Chromium Code Reviews| Index: src/time/time.cc |
| diff --git a/src/time/time.cc b/src/time/time.cc |
| new file mode 100644 |
| index 0000000000000000000000000000000000000000..1742f30b67804022f89051bbf61b9497b3bb71bb |
| --- /dev/null |
| +++ b/src/time/time.cc |
| @@ -0,0 +1,483 @@ |
| +// Copyright 2013 the V8 project authors. All rights reserved. |
| +// Redistribution and use in source and binary forms, with or without |
| +// modification, are permitted provided that the following conditions are |
| +// met: |
| +// |
| +// * Redistributions of source code must retain the above copyright |
| +// notice, this list of conditions and the following disclaimer. |
| +// * Redistributions in binary form must reproduce the above |
| +// copyright notice, this list of conditions and the following |
| +// disclaimer in the documentation and/or other materials provided |
| +// with the distribution. |
| +// * Neither the name of Google Inc. nor the names of its |
| +// contributors may be used to endorse or promote products derived |
| +// from this software without specific prior written permission. |
| +// |
| +// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| +// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| +// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| +// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| +// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| +// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| +// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| +// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| +// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| +// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| +// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| + |
| +#include "time.h" |
| + |
| +#if V8_OS_POSIX |
| +#include <sys/time.h> |
| +#endif |
| +#if V8_OS_MACOSX |
| +#include <mach/mach_time.h> |
| +#endif |
| + |
| +#include <cstring> |
| + |
| +#include "checks.h" |
| +#include "cpu.h" |
| +#include "platform.h" |
| +#if V8_OS_WIN |
| +#define V8_WIN32_HEADERS_FULL |
| +#include "win32-headers.h" |
| +#endif |
| + |
| +namespace v8 { |
| +namespace internal { |
| + |
| +TimeDelta TimeDelta::FromDays(int days) { |
| + return TimeDelta(days * Time::kMicrosecondsPerDay); |
| +} |
| + |
| + |
| +TimeDelta TimeDelta::FromHours(int hours) { |
| + return TimeDelta(hours * Time::kMicrosecondsPerHour); |
| +} |
| + |
| + |
| +TimeDelta TimeDelta::FromMinutes(int minutes) { |
| + return TimeDelta(minutes * Time::kMicrosecondsPerMinute); |
| +} |
| + |
| + |
| +TimeDelta TimeDelta::FromSeconds(int64_t seconds) { |
| + return TimeDelta(seconds * Time::kMicrosecondsPerSecond); |
| +} |
| + |
| + |
| +TimeDelta TimeDelta::FromMilliseconds(int64_t milliseconds) { |
| + return TimeDelta(milliseconds * Time::kMicrosecondsPerMillisecond); |
| +} |
| + |
| + |
| +TimeDelta TimeDelta::FromNanoseconds(int64_t nanoseconds) { |
| + return TimeDelta(nanoseconds / Time::kNanosecondsPerMicrosecond); |
| +} |
| + |
| + |
| +int TimeDelta::InDays() const { |
| + return static_cast<int>(delta_ / Time::kMicrosecondsPerDay); |
| +} |
| + |
| + |
| +int TimeDelta::InHours() const { |
| + return static_cast<int>(delta_ / Time::kMicrosecondsPerHour); |
| +} |
| + |
| + |
| +int TimeDelta::InMinutes() const { |
