OLD | NEW |
| (Empty) |
1 // Copyright 2012 the V8 project authors. All rights reserved. | |
2 // Use of this source code is governed by a BSD-style license that can be | |
3 // found in the LICENSE file. | |
4 | |
5 #include "src/zone.h" | |
6 | |
7 #include <cstring> | |
8 | |
9 #include "src/v8.h" | |
10 | |
11 #ifdef V8_USE_ADDRESS_SANITIZER | |
12 #include <sanitizer/asan_interface.h> | |
13 #endif // V8_USE_ADDRESS_SANITIZER | |
14 | |
15 namespace v8 { | |
16 namespace internal { | |
17 | |
18 namespace { | |
19 | |
20 #if V8_USE_ADDRESS_SANITIZER | |
21 | |
22 const size_t kASanRedzoneBytes = 24; // Must be a multiple of 8. | |
23 | |
24 #else | |
25 | |
26 #define ASAN_POISON_MEMORY_REGION(start, size) \ | |
27 do { \ | |
28 USE(start); \ | |
29 USE(size); \ | |
30 } while (false) | |
31 | |
32 #define ASAN_UNPOISON_MEMORY_REGION(start, size) \ | |
33 do { \ | |
34 USE(start); \ | |
35 USE(size); \ | |
36 } while (false) | |
37 | |
38 const size_t kASanRedzoneBytes = 0; | |
39 | |
40 #endif // V8_USE_ADDRESS_SANITIZER | |
41 | |
42 } // namespace | |
43 | |
44 | |
45 // Segments represent chunks of memory: They have starting address | |
46 // (encoded in the this pointer) and a size in bytes. Segments are | |
47 // chained together forming a LIFO structure with the newest segment | |
48 // available as segment_head_. Segments are allocated using malloc() | |
49 // and de-allocated using free(). | |
50 | |
51 class Segment { | |
52 public: | |
53 void Initialize(Segment* next, size_t size) { | |
54 next_ = next; | |
55 size_ = size; | |
56 } | |
57 | |
58 Segment* next() const { return next_; } | |
59 void clear_next() { next_ = nullptr; } | |
60 | |
61 size_t size() const { return size_; } | |
62 size_t capacity() const { return size_ - sizeof(Segment); } | |
63 | |
64 Address start() const { return address(sizeof(Segment)); } | |
65 Address end() const { return address(size_); } | |
66 | |
67 private: | |
68 // Computes the address of the nth byte in this segment. | |
69 Address address(size_t n) const { return Address(this) + n; } | |
70 | |
71 Segment* next_; | |
72 size_t size_; | |
73 }; | |
74 | |
75 Zone::Zone(base::AccountingAllocator* allocator) | |
76 : allocation_size_(0), | |
77 segment_bytes_allocated_(0), | |
78 position_(0), | |
79 limit_(0), | |
80 allocator_(allocator), | |
81 segment_head_(nullptr) {} | |
82 | |
83 Zone::~Zone() { | |
84 DeleteAll(); | |
85 DeleteKeptSegment(); | |
86 | |
87 DCHECK(segment_bytes_allocated_ == 0); | |
88 } | |
89 | |
90 | |
91 void* Zone::New(size_t size) { | |
92 // Round up the requested size to fit the alignment. | |
93 size = RoundUp(size, kAlignment); | |
94 | |
95 // If the allocation size is divisible by 8 then we return an 8-byte aligned | |
96 // address. | |
97 if (kPointerSize == 4 && kAlignment == 4) { | |
98 position_ += ((~size) & 4) & (reinterpret_cast<intptr_t>(position_) & 4); | |
99 } else { | |
100 DCHECK(kAlignment >= kPointerSize); | |
101 } | |
102 | |
103 // Check if the requested size is available without expanding. | |
104 Address result = position_; | |
105 | |
106 const size_t size_with_redzone = size + kASanRedzoneBytes; | |
107 const uintptr_t limit = reinterpret_cast<uintptr_t>(limit_); | |
108 const uintptr_t position = reinterpret_cast<uintptr_t>(position_); | |
109 // position_ > limit_ can be true after the alignment correction above. | |
110 if (limit < position || size_with_redzone > limit - position) { | |
