| Index: tracing/tracing/base/statistics_test.html
|
| diff --git a/tracing/tracing/base/statistics_test.html b/tracing/tracing/base/statistics_test.html
|
| index 0f9349924f7442db09639d275e6f1983df0b06de..5e039fd80c1dcb46a7f48d9cf7481860697cad44 100644
|
| --- a/tracing/tracing/base/statistics_test.html
|
| +++ b/tracing/tracing/base/statistics_test.html
|
| @@ -8,6 +8,9 @@ found in the LICENSE file.
|
| <script>
|
| 'use strict';
|
|
|
| +// TODO(charliea): Remove:
|
| +/* eslint-disable catapult-camelcase */
|
| +
|
| tr.b.unittest.testSuite(function() {
|
| var Statistics = tr.b.Statistics;
|
|
|
| @@ -508,20 +511,20 @@ tr.b.unittest.testSuite(function() {
|
| // x < 0.01
|
| var sampleA = [1, 2, 2.1, 2.2, 2, 1];
|
| var sampleB = [12, 13, 13.1, 13.2, 13, 12];
|
| - var results = Statistics.mwu.test(sampleA, sampleB);
|
| + var results = Statistics.mwu(sampleA, sampleB);
|
| assert.isBelow(results.p, 0.1);
|
|
|
| // 0.01 < x < 0.1
|
| sampleA = [1, 2, 2.1, 2.2, 2, 1];
|
| sampleB = [2, 3, 3.1, 3.2, 3, 2];
|
| - results = Statistics.mwu.test(sampleA, sampleB);
|
| + results = Statistics.mwu(sampleA, sampleB);
|
| assert.isBelow(results.p, 0.1);
|
| assert.isAbove(results.p, 0.01);
|
|
|
| // 0.1 < x
|
| sampleA = [1, 2, 2.1, 2.2, 2, 1];
|
| sampleB = [1, 2, 2.1, 2.2, 2, 1];
|
| - results = Statistics.mwu.test(sampleA, sampleB);
|
| + results = Statistics.mwu(sampleA, sampleB);
|
| assert.isAbove(results.p, 0.1);
|
| });
|
|
|
| @@ -535,31 +538,31 @@ tr.b.unittest.testSuite(function() {
|
| 6.915150e+0, 7.881740e+0, 1.131160e+1, 9.959400e+0, 9.030880e+0
|
| ];
|
| // Identical samples should not cause the null to be rejected.
|
| - var results = Statistics.mwu.test(longRepeatingSample, longRepeatingSample);
|
| + var results = Statistics.mwu(longRepeatingSample, longRepeatingSample);
|
| assert.isAbove(results.p, 0.05);
|
| - results = Statistics.mwu.test(normallyDistributedSample,
|
| + results = Statistics.mwu(normallyDistributedSample,
|
| normallyDistributedSample);
|
| assert.isAbove(results.p, 0.05);
|
| - results = Statistics.mwu.test(singleLargeValue, singleLargeValue);
|
| + results = Statistics.mwu(singleLargeValue, singleLargeValue);
|
|
|
| // A single value is generally not sufficient to reject the null, no matter
|
| // how far off it is.
|
| - results = Statistics.mwu.test(normallyDistributedSample, singleLargeValue);
|
| + results = Statistics.mwu(normallyDistributedSample, singleLargeValue);
|
| assert.isAbove(results.p, 0.05);
|
|
|
| // A single value way outside the first sample may be enough to reject,
|
| // if the first sample is large enough.
|
| - results = Statistics.mwu.test(longRepeatingSample, singleLargeValue);
|
| + results = Statistics.mwu(longRepeatingSample, singleLargeValue);
|
| assert.isBelow(results.p, 0.005);
|
|
|
| // Empty samples should not be comparable.
|
| - results = Statistics.mwu.test(emptySample, emptySample);
|
| + results = Statistics.mwu(emptySample, emptySample);
|
| assert(isNaN(results.p));
|
|
|
| // The result of comparing a sample against an empty sample should not be a
|
| // valid p value. NOTE: The current implementation returns 0, it is up to
|
| // the caller to interpret this.
|
| - results = Statistics.mwu.test(normallyDistributedSample, emptySample);
|
| + results = Statistics.mwu(normallyDistributedSample, emptySample);
|
| assert(!results.p);
|
| });
|
|
|
|
|