| + return static_cast<int>(delta_ / Time::kMicrosecondsPerMinute); |
| +} |
| + |
| + |
| +double TimeDelta::InSecondsF() const { |
| + return static_cast<double>(delta_) / Time::kMicrosecondsPerSecond; |
| +} |
| + |
| + |
| +int64_t TimeDelta::InSeconds() const { |
| + return delta_ / Time::kMicrosecondsPerSecond; |
| +} |
| + |
| + |
| +double TimeDelta::InMillisecondsF() const { |
| + return static_cast<double>(delta_) / Time::kMicrosecondsPerMillisecond; |
| +} |
| + |
| + |
| +int64_t TimeDelta::InMilliseconds() const { |
| + return delta_ / Time::kMicrosecondsPerMillisecond; |
| +} |
| + |
| + |
| +int64_t TimeDelta::InNanoseconds() const { |
| + return delta_ * Time::kNanosecondsPerMicrosecond; |
| +} |
| + |
| + |
| +#if V8_OS_WIN |
| + |
| +// We implement time using the high-resolution timers so that we can get |
| +// timeouts which are smaller than 10-15ms. To avoid any drift, we |
| +// periodically resync the internal clock to the system clock. |
| +class Clock V8_FINAL { |
| + public: |
| + Clock() : initial_time_(CurrentWallclockTime()), |
| + initial_ticks_(TimeTicks::Now()), |
| + mutex_(OS::CreateMutex()) {} |
| + |
| + ~Clock() { delete mutex_; } |
| + |
| + Time Now() { |
| + // This must be executed under lock. |
| + ScopedLock sl(mutex_); |
| + |
| + // Calculate the time elapsed since we started our timer. |
| + TimeDelta elapsed = TimeTicks::Now() - initial_ticks_; |
| + |
| + // Check if we don't need to synchronize with the wallclock yet. |
| + if (elapsed.InMicroseconds() <= kMaxMicrosecondsToAvoidDrift) { |
| + return initial_time_ + elapsed; |
| + } |
| + |
| + // Resynchronize with the wallclock. |
| + initial_ticks_ = TimeTicks::Now(); |
| + initial_time_ = CurrentWallclockTime(); |
| + return initial_time_; |
| + } |
| + |
| + Time NowFromSystemTime() { |
| + ScopedLock sl(mutex_); |
| + initial_ticks_ = TimeTicks::Now(); |
| + initial_time_ = CurrentWallclockTime(); |
| + return initial_time_; |
| + } |
| + |
| + private: |
| + // Time between resampling the un-granular clock for this API (1 minute). |
| + static const int64_t kMaxMicrosecondsToAvoidDrift = |
| + Time::kMicrosecondsPerMinute; |
| + |
| + static Time CurrentWallclockTime() { |
| + FILETIME ft; |
| + ::GetSystemTimeAsFileTime(&ft); |
| + return Time::FromFiletime(ft); |
| + } |
| + |
| + TimeTicks initial_ticks_; |
| + Time initial_time_; |
| + Mutex* mutex_; |
| +}; |
| + |
| + |
| +static LazyDynamicInstance<Clock, |
| + DefaultCreateTrait<Clock>, |
| + ThreadSafeInitOnceTrait>::type clock = LAZY_DYNAMIC_INSTANCE_INITIALIZER; |
| + |
| + |
| +Time Time::Now() { |
| + return clock.Pointer()->Now(); |
| +} |
| + |
| + |
| +Time Time::NowFromSystemTime() { |
| + return clock.Pointer()->NowFromSystemTime(); |
| +} |
| + |
| + |
| +// Time between windows epoch and standard epoch. |
| +static const int64_t kTimeToEpochInMicroseconds = V8_INT64_C(11644473600000000); |
| + |
| + |
| +Time Time::FromFiletime(FILETIME ft) { |
| + if (ft.dwLowDateTime == 0 && ft.dwHighDateTime == 0) { |
| + return Time(); |
| + } |
| + if (ft.dwLowDateTime == std::numeric_limits<DWORD>::max() && |
| + ft.dwHighDateTime == std::numeric_limits<DWORD>::max()) { |
| + return Max(); |
| + } |
| + int64_t us = (static_cast<uint64_t>(ft.dwLowDateTime) + |
