("\n}\n"); | |
| 220 | |
| 221 printf("uint32_t U1 = {"); | |
| 222 for (i=0; i < 256; i++) { | |
| 223 if ((i % 4) == 0) | |
| 224 printf("\n"); | |
| 225 printf("0x%x, ", U1[i]); | |
| 226 } | |
| 227 printf("\n}\n"); | |
| 228 | |
| 229 printf("uint32_t U2 = {"); | |
| 230 for (i=0; i < 256; i++) { | |
| 231 if ((i % 4) == 0) | |
| 232 printf("\n"); | |
| 233 printf("0x%x, ", U2[i]); | |
| 234 } | |
| 235 printf("\n}\n"); | |
| 236 | |
| 237 printf("uint32_t U3 = {"); | |
| 238 for (i=0; i < 256; i++) { | |
| 239 if ((i % 4) == 0) | |
| 240 printf("\n"); | |
| 241 printf("0x%x, ", U3[i]); | |
| 242 } | |
| 243 printf("\n}\n"); | |
| 244 | |
| 245 printf("uint32_t U4 = {"); | |
| 246 for (i=0; i < 256; i++) { | |
| 247 if ((i % 4) == 0) | |
| 248 printf("\n"); | |
| 249 printf("0x%x, ", U4[i]); | |
| 250 } | |
| 251 printf("\n}\n"); | |
| 252 | |
| 253 #else | |
| 254 | |
| 255 printf("uint32_t U0 = {"); | |
| 256 for (i=0; i < 256; i++) { | |
| 257 if ((i % 4) == 0) | |
| 258 printf("\n"); | |
| 259 printf("0x%lx, ", U0[i]); | |
| 260 } | |
| 261 printf("\n}\n"); | |
| 262 | |
| 263 printf("uint32_t U1 = {"); | |
| 264 for (i=0; i < 256; i++) { | |
| 265 if ((i % 4) == 0) | |
| 266 printf("\n"); | |
| 267 printf("0x%lx, ", U1[i]); | |
| 268 } | |
| 269 printf("\n}\n"); | |
| 270 | |
| 271 printf("uint32_t U2 = {"); | |
| 272 for (i=0; i < 256; i++) { | |
| 273 if ((i % 4) == 0) | |
| 274 printf("\n"); | |
| 275 printf("0x%lx, ", U2[i]); | |
| 276 } | |
| 277 printf("\n}\n"); | |
| 278 | |
| 279 printf("uint32_t U3 = {"); | |
| 280 for (i=0; i < 256; i++) { | |
| 281 if ((i % 4) == 0) | |
| 282 printf("\n"); | |
| 283 printf("0x%lx, ", U3[i]); | |
| 284 } | |
| 285 printf("\n}\n"); | |
| 286 | |
| 287 printf("uint32_t U4 = {"); | |
| 288 for (i=0; i < 256; i++) { | |
| 289 if ((i % 4) == 0) | |
| 290 printf("\n"); | |
| 291 printf("0x%lx, ", U4[i]); | |
| 292 } | |
| 293 printf("\n}\n"); | |
| 294 | |
| 295 | |
| 296 #endif /* TABLES_32BIT */ | |
| 297 | |
| 298 | |
| 299 #if AES_INVERSE_TEST | |
| 300 /* | |
| 301 * test that aes_encrypt and aes_decrypt are actually | |
| 302 * inverses of each other | |
| 303 */ | |
| 304 | |
| 305 printf("aes inverse test: "); | |
| 306 if (aes_test_inverse() == err_status_ok) | |
| 307 printf("passed\n"); | |
| 308 else { | |
| 309 printf("failed\n"); | |
| 310 exit(1); | |
| 311 } | |
| 312 #endif | |
| 313 | |
| 314 return 0; | |
| 315 } | |
| 316 | |
| 317 #if AES_INVERSE_TEST | |
| 318 | |
| 319 err_status_t | |
| 320 aes_test_inverse(void) { | |
| 321 v128_t x, y; | |
| 322 aes_expanded_key_t expanded_key, decrypt_key; | |
| 323 uint8_t plaintext[16] = { | |
| 324 0x00, 0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77, | |
| 325 0x88, 0x99, 0xaa, 0xbb, 0xcc, 0xdd, 0xee, 0xff | |
| 326 }; | |
| 327 uint8_t key[16] = { | |
| 328 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, | |
| 329 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f | |
| 330 }; | |
| 331 v128_t k; | |
| 332 v128_set_to_zero(&x); | |
| 333 | |
| 334 v128_copy_octet_string(&k, key); | |
| 335 v128_copy_octet_string(&x, plaintext); | |
| 336 aes_expand_encryption_key(k, expanded_key); | |
| 337 aes_expand_decryption_key(k, decrypt_key); | |
| 338 aes_encrypt(&x, expanded_key); | |
| 339 aes_decrypt(&x, decrypt_key); | |
| 340 | |
| 341 /* compare to expected value then report */ | |
| 342 v128_copy_octet_string(&y, plaintext); | |
| 343 | |
| 344 if (v128_is_eq(&x, &y)) | |
| 345 return err_status_ok; | |
| 346 return err_status_algo_fail; | |
| 347 | |
| 348 } | |
| 349 | |
| 350 #endif | |
| OLD | NEW |