111 result = NewExpand(size_with_redzone); | |
112 } else { | |
113 position_ += size_with_redzone; | |
114 } | |
115 | |
116 Address redzone_position = result + size; | |
117 DCHECK(redzone_position + kASanRedzoneBytes == position_); | |
118 ASAN_POISON_MEMORY_REGION(redzone_position, kASanRedzoneBytes); | |
119 | |
120 // Check that the result has the proper alignment and return it. | |
121 DCHECK(IsAddressAligned(result, kAlignment, 0)); | |
122 allocation_size_ += size; | |
123 return reinterpret_cast<void*>(result); | |
124 } | |
125 | |
126 | |
127 void Zone::DeleteAll() { | |
128 #ifdef DEBUG | |
129 // Constant byte value used for zapping dead memory in debug mode. | |
130 static const unsigned char kZapDeadByte = 0xcd; | |
131 #endif | |
132 | |
133 // Find a segment with a suitable size to keep around. | |
134 Segment* keep = nullptr; | |
135 // Traverse the chained list of segments, zapping (in debug mode) | |
136 // and freeing every segment except the one we wish to keep. | |
137 for (Segment* current = segment_head_; current;) { | |
138 Segment* next = current->next(); | |
139 if (!keep && current->size() <= kMaximumKeptSegmentSize) { | |
140 // Unlink the segment we wish to keep from the list. | |
141 keep = current; | |
142 keep->clear_next(); | |
143 } else { | |
144 size_t size = current->size(); | |
145 #ifdef DEBUG | |
146 // Un-poison first so the zapping doesn't trigger ASan complaints. | |
147 ASAN_UNPOISON_MEMORY_REGION(current, size); | |
148 // Zap the entire current segment (including the header). | |
149 memset(current, kZapDeadByte, size); | |
150 #endif | |
151 DeleteSegment(current, size); | |
152 } | |
153 current = next; | |
154 } | |
155 | |
156 // If we have found a segment we want to keep, we must recompute the | |
157 // variables 'position' and 'limit' to prepare for future allocate | |
158 // attempts. Otherwise, we must clear the position and limit to | |
159 // force a new segment to be allocated on demand. | |
160 if (keep) { | |
161 Address start = keep->start(); | |
162 position_ = RoundUp(start, kAlignment); | |
163 limit_ = keep->end(); | |
164 // Un-poison so we can re-use the segment later. | |
165 ASAN_UNPOISON_MEMORY_REGION(start, keep->capacity()); | |
166 #ifdef DEBUG | |
167 // Zap the contents of the kept segment (but not the header). | |
168 memset(start, kZapDeadByte, keep->capacity()); | |
169 #endif | |
170 } else { | |
171 position_ = limit_ = 0; | |
172 } | |
173 | |
174 allocation_size_ = 0; | |
175 // Update the head segment to be the kept segment (if any). | |
176 segment_head_ = keep; | |
177 } | |
178 | |
179 | |
180 void Zone::DeleteKeptSegment() { | |
181 #ifdef DEBUG | |
182 // Constant byte value used for zapping dead memory in debug mode. | |
183 static const unsigned char kZapDeadByte = 0xcd; | |
184 #endif | |
185 | |
186 DCHECK(segment_head_ == nullptr || segment_head_->next() == nullptr); | |
187 if (segment_head_ != nullptr) { | |
188 size_t size = segment_head_->size(); | |
189 #ifdef DEBUG | |
190 // Un-poison first so the zapping doesn't trigger ASan complaints. | |
191 ASAN_UNPOISON_MEMORY_REGION(segment_head_, size); | |
192 // Zap the entire kept segment (including the header). | |
193 memset(segment_head_, kZapDeadByte, size); | |
194 #endif | |
195 DeleteSegment(segment_head_, size); | |
196 segment_head_ = nullptr; | |
197 } | |
198 | |