| + static_cast<uint64_t>(ft.dwHighDateTime) << 32) / 10; |
| + return Time(us - kTimeToEpochInMicroseconds); |
| +} |
| + |
| + |
| +FILETIME Time::ToFiletime() const { |
| + ASSERT(us_ >= 0); |
| + FILETIME ft; |
| + if (IsNull()) { |
| + ft.dwLowDateTime = 0; |
| + ft.dwHighDateTime = 0; |
| + return ft; |
| + } |
| + if (IsMax()) { |
| + ft.dwLowDateTime = std::numeric_limits<DWORD>::max(); |
| + ft.dwHighDateTime = std::numeric_limits<DWORD>::max(); |
| + return ft; |
| + } |
| + uint64_t us = static_cast<uint64_t>(us_ + kTimeToEpochInMicroseconds) * 10; |
| + ft.dwLowDateTime = static_cast<DWORD>(us); |
| + ft.dwHighDateTime = static_cast<DWORD>(us >> 32); |
| + return ft; |
| +} |
| + |
| +#elif V8_OS_POSIX |
| + |
| +Time Time::Now() { |
| + struct timeval tv; |
| + int result = gettimeofday(&tv, NULL); |
| + ASSERT_EQ(0, result); |
| + USE(result); |
| + return FromTimeval(tv); |
| +} |
| + |
| + |
| +Time Time::NowFromSystemTime() { |
| + return Now(); |
| +} |
| + |
| + |
| +Time Time::FromTimeval(struct timeval tv) { |
| + ASSERT(tv.tv_usec >= 0); |
| + ASSERT(tv.tv_usec < static_cast<suseconds_t>(kMicrosecondsPerSecond)); |
| + if (tv.tv_usec == 0 && tv.tv_sec == 0) { |
| + return Time(); |
| + } |
| + if (tv.tv_usec == static_cast<suseconds_t>(kMicrosecondsPerSecond - 1) && |
| + tv.tv_sec == std::numeric_limits<time_t>::max()) { |
| + return Max(); |
| + } |
| + return Time(tv.tv_sec * kMicrosecondsPerSecond + tv.tv_usec); |
| +} |
| + |
| + |
| +struct timeval Time::ToTimeval() const { |
| + struct timeval tv; |
| + if (IsNull()) { |
| + tv.tv_sec = 0; |
| + tv.tv_usec = 0; |
| + return tv; |
| + } |
| + if (IsMax()) { |
| + tv.tv_sec = std::numeric_limits<time_t>::max(); |
| + tv.tv_usec = static_cast<suseconds_t>(kMicrosecondsPerSecond - 1); |
| + return tv; |
| + } |
| + tv.tv_sec = us_ / kMicrosecondsPerSecond; |
| + tv.tv_usec = us_ % kMicrosecondsPerSecond; |
| + return tv; |
| +} |
| + |
| +#endif // V8_OS_WIN |
|
Michael Achenbach
2013/08/28 10:47:17
Is this comment not confusing, since it is the V8_
Benedikt Meurer
2013/08/28 10:58:36
That's how we do it all over the place, unfortunat
|
| + |
| + |
| +Time Time::FromJsTime(double ms_since_epoch) { |
| + // The epoch is a valid time, so this constructor doesn't interpret |
| + // 0 as the null time. |
| + if (ms_since_epoch == std::numeric_limits<double>::max()) { |
| + return Max(); |
| + } |
| + return Time( |
| + static_cast<int64_t>(ms_since_epoch * kMicrosecondsPerMillisecond)); |
| +} |
| + |
| + |
| +double Time::ToJsTime() const { |
| + if (IsNull()) { |
| + // Preserve 0 so the invalid result doesn't depend on the platform. |
| + return 0; |
| + } |
| + if (IsMax()) { |
| + // Preserve max without offset to prevent overflow. |
| + return std::numeric_limits<double>::max(); |
| + } |
| + return static_cast<double>(us_) / kMicrosecondsPerMillisecond; |
| +} |
| + |
| + |
| +#if V8_OS_WIN |
| + |
| +class TickClock { |
| + public: |
| + virtual ~TickClock() {} |
| + virtual int64_t Now() = 0; |
| +}; |
| + |
| + |
| +// Overview of time counters: |
| +// (1) CPU cycle counter. (Retrieved via RDTSC) |
| +// The CPU counter provides the highest resolution time stamp and is the least |
| +// expensive to retrieve. However, the CPU counter is unreliable and should not |
