Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(108)

Side by Side Diff: src/time/time.cc

Issue 23295034: Add Chromium-style TimeDelta, Time and TimeTicks classes, and a new ElapsedTimer class. (Closed) Base URL: https://v8.googlecode.com/svn/branches/bleeding_edge
Patch Set: Fix typo Created 7 years, 3 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View unified diff | Download patch | Annotate | Revision Log
OLDNEW
(Empty)
1 // Copyright 2013 the V8 project authors. All rights reserved.
2 // Redistribution and use in source and binary forms, with or without
3 // modification, are permitted provided that the following conditions are
4 // met:
5 //
6 // * Redistributions of source code must retain the above copyright
7 // notice, this list of conditions and the following disclaimer.
8 // * Redistributions in binary form must reproduce the above
9 // copyright notice, this list of conditions and the following
10 // disclaimer in the documentation and/or other materials provided
11 // with the distribution.
12 // * Neither the name of Google Inc. nor the names of its
13 // contributors may be used to endorse or promote products derived
14 // from this software without specific prior written permission.
15 //
16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
28 #include "time.h"
29
30 #if V8_OS_POSIX
31 #include <sys/time.h>
32 #endif
33 #if V8_OS_MACOSX
34 #include <mach/mach_time.h>
35 #endif
36
37 #include <cstring>
38
39 #include "checks.h"
40 #include "cpu.h"
41 #include "platform.h"
42 #if V8_OS_WIN
43 #define V8_WIN32_HEADERS_FULL
44 #include "win32-headers.h"
45 #endif
46
47 namespace v8 {
48 namespace internal {
49
50 TimeDelta TimeDelta::FromDays(int days) {
51 return TimeDelta(days * Time::kMicrosecondsPerDay);
52 }
53
54
55 TimeDelta TimeDelta::FromHours(int hours) {
56 return TimeDelta(hours * Time::kMicrosecondsPerHour);
57 }
58
59
60 TimeDelta TimeDelta::FromMinutes(int minutes) {
61 return TimeDelta(minutes * Time::kMicrosecondsPerMinute);
62 }
63
64
65 TimeDelta TimeDelta::FromSeconds(int64_t seconds) {
66 return TimeDelta(seconds * Time::kMicrosecondsPerSecond);
67 }
68
69
70 TimeDelta TimeDelta::FromMilliseconds(int64_t milliseconds) {
71 return TimeDelta(milliseconds * Time::kMicrosecondsPerMillisecond);
72 }
73
74
75 TimeDelta TimeDelta::FromNanoseconds(int64_t nanoseconds) {
76 return TimeDelta(nanoseconds / Time::kNanosecondsPerMicrosecond);
77 }
78
79
80 int TimeDelta::InDays() const {
81 return static_cast<int>(delta_ / Time::kMicrosecondsPerDay);
82 }
83
84
85 int TimeDelta::InHours() const {
86 return static_cast<int>(delta_ / Time::kMicrosecondsPerHour);
87 }
88
89
90 int TimeDelta::InMinutes() const {
91 return static_cast<int>(delta_ / Time::kMicrosecondsPerMinute);
92 }
93
94
95 double TimeDelta::InSecondsF() const {
96 return static_cast<double>(delta_) / Time::kMicrosecondsPerSecond;
97 }
98
99
100 int64_t TimeDelta::InSeconds() const {
101 return delta_ / Time::kMicrosecondsPerSecond;
102 }
103
104
105 double TimeDelta::InMillisecondsF() const {
106 return static_cast<double>(delta_) / Time::kMicrosecondsPerMillisecond;
107 }
108
109
110 int64_t TimeDelta::InMilliseconds() const {
111 return delta_ / Time::kMicrosecondsPerMillisecond;
112 }
113
114
115 int64_t TimeDelta::InNanoseconds() const {
116 return delta_ * Time::kNanosecondsPerMicrosecond;
117 }
118
119
120 #if V8_OS_WIN
121
122 // We implement time using the high-resolution timers so that we can get
123 // timeouts which are smaller than 10-15ms. To avoid any drift, we
124 // periodically resync the internal clock to the system clock.
125 class Clock V8_FINAL {
126 public:
127 Clock() : initial_time_(CurrentWallclockTime()),
128 initial_ticks_(TimeTicks::Now()),
129 mutex_(OS::CreateMutex()) {}
130
131 ~Clock() { delete mutex_; }
132
133 Time Now() {
134 // This must be executed under lock.
135 ScopedLock sl(mutex_);
136
137 // Calculate the time elapsed since we started our timer.
