| Index: src/utils/SkMatrix44.cpp
|
| ===================================================================
|
| --- src/utils/SkMatrix44.cpp (revision 10882)
|
| +++ src/utils/SkMatrix44.cpp (working copy)
|
| @@ -482,13 +482,17 @@
|
| if (inverse) {
|
| sk_bzero(inverse->fMat, sizeof(inverse->fMat));
|
|
|
| - inverse->fMat[3][0] = -fMat[3][0] / fMat[0][0];
|
| - inverse->fMat[3][1] = -fMat[3][1] / fMat[1][1];
|
| - inverse->fMat[3][2] = -fMat[3][2] / fMat[2][2];
|
| + double invXScale = 1 / fMat[0][0];
|
| + double invYScale = 1 / fMat[1][1];
|
| + double invZScale = 1 / fMat[2][2];
|
|
|
| - inverse->fMat[0][0] = 1 / fMat[0][0];
|
| - inverse->fMat[1][1] = 1 / fMat[1][1];
|
| - inverse->fMat[2][2] = 1 / fMat[2][2];
|
| + inverse->fMat[3][0] = -fMat[3][0] * invXScale;
|
| + inverse->fMat[3][1] = -fMat[3][1] * invYScale;
|
| + inverse->fMat[3][2] = -fMat[3][2] * invZScale;
|
| +
|
| + inverse->fMat[0][0] = invXScale;
|
| + inverse->fMat[1][1] = invYScale;
|
| + inverse->fMat[2][2] = invZScale;
|
| inverse->fMat[3][3] = 1;
|
|
|
| inverse->setTypeMask(this->getType());
|
| @@ -513,6 +517,72 @@
|
| double a32 = fMat[3][2];
|
| double a33 = fMat[3][3];
|
|
|
| + if (!(this->getType() & kPerspective_Mask)) {
|
| + // If we know the matrix has no perspective, then the perspective
|
| + // component is (0, 0, 0, 1). We can use this information to save a lot
|
| + // of arithmetic that would otherwise be spent to compute the inverse
|
| + // of a general matrix.
|
| +
|
| + SkASSERT(a03 == 0);
|
| + SkASSERT(a13 == 0);
|
| + SkASSERT(a23 == 0);
|
| + SkASSERT(a33 == 1);
|
| +
|
| + double b00 = a00 * a11 - a01 * a10;
|
| + double b01 = a00 * a12 - a02 * a10;
|
| + double b03 = a01 * a12 - a02 * a11;
|
| + double b06 = a20 * a31 - a21 * a30;
|
| + double b07 = a20 * a32 - a22 * a30;
|
| + double b08 = a20;
|
| + double b09 = a21 * a32 - a22 * a31;
|
| + double b10 = a21;
|
| + double b11 = a22;
|
| +
|
| + // Calculate the determinant
|
| + double det = b00 * b11 - b01 * b10 + b03 * b08;
|
| +
|
| + double invdet = 1.0 / det;
|
| + // If det is zero, we want to return false. However, we also want to return false
|
| + // if 1/det overflows to infinity (i.e. det is denormalized). Both of these are
|
| + // handled by checking that 1/det is finite.
|
| + if (!sk_float_isfinite(invdet)) {
|
| + return false;
|
| + }
|
| + if (NULL == inverse) {
|
| + return true;
|
| + }
|
| +
|
| + b00 *= invdet;
|
| + b01 *= invdet;
|
| + b03 *= invdet;
|
| + b06 *= invdet;
|
| + b07 *= invdet;
|
| + b08 *= invdet;
|
| + b09 *= invdet;
|
| + b10 *= invdet;
|
| + b11 *= invdet;
|
| +
|
| + inverse->fMat[0][0] = SkDoubleToMScalar(a11 * b11 - a12 * b10);
|
| + inverse->fMat[0][1] = SkDoubleToMScalar(a02 * b10 - a01 * b11);
|
| + inverse->fMat[0][2] = SkDoubleToMScalar(b03);
|
| + inverse->fMat[0][3] = 0;
|
| + inverse->fMat[1][0] = SkDoubleToMScalar(a12 * b08 - a10 * b11);
|
| + inverse->fMat[1][1] = SkDoubleToMScalar(a00 * b11 - a02 * b08);
|
| + inverse->fMat[1][2] = SkDoubleToMScalar(-b01);
|
| + inverse->fMat[1][3] = 0;
|
| + inverse->fMat[2][0] = SkDoubleToMScalar(a10 * b10 - a11 * b08);
|
| + inverse->fMat[2][1] = SkDoubleToMScalar(a01 * b08 - a00 * b10);
|
| + inverse->fMat[2][2] = SkDoubleToMScalar(b00);
|
| + inverse->fMat[2][3] = 0;
|
| + inverse->fMat[3][0] = SkDoubleToMScalar(a11 * b07 - a10 * b09 - a12 * b06);
|
| + inverse->fMat[3][1] = SkDoubleToMScalar(a00 * b09 - a01 * b07 + a02 * b06);
|
| + inverse->fMat[3][2] = SkDoubleToMScalar(a31 * b01 - a30 * b03 - a32 * b00);
|
| + inverse->fMat[3][3] = 1;
|
| +
|
| + inverse->setTypeMask(this->getType());
|
| + return true;
|
| + }
|
| +
|
| double b00 = a00 * a11 - a01 * a10;
|
| double b01 = a00 * a12 - a02 * a10;
|
| double b02 = a00 * a13 - a03 * a10;
|
|
|