| +// be used in production. Its biggest issue is that it is per processor and it |
| +// is not synchronized between processors. Also, on some computers, the counters |
| +// will change frequency due to thermal and power changes, and stop in some |
| +// states. |
| +// |
| +// (2) QueryPerformanceCounter (QPC). The QPC counter provides a high- |
| +// resolution (100 nanoseconds) time stamp but is comparatively more expensive |
| +// to retrieve. What QueryPerformanceCounter actually does is up to the HAL. |
| +// (with some help from ACPI). |
| +// According to http://blogs.msdn.com/oldnewthing/archive/2005/09/02/459952.aspx |
| +// in the worst case, it gets the counter from the rollover interrupt on the |
| +// programmable interrupt timer. In best cases, the HAL may conclude that the |
| +// RDTSC counter runs at a constant frequency, then it uses that instead. On |
| +// multiprocessor machines, it will try to verify the values returned from |
| +// RDTSC on each processor are consistent with each other, and apply a handful |
| +// of workarounds for known buggy hardware. In other words, QPC is supposed to |
| +// give consistent result on a multiprocessor computer, but it is unreliable in |
| +// reality due to bugs in BIOS or HAL on some, especially old computers. |
| +// With recent updates on HAL and newer BIOS, QPC is getting more reliable but |
| +// it should be used with caution. |
| +// |
| +// (3) System time. The system time provides a low-resolution (typically 10ms |
| +// to 55 milliseconds) time stamp but is comparatively less expensive to |
| +// retrieve and more reliable. |
| +class HighResolutionTickClock V8_FINAL : public TickClock { |
| + public: |
| + explicit HighResolutionTickClock(int64_t ticks_per_second) |
| + : ticks_per_second_(ticks_per_second) { |
| + ASSERT_NE(0, ticks_per_second); |
| + } |
| + virtual ~HighResolutionTickClock() {} |
| + |
| + virtual int64_t Now() V8_OVERRIDE { |
| + LARGE_INTEGER now; |
| + BOOL result = QueryPerformanceCounter(&now); |
| + ASSERT(result); |
| + USE(result); |
| + |
| + // Intentionally calculate microseconds in a round about manner to avoid |
| + // overflow and precision issues. Think twice before simplifying! |
| + int64_t whole_seconds = now.QuadPart / ticks_per_second_; |
| + int64_t leftover_ticks = now.QuadPart % ticks_per_second_; |
| + int64_t ticks = (whole_seconds * Time::kMicrosecondsPerSecond) + |
| + ((leftover_ticks * Time::kMicrosecondsPerSecond) / ticks_per_second_); |
| + |
| + // Make sure we never return 0 here, so that TimeTicks::HighResNow() |
| + // will never return 0. |
| + return ticks + 1; |
| + } |
| + |
| + private: |
| + int64_t ticks_per_second_; |
| +}; |
| + |
| + |
| +class RolloverProtectedTickClock V8_FINAL : public TickClock { |
| + public: |
| + RolloverProtectedTickClock() |
| + : mutex_(OS::CreateMutex()), last_seen_now_(0), rollover_ms_(1) { |
| + // We initialize rollover_ms_ to 1 to ensure that we will never |
| + // return 0 from TimeTicks::HighResNow() and TimeTicks::Now() below. |
| + } |
| + virtual ~RolloverProtectedTickClock() { delete mutex_; } |
| + |
| + virtual int64_t Now() V8_OVERRIDE { |
| + ScopedLock sl(mutex_); |
| + // We use timeGetTime() to implement TimeTicks::Now(), which rolls over |