138 TimeDelta elapsed = TimeTicks::Now() - initial_ticks_;
139
140 // Check if we don't need to synchronize with the wallclock yet.
141 if (elapsed.InMicroseconds() <= kMaxMicrosecondsToAvoidDrift) {
142 return initial_time_ + elapsed;
143 }
144
145 // Resynchronize with the wallclock.
146 initial_ticks_ = TimeTicks::Now();
147 initial_time_ = CurrentWallclockTime();
148 return initial_time_;
149 }
150
151 Time NowFromSystemTime() {
152 ScopedLock sl(mutex_);
153 initial_ticks_ = TimeTicks::Now();
154 initial_time_ = CurrentWallclockTime();
155 return initial_time_;
156 }
157
158 private:
159 // Time between resampling the un-granular clock for this API (1 minute).
160 static const int64_t kMaxMicrosecondsToAvoidDrift =
161 Time::kMicrosecondsPerMinute;
162
163 static Time CurrentWallclockTime() {
164 FILETIME ft;
165 ::GetSystemTimeAsFileTime(&ft);
166 return Time::FromFiletime(ft);
167 }
168
169 TimeTicks initial_ticks_;
170 Time initial_time_;
171 Mutex* mutex_;
172 };
173
174
175 static LazyDynamicInstance<Clock,
176 DefaultCreateTrait<Clock>,
177 ThreadSafeInitOnceTrait>::type clock = LAZY_DYNAMIC_INSTANCE_INITIALIZER;
178
179
180 Time Time::Now() {
181 return clock.Pointer()->Now();
182 }
183
184
185 Time Time::NowFromSystemTime() {
186 return clock.Pointer()->NowFromSystemTime();
187 }
188
189
190 // Time between windows epoch and standard epoch.
191 static const int64_t kTimeToEpochInMicroseconds = V8_INT64_C(11644473600000000);
192
193
194 Time Time::FromFiletime(FILETIME ft) {
195 if (ft.dwLowDateTime == 0 && ft.dwHighDateTime == 0) {
196 return Time();
197 }
198 if (ft.dwLowDateTime == std::numeric_limits<DWORD>::max() &&
199 ft.dwHighDateTime == std::numeric_limits<DWORD>::max()) {
200 return Max();
201 }
202 int64_t us = (static_cast<uint64_t>(ft.dwLowDateTime) +
203 static_cast<uint64_t>(ft.dwHighDateTime) << 32) / 10;
204 return Time(us - kTimeToEpochInMicroseconds);
205 }
206
207
208 FILETIME Time::ToFiletime() const {
209 ASSERT(us_ >= 0);
210 FILETIME ft;
211 if (IsNull()) {
212 ft.dwLowDateTime = 0;
213 ft.dwHighDateTime = 0;
214 return ft;
215 }
216 if (IsMax()) {
217 ft.dwLowDateTime = std::numeric_limits<DWORD>::max();
218 ft.dwHighDateTime = std::numeric_limits<DWORD>::max();
219 return ft;
220 }
221 uint64_t us = static_cast<uint64_t>(us_ + kTimeToEpochInMicroseconds) * 10;
222 ft.dwLowDateTime = static_cast<DWORD>(us);
223 ft.dwHighDateTime = static_cast<DWORD>(us >> 32);
224 return ft;
225 }
226
227 #elif V8_OS_POSIX
228
229 Time Time::Now() {
230 struct timeval tv;
231 int result = gettimeofday(&tv, NULL);
232 ASSERT_EQ(0, result);
233 USE(result);
234 return FromTimeval(tv);
235 }
236
237
238 Time Time::NowFromSystemTime() {
239 return Now();
240 }
241
242
243 Time Time::FromTimeval(struct timeval tv) {
244 ASSERT(tv.tv_usec >= 0);
245 ASSERT(tv.tv_usec < static_cast<suseconds_t>(kMicrosecondsPerSecond));
246 if (tv.tv_usec == 0 && tv.tv_sec == 0) {
247 return Time();
248 }
249 if (tv.tv_usec == static_cast<suseconds_t>(kMicrosecondsPerSecond - 1) &&
250 tv.tv_sec == std::numeric_limits<time_t>::max()) {
251 return Max();
252 }
253 return Time(tv.tv_sec * kMicrosecondsPerSecond + tv.tv_usec);
254 }
255
256
257 struct timeval Time::ToTimeval() const {
258 struct timeval tv;
259 if (IsNull()) {
260 tv.tv_sec = 0;
261 tv.tv_usec = 0;
262 return tv;
263 }
264 if (IsMax()) {
265 tv.tv_sec = std::numeric_limits<time_t>::max();
266 tv.tv_usec = static_cast<suseconds_t>(kMicrosecondsPerSecond - 1);
267 return tv;
268 }
269 tv.tv_sec = us_ / kMicrosecondsPerSecond;
270 tv.tv_usec = us_ % kMicrosecondsPerSecond;
271 return tv;
272 }
273
274 #endif // V8_OS_WIN
275
276
277 Time Time::FromJsTime(double ms_since_epoch) {
278 // The epoch is a valid time, so this constructor doesn't interpret
279 // 0 as the null time.