199 DCHECK(segment_bytes_allocated_ == 0); | |
200 } | |
201 | |
202 | |
203 // Creates a new segment, sets it size, and pushes it to the front | |
204 // of the segment chain. Returns the new segment. | |
205 Segment* Zone::NewSegment(size_t size) { | |
206 Segment* result = reinterpret_cast<Segment*>(allocator_->Allocate(size)); | |
207 segment_bytes_allocated_ += size; | |
208 if (result != nullptr) { | |
209 result->Initialize(segment_head_, size); | |
210 segment_head_ = result; | |
211 } | |
212 return result; | |
213 } | |
214 | |
215 | |
216 // Deletes the given segment. Does not touch the segment chain. | |
217 void Zone::DeleteSegment(Segment* segment, size_t size) { | |
218 segment_bytes_allocated_ -= size; | |
219 allocator_->Free(segment, size); | |
220 } | |
221 | |
222 | |
223 Address Zone::NewExpand(size_t size) { | |
224 // Make sure the requested size is already properly aligned and that | |
225 // there isn't enough room in the Zone to satisfy the request. | |
226 DCHECK_EQ(size, RoundDown(size, kAlignment)); | |
227 DCHECK(limit_ < position_ || | |
228 reinterpret_cast<uintptr_t>(limit_) - | |
229 reinterpret_cast<uintptr_t>(position_) < | |
230 size); | |
231 | |
232 // Compute the new segment size. We use a 'high water mark' | |
233 // strategy, where we increase the segment size every time we expand | |
234 // except that we employ a maximum segment size when we delete. This | |
235 // is to avoid excessive malloc() and free() overhead. | |
236 Segment* head = segment_head_; | |
237 const size_t old_size = (head == nullptr) ? 0 : head->size(); | |
238 static const size_t kSegmentOverhead = sizeof(Segment) + kAlignment; | |
239 const size_t new_size_no_overhead = size + (old_size << 1); | |
240 size_t new_size = kSegmentOverhead + new_size_no_overhead; | |
241 const size_t min_new_size = kSegmentOverhead + size; | |
242 // Guard against integer overflow. | |
243 if (new_size_no_overhead < size || new_size < kSegmentOverhead) { | |
244 V8::FatalProcessOutOfMemory("Zone"); | |
245 return nullptr; | |
246 } | |
247 if (new_size < kMinimumSegmentSize) { | |
248 new_size = kMinimumSegmentSize; | |
249 } else if (new_size > kMaximumSegmentSize) { | |
250 // Limit the size of new segments to avoid growing the segment size | |
251 // exponentially, thus putting pressure on contiguous virtual address space. | |
252 // All the while making sure to allocate a segment large enough to hold the | |
253 // requested size. | |
254 new_size = Max(min_new_size, kMaximumSegmentSize); | |
255 } | |
256 if (new_size > INT_MAX) { | |
257 V8::FatalProcessOutOfMemory("Zone"); | |
258 return nullptr; | |
259 } | |
260 Segment* segment = NewSegment(new_size); | |
261 if (segment == nullptr) { | |
262 V8::FatalProcessOutOfMemory("Zone"); | |
263 return nullptr; | |
264 } | |
265 | |
266 // Recompute 'top' and 'limit' based on the new segment. | |
267 Address result = RoundUp(segment->start(), kAlignment); | |
268 position_ = result + size; | |
269 // Check for address overflow. | |
270 // (Should not happen since the segment is guaranteed to accomodate | |
271 // size bytes + header and alignment padding) | |
272 DCHECK(reinterpret_cast<uintptr_t>(position_) >= | |
273 reinterpret_cast<uintptr_t>(result)); | |
274 limit_ = segment->end(); | |
275 DCHECK(position_ <= limit_); | |
276 return result; | |
277 } | |
278 | |
279 } // namespace internal | |
280 } // namespace v8 | |
OLD | NEW |