| + // every ~49.7 days. We try to track rollover ourselves, which works if |
| + // TimeTicks::Now() is called at least every 49 days. |
| + // Note that we do not use GetTickCount() here, since timeGetTime() gives |
| + // more predictable delta values, as described here: |
| + // http://blogs.msdn.com/b/larryosterman/archive/2009/09/02/what-s-the-difference-between-gettickcount-and-timegettime.aspx |
| + DWORD now = timeGetTime(); |
| + if (now < last_seen_now_) { |
| + rollover_ms_ += V8_INT64_C(0x100000000); // ~49.7 days. |
| + } |
| + last_seen_now_ = now; |
| + return now + rollover_ms_; |
| + } |
| + |
| + private: |
| + Mutex* mutex_; |
| + DWORD last_seen_now_; |
| + int64_t rollover_ms_; |
| +}; |
| + |
| + |
| +static LazyDynamicInstance<RolloverProtectedTickClock, |
| + DefaultCreateTrait<RolloverProtectedTickClock>, |
| + ThreadSafeInitOnceTrait>::type tick_clock = |
| + LAZY_DYNAMIC_INSTANCE_INITIALIZER; |
| + |
| + |
| +struct CreateHighResTickClockTrait { |
| + static TickClock* Create() { |
| + // Check if the installed hardware supports a high-resolution performance |
| + // counter, and if not fallback to the low-resolution tick clock. |
| + LARGE_INTEGER ticks_per_second; |
| + if (!QueryPerformanceFrequency(&ticks_per_second)) { |
| + return tick_clock.Pointer(); |
| + } |
| + |
| + // On Athlon X2 CPUs (e.g. model 15) the QueryPerformanceCounter |
| + // is unreliable, fallback to the low-resolution tick clock. |
| + CPU cpu; |
| + if (strcmp(cpu.vendor(), "AuthenticAMD") == 0 && cpu.family() == 15) { |
| + return tick_clock.Pointer(); |
| + } |
| + |
| + return new HighResolutionTickClock(ticks_per_second.QuadPart); |
| + } |
| +}; |
| + |
| + |
| +static LazyDynamicInstance<TickClock, |
| + CreateHighResTickClockTrait, |
| + ThreadSafeInitOnceTrait>::type high_res_tick_clock = |
| + LAZY_DYNAMIC_INSTANCE_INITIALIZER; |
| + |
| + |
| +TimeTicks TimeTicks::Now() { |
| + // Make sure we never return 0 here. |
| + TimeTicks ticks(tick_clock.Pointer()->Now()); |
| + ASSERT(!ticks.IsNull()); |
| + return ticks; |
| +} |
| + |
| + |
| +TimeTicks TimeTicks::HighResNow() { |
| + // Make sure we never return 0 here. |
| + TimeTicks ticks(high_res_tick_clock.Pointer()->Now()); |
| + ASSERT(!ticks.IsNull()); |
| + return ticks; |
| +} |
| + |
| +#else // V8_OS_WIN |
| + |
| +TimeTicks TimeTicks::Now() { |
| + return HighResNow(); |
| +} |
| + |
| + |
| +TimeTicks TimeTicks::HighResNow() { |
| + int64_t ticks; |
| +#if V8_OS_MACOSX |
| + static struct mach_timebase_info info; |
| + if (info.denom == 0) { |
| + kern_return_t result = mach_timebase_info(&info); |
| + ASSERT_EQ(KERN_SUCCESS, result); |
| + USE(result); |
| + } |
| + ticks = (mach_absolute_time() / Time::kNanosecondsPerMicrosecond * |
| + info.numer / info.denom); |
| +#elif V8_OS_SOLARIS |
| + ticks = (gethrtime() / Time::kNanosecondsPerMicrosecond); |
| +#elif V8_OS_POSIX |
| + struct timespec ts; |
| + int result = clock_gettime(CLOCK_MONOTONIC, &ts); |
| + ASSERT_EQ(0, result); |
| + USE(result); |
| + ticks = (ts.tv_sec * Time::kMicrosecondsPerSecond + |
| + ts.tv_nsec / Time::kNanosecondsPerMicrosecond); |
| +#endif // V8_OS_MACOSX |
| + // Make sure we never return 0 here. |
| + return TimeTicks(ticks + 1); |
| +} |
| + |
| +#endif // V8_OS_WIN |
| + |
| +} } // namespace v8::internal |