| OLD | NEW |
| (Empty) |
| 1 // Copyright 2012 the V8 project authors. All rights reserved. | |
| 2 // Use of this source code is governed by a BSD-style license that can be | |
| 3 // found in the LICENSE file. | |
| 4 | |
| 5 #include "src/zone.h" | |
| 6 | |
| 7 #include <cstring> | |
| 8 | |
| 9 #include "src/v8.h" | |
| 10 | |
| 11 #ifdef V8_USE_ADDRESS_SANITIZER | |
| 12 #include <sanitizer/asan_interface.h> | |
| 13 #endif // V8_USE_ADDRESS_SANITIZER | |
| 14 | |
| 15 namespace v8 { | |
| 16 namespace internal { | |
| 17 | |
| 18 namespace { | |
| 19 | |
| 20 #if V8_USE_ADDRESS_SANITIZER | |
| 21 | |
| 22 const size_t kASanRedzoneBytes = 24; // Must be a multiple of 8. | |
| 23 | |
| 24 #else | |
| 25 | |
| 26 #define ASAN_POISON_MEMORY_REGION(start, size) \ | |
| 27 do { \ | |
| 28 USE(start); \ | |
| 29 USE(size); \ | |
| 30 } while (false) | |
| 31 | |
| 32 #define ASAN_UNPOISON_MEMORY_REGION(start, size) \ | |
| 33 do { \ | |
| 34 USE(start); \ | |
| 35 USE(size); \ | |
| 36 } while (false) | |
| 37 | |
| 38 const size_t kASanRedzoneBytes = 0; | |
| 39 | |
| 40 #endif // V8_USE_ADDRESS_SANITIZER | |
| 41 | |
| 42 } // namespace | |
| 43 | |
| 44 | |
| 45 // Segments represent chunks of memory: They have starting address | |
| 46 // (encoded in the this pointer) and a size in bytes. Segments are | |
| 47 // chained together forming a LIFO structure with the newest segment | |
| 48 // available as segment_head_. Segments are allocated using malloc() | |
| 49 // and de-allocated using free(). | |
| 50 | |
| 51 class Segment { | |
| 52 public: | |
| 53 void Initialize(Segment* next, size_t size) { | |
| 54 next_ = next; | |
| 55 size_ = size; | |
| 56 } | |
| 57 | |
| 58 Segment* next() const { return next_; } | |
| 59 void clear_next() { next_ = nullptr; } | |
| 60 | |
| 61 size_t size() const { return size_; } | |
| 62 size_t capacity() const { return size_ - sizeof(Segment); } | |
| 63 | |
| 64 Address start() const { return address(sizeof(Segment)); } | |
| 65 Address end() const { return address(size_); } | |
| 66 | |
| 67 private: | |
| 68 // Computes the address of the nth byte in this segment. | |
| 69 Address address(size_t n) const { return Address(this) + n; } | |
| 70 | |
| 71 Segment* next_; | |
| 72 size_t size_; | |
| 73 }; | |
| 74 | |
| 75 Zone::Zone(base::AccountingAllocator* allocator) | |
| 76 : allocation_size_(0), | |
| 77 segment_bytes_allocated_(0), | |
| 78 position_(0), | |
| 79 limit_(0), | |
| 80 allocator_(allocator), | |
| 81 segment_head_(nullptr) {} | |
| 82 | |
| 83 Zone::~Zone() { | |
| 84 DeleteAll(); | |
| 85 DeleteKeptSegment(); | |
| 86 | |
| 87 DCHECK(segment_bytes_allocated_ == 0); | |
| 88 } | |
| 89 | |
| 90 | |
| 91 void* Zone::New(size_t size) { | |
| 92 // Round up the requested size to fit the alignment. | |
| 93 size = RoundUp(size, kAlignment); | |
| 94 | |
| 95 // If the allocation size is divisible by 8 then we return an 8-byte aligned | |
| 96 // address. | |
| 97 if (kPointerSize == 4 && kAlignment == 4) { | |
| 98 position_ += ((~size) & 4) & (reinterpret_cast<intptr_t>(position_) & 4); | |
| 99 } else { | |
| 100 DCHECK(kAlignment >= kPointerSize); | |
| 101 } | |
| 102 | |
| 103 // Check if the requested size is available without expanding. | |
| 104 Address result = position_; | |
| 105 | |
| 106 const size_t size_with_redzone = size + kASanRedzoneBytes; | |
| 107 const uintptr_t limit = reinterpret_cast<uintptr_t>(limit_); | |
| 108 const uintptr_t position = reinterpret_cast<uintptr_t>(position_); | |
| 109 // position_ > limit_ can be true after the alignment correction above. | |