280 if (ms_since_epoch == std::numeric_limits<double>::max()) {
281 return Max();
282 }
283 return Time(
284 static_cast<int64_t>(ms_since_epoch * kMicrosecondsPerMillisecond));
285 }
286
287
288 double Time::ToJsTime() const {
289 if (IsNull()) {
290 // Preserve 0 so the invalid result doesn't depend on the platform.
291 return 0;
292 }
293 if (IsMax()) {
294 // Preserve max without offset to prevent overflow.
295 return std::numeric_limits<double>::max();
296 }
297 return static_cast<double>(us_) / kMicrosecondsPerMillisecond;
298 }
299
300
301 #if V8_OS_WIN
302
303 class TickClock {
304 public:
305 virtual ~TickClock() {}
306 virtual int64_t Now() = 0;
307 };
308
309
310 // Overview of time counters:
311 // (1) CPU cycle counter. (Retrieved via RDTSC)
312 // The CPU counter provides the highest resolution time stamp and is the least
313 // expensive to retrieve. However, the CPU counter is unreliable and should not
314 // be used in production. Its biggest issue is that it is per processor and it
315 // is not synchronized between processors. Also, on some computers, the counters
316 // will change frequency due to thermal and power changes, and stop in some
317 // states.
318 //
319 // (2) QueryPerformanceCounter (QPC). The QPC counter provides a high-
320 // resolution (100 nanoseconds) time stamp but is comparatively more expensive
321 // to retrieve. What QueryPerformanceCounter actually does is up to the HAL.
322 // (with some help from ACPI).
323 // According to http://blogs.msdn.com/oldnewthing/archive/2005/09/02/459952.aspx
324 // in the worst case, it gets the counter from the rollover interrupt on the
325 // programmable interrupt timer. In best cases, the HAL may conclude that the
326 // RDTSC counter runs at a constant frequency, then it uses that instead. On
327 // multiprocessor machines, it will try to verify the values returned from
328 // RDTSC on each processor are consistent with each other, and apply a handful
329 // of workarounds for known buggy hardware. In other words, QPC is supposed to
330 // give consistent result on a multiprocessor computer, but it is unreliable in
331 // reality due to bugs in BIOS or HAL on some, especially old computers.
332 // With recent updates on HAL and newer BIOS, QPC is getting more reliable but
333 // it should be used with caution.
334 //
335 // (3) System time. The system time provides a low-resolution (typically 10ms
336 // to 55 milliseconds) time stamp but is comparatively less expensive to
337 // retrieve and more reliable.
338 class HighResolutionTickClock V8_FINAL : public TickClock {
339 public:
340 explicit HighResolutionTickClock(int64_t ticks_per_second)
341 : ticks_per_second_(ticks_per_second) {
342 ASSERT_NE(0, ticks_per_second);
343 }
344 virtual ~HighResolutionTickClock() {}
345
346 virtual int64_t Now() V8_OVERRIDE {
347 LARGE_INTEGER now;
348 BOOL result = QueryPerformanceCounter(&now);
349 ASSERT(result);
350 USE(result);
351
352 // Intentionally calculate microseconds in a round about manner to avoid
353 // overflow and precision issues. Think twice before simplifying!
354 int64_t whole_seconds = now.QuadPart / ticks_per_second_;
355 int64_t leftover_ticks = now.QuadPart % ticks_per_second_;
356 int64_t ticks = (whole_seconds * Time::kMicrosecondsPerSecond) +
357 ((leftover_ticks * Time::kMicrosecondsPerSecond) / ticks_per_second_);
358
359 // Make sure we never return 0 here, so that TimeTicks::HighResNow()
360 // will never return 0.
