Index: tracing/tracing/base/statistics_test.html |
diff --git a/tracing/tracing/base/statistics_test.html b/tracing/tracing/base/statistics_test.html |
index 0f9349924f7442db09639d275e6f1983df0b06de..5e039fd80c1dcb46a7f48d9cf7481860697cad44 100644 |
--- a/tracing/tracing/base/statistics_test.html |
+++ b/tracing/tracing/base/statistics_test.html |
@@ -8,6 +8,9 @@ found in the LICENSE file. |
<script> |
'use strict'; |
+// TODO(charliea): Remove: |
+/* eslint-disable catapult-camelcase */ |
+ |
tr.b.unittest.testSuite(function() { |
var Statistics = tr.b.Statistics; |
@@ -508,20 +511,20 @@ tr.b.unittest.testSuite(function() { |
// x < 0.01 |
var sampleA = [1, 2, 2.1, 2.2, 2, 1]; |
var sampleB = [12, 13, 13.1, 13.2, 13, 12]; |
- var results = Statistics.mwu.test(sampleA, sampleB); |
+ var results = Statistics.mwu(sampleA, sampleB); |
assert.isBelow(results.p, 0.1); |
// 0.01 < x < 0.1 |
sampleA = [1, 2, 2.1, 2.2, 2, 1]; |
sampleB = [2, 3, 3.1, 3.2, 3, 2]; |
- results = Statistics.mwu.test(sampleA, sampleB); |
+ results = Statistics.mwu(sampleA, sampleB); |
assert.isBelow(results.p, 0.1); |
assert.isAbove(results.p, 0.01); |
// 0.1 < x |
sampleA = [1, 2, 2.1, 2.2, 2, 1]; |
sampleB = [1, 2, 2.1, 2.2, 2, 1]; |
- results = Statistics.mwu.test(sampleA, sampleB); |
+ results = Statistics.mwu(sampleA, sampleB); |
assert.isAbove(results.p, 0.1); |
}); |
@@ -535,31 +538,31 @@ tr.b.unittest.testSuite(function() { |
6.915150e+0, 7.881740e+0, 1.131160e+1, 9.959400e+0, 9.030880e+0 |
]; |
// Identical samples should not cause the null to be rejected. |
- var results = Statistics.mwu.test(longRepeatingSample, longRepeatingSample); |
+ var results = Statistics.mwu(longRepeatingSample, longRepeatingSample); |
assert.isAbove(results.p, 0.05); |
- results = Statistics.mwu.test(normallyDistributedSample, |
+ results = Statistics.mwu(normallyDistributedSample, |
normallyDistributedSample); |
assert.isAbove(results.p, 0.05); |
- results = Statistics.mwu.test(singleLargeValue, singleLargeValue); |
+ results = Statistics.mwu(singleLargeValue, singleLargeValue); |
// A single value is generally not sufficient to reject the null, no matter |
// how far off it is. |
- results = Statistics.mwu.test(normallyDistributedSample, singleLargeValue); |
+ results = Statistics.mwu(normallyDistributedSample, singleLargeValue); |
assert.isAbove(results.p, 0.05); |
// A single value way outside the first sample may be enough to reject, |
// if the first sample is large enough. |
- results = Statistics.mwu.test(longRepeatingSample, singleLargeValue); |
+ results = Statistics.mwu(longRepeatingSample, singleLargeValue); |
assert.isBelow(results.p, 0.005); |
// Empty samples should not be comparable. |
- results = Statistics.mwu.test(emptySample, emptySample); |
+ results = Statistics.mwu(emptySample, emptySample); |
assert(isNaN(results.p)); |
// The result of comparing a sample against an empty sample should not be a |
// valid p value. NOTE: The current implementation returns 0, it is up to |
// the caller to interpret this. |
- results = Statistics.mwu.test(normallyDistributedSample, emptySample); |
+ results = Statistics.mwu(normallyDistributedSample, emptySample); |
assert(!results.p); |
}); |