| 110 if (limit < position || size_with_redzone > limit - position) { | |
| 111 result = NewExpand(size_with_redzone); | |
| 112 } else { | |
| 113 position_ += size_with_redzone; | |
| 114 } | |
| 115 | |
| 116 Address redzone_position = result + size; | |
| 117 DCHECK(redzone_position + kASanRedzoneBytes == position_); | |
| 118 ASAN_POISON_MEMORY_REGION(redzone_position, kASanRedzoneBytes); | |
| 119 | |
| 120 // Check that the result has the proper alignment and return it. | |
| 121 DCHECK(IsAddressAligned(result, kAlignment, 0)); | |
| 122 allocation_size_ += size; | |
| 123 return reinterpret_cast<void*>(result); | |
| 124 } | |
| 125 | |
| 126 | |
| 127 void Zone::DeleteAll() { | |
| 128 #ifdef DEBUG | |
| 129 // Constant byte value used for zapping dead memory in debug mode. | |
| 130 static const unsigned char kZapDeadByte = 0xcd; | |
| 131 #endif | |
| 132 | |
| 133 // Find a segment with a suitable size to keep around. | |
| 134 Segment* keep = nullptr; | |
| 135 // Traverse the chained list of segments, zapping (in debug mode) | |
| 136 // and freeing every segment except the one we wish to keep. | |
| 137 for (Segment* current = segment_head_; current;) { | |
| 138 Segment* next = current->next(); | |
| 139 if (!keep && current->size() <= kMaximumKeptSegmentSize) { | |
| 140 // Unlink the segment we wish to keep from the list. | |
| 141 keep = current; | |
| 142 keep->clear_next(); | |
| 143 } else { | |
| 144 size_t size = current->size(); | |
| 145 #ifdef DEBUG | |
| 146 // Un-poison first so the zapping doesn't trigger ASan complaints. | |
| 147 ASAN_UNPOISON_MEMORY_REGION(current, size); | |
| 148 // Zap the entire current segment (including the header). | |
| 149 memset(current, kZapDeadByte, size); | |
| 150 #endif | |
| 151 DeleteSegment(current, size); | |
| 152 } | |
| 153 current = next; | |
| 154 } | |
| 155 | |
| 156 // If we have found a segment we want to keep, we must recompute the | |
| 157 // variables 'position' and 'limit' to prepare for future allocate | |
| 158 // attempts. Otherwise, we must clear the position and limit to | |
| 159 // force a new segment to be allocated on demand. | |
| 160 if (keep) { | |
| 161 Address start = keep->start(); | |
| 162 position_ = RoundUp(start, kAlignment); | |
| 163 limit_ = keep->end(); | |
| 164 // Un-poison so we can re-use the segment later. | |
| 165 ASAN_UNPOISON_MEMORY_REGION(start, keep->capacity()); | |
| 166 #ifdef DEBUG | |
| 167 // Zap the contents of the kept segment (but not the header). | |
| 168 memset(start, kZapDeadByte, keep->capacity()); | |
| 169 #endif | |
| 170 } else { | |
| 171 position_ = limit_ = 0; | |
| 172 } | |
| 173 | |
| 174 allocation_size_ = 0; | |
| 175 // Update the head segment to be the kept segment (if any). | |
| 176 segment_head_ = keep; | |
| 177 } | |
| 178 | |
| 179 | |
| 180 void Zone::DeleteKeptSegment() { | |
| 181 #ifdef DEBUG | |
| 182 // Constant byte value used for zapping dead memory in debug mode. | |
| 183 static const unsigned char kZapDeadByte = 0xcd; | |
| 184 #endif | |
| 185 | |
| 186 DCHECK(segment_head_ == nullptr || segment_head_->next() == nullptr); | |
| 187 if (segment_head_ != nullptr) { | |
| 188 size_t size = segment_head_->size(); | |
| 189 #ifdef DEBUG | |
| 190 // Un-poison first so the zapping doesn't trigger ASan complaints. | |
| 191 ASAN_UNPOISON_MEMORY_REGION(segment_head_, size); | |
| 192 // Zap the entire kept segment (including the header). | |
| 193 memset(segment_head_, kZapDeadByte, size); | |
| 194 #endif | |
| 195 DeleteSegment(segment_head_, size); | |
| 196 segment_head_ = nullptr; | |
| 197 } | |
| 198 | |
| 199 DCHECK(segment_bytes_allocated_ == 0); | |
| 200 } | |
| 201 | |
| 202 | |
| 203 // Creates a new segment, sets it size, and pushes it to the front | |
| 204 // of the segment chain. Returns the new segment. | |
| 205 Segment* Zone::NewSegment(size_t size) { | |
| 206 Segment* result = reinterpret_cast<Segment*>(allocator_->Allocate(size)); | |
| 207 segment_bytes_allocated_ += size; | |
| 208 if (result != nullptr) { | |
| 209 result->Initialize(segment_head_, size); | |
| 210 segment_head_ = result; | |
| 211 } | |
| 212 return result; | |
| 213 } | |
| 214 | |
| 215 | |
| 216 // Deletes the given segment. Does not touch the segment chain. | |
| 217 void Zone::DeleteSegment(Segment* segment, size_t size) { | |
| 218 segment_bytes_allocated_ -= size; | |
| 219 allocator_->Free(segment, size); | |
| 220 } | |
| 221 | |
| 222 | |
| 223 Address Zone::NewExpand(size_t size) { | |
| 224 // Make sure the requested size is already properly aligned and that | |
| 225 // there isn't enough room in the Zone to satisfy the request. | |
| 226 DCHECK_EQ(size, RoundDown(size, kAlignment)); | |
| 227 DCHECK(limit_ < position_ || | |
| 228 reinterpret_cast<uintptr_t>(limit_) - | |
| 229 reinterpret_cast<uintptr_t>(position_) < | |
| 230 size); | |
| 231 | |
| 232 // Compute the new segment size. We use a 'high water mark' | |
| 233 // strategy, where we increase the segment size every time we expand | |
| 234 // except that we employ a maximum segment size when we delete. This | |
| 235 // is to avoid excessive malloc() and free() overhead. | |
| 236 Segment* head = segment_head_; | |
| 237 const size_t old_size = (head == nullptr) ? 0 : head->size(); | |
| 238 static const size_t kSegmentOverhead = sizeof(Segment) + kAlignment; | |
| 239 const size_t new_size_no_overhead = size + (old_size << 1); | |
| 240 size_t new_size = kSegmentOverhead + new_size_no_overhead; | |
| 241 const size_t min_new_size = kSegmentOverhead + size; | |
| 242 // Guard against integer overflow. | |
| 243 if (new_size_no_overhead < size || new_size < kSegmentOverhead) { | |
| 244 V8::FatalProcessOutOfMemory("Zone"); | |
| 245 return nullptr; | |
| 246 } | |
| 247 if (new_size < kMinimumSegmentSize) { | |
| 248 new_size = kMinimumSegmentSize; | |
| 249 } else if (new_size > kMaximumSegmentSize) { | |
| 250 // Limit the size of new segments to avoid growing the segment size | |
| 251 // exponentially, thus putting pressure on contiguous virtual address space. | |
| 252 // All the while making sure to allocate a segment large enough to hold the | |
| 253 // requested size. | |
| 254 new_size = Max(min_new_size, kMaximumSegmentSize); | |
| 255 } | |
| 256 if (new_size > INT_MAX) { | |
| 257 V8::FatalProcessOutOfMemory("Zone"); | |
| 258 return nullptr; | |
| 259 } | |
| 260 Segment* segment = NewSegment(new_size); | |
| 261 if (segment == nullptr) { | |
| 262 V8::FatalProcessOutOfMemory("Zone"); | |
| 263 return nullptr; | |
| 264 } | |
| 265 | |
| 266 // Recompute 'top' and 'limit' based on the new segment. | |
| 267 Address result = RoundUp(segment->start(), kAlignment); | |
| 268 position_ = result + size; | |
| 269 // Check for address overflow. | |
| 270 // (Should not happen since the segment is guaranteed to accomodate | |
| 271 // size bytes + header and alignment padding) | |
| 272 DCHECK(reinterpret_cast<uintptr_t>(position_) >= | |
| 273 reinterpret_cast<uintptr_t>(result)); | |
| 274 limit_ = segment->end(); | |
| 275 DCHECK(position_ <= limit_); | |
| 276 return result; | |
| 277 } | |
| 278 | |
| 279 } // namespace internal | |
| 280 } // namespace v8 | |
| OLD | NEW |