361 return ticks + 1;
362 }
363
364 private:
365 int64_t ticks_per_second_;
366 };
367
368
369 class RolloverProtectedTickClock V8_FINAL : public TickClock {
370 public:
371 RolloverProtectedTickClock()
372 : mutex_(OS::CreateMutex()), last_seen_now_(0), rollover_ms_(1) {
373 // We initialize rollover_ms_ to 1 to ensure that we will never
374 // return 0 from TimeTicks::HighResNow() and TimeTicks::Now() below.
375 }
376 virtual ~RolloverProtectedTickClock() { delete mutex_; }
377
378 virtual int64_t Now() V8_OVERRIDE {
379 ScopedLock sl(mutex_);
380 // We use timeGetTime() to implement TimeTicks::Now(), which rolls over
381 // every ~49.7 days. We try to track rollover ourselves, which works if
382 // TimeTicks::Now() is called at least every 49 days.
383 // Note that we do not use GetTickCount() here, since timeGetTime() gives
384 // more predictable delta values, as described here:
385 // http://blogs.msdn.com/b/larryosterman/archive/2009/09/02/what-s-the-diffe rence-between-gettickcount-and-timegettime.aspx
386 DWORD now = timeGetTime();
387 if (now < last_seen_now_) {
388 rollover_ms_ += V8_INT64_C(0x100000000); // ~49.7 days.
389 }
390 last_seen_now_ = now;
391 return now + rollover_ms_;
392 }
393
394 private:
395 Mutex* mutex_;
396 DWORD last_seen_now_;
397 int64_t rollover_ms_;
398 };
399
400
401 static LazyDynamicInstance<RolloverProtectedTickClock,
402 DefaultCreateTrait<RolloverProtectedTickClock>,
403 ThreadSafeInitOnceTrait>::type tick_clock =
404 LAZY_DYNAMIC_INSTANCE_INITIALIZER;
405
406
407 struct CreateHighResTickClockTrait {
408 static TickClock* Create() {
409 // Check if the installed hardware supports a high-resolution performance
410 // counter, and if not fallback to the low-resolution tick clock.
411 LARGE_INTEGER ticks_per_second;
412 if (!QueryPerformanceFrequency(&ticks_per_second)) {
413 return tick_clock.Pointer();
414 }
415
416 // On Athlon X2 CPUs (e.g. model 15) the QueryPerformanceCounter
417 // is unreliable, fallback to the low-resolution tick clock.
418 CPU cpu;
419 if (strcmp(cpu.vendor(), "AuthenticAMD") == 0 && cpu.family() == 15) {
420 return tick_clock.Pointer();
421 }
422
423 return new HighResolutionTickClock(ticks_per_second.QuadPart);
424 }
425 };
426
427
428 static LazyDynamicInstance<TickClock,
429 CreateHighResTickClockTrait,
430 ThreadSafeInitOnceTrait>::type high_res_tick_clock =
431 LAZY_DYNAMIC_INSTANCE_INITIALIZER;
432
433
434 TimeTicks TimeTicks::Now() {
435 // Make sure we never return 0 here.
436 TimeTicks ticks(tick_clock.Pointer()->Now());
437 ASSERT(!ticks.IsNull());
438 return ticks;
439 }
440
441
442 TimeTicks TimeTicks::HighResNow() {
443 // Make sure we never return 0 here.
444 TimeTicks ticks(high_res_tick_clock.Pointer()->Now());
445 ASSERT(!ticks.IsNull());
446 return ticks;
447 }
448
449 #else // V8_OS_WIN
450
451 TimeTicks TimeTicks::Now() {
452 return HighResNow();
453 }
454
455
456 TimeTicks TimeTicks::HighResNow() {
457 int64_t ticks;
458 #if V8_OS_MACOSX
459 static struct mach_timebase_info info;
460 if (info.denom == 0) {
461 kern_return_t result = mach_timebase_info(&info);
462 ASSERT_EQ(KERN_SUCCESS, result);
463 USE(result);
464 }
465 ticks = (mach_absolute_time() / Time::kNanosecondsPerMicrosecond *
466 info.numer / info.denom);
467 #elif V8_OS_SOLARIS
468 ticks = (gethrtime() / Time::kNanosecondsPerMicrosecond);
469 #elif V8_OS_POSIX
470 struct timespec ts;
471 int result = clock_gettime(CLOCK_MONOTONIC, &ts);
472 ASSERT_EQ(0, result);
473 USE(result);
474 ticks = (ts.tv_sec * Time::kMicrosecondsPerSecond +
475 ts.tv_nsec / Time::kNanosecondsPerMicrosecond);
476 #endif // V8_OS_MACOSX
477 // Make sure we never return 0 here.
478 return TimeTicks(ticks + 1);
479 }
480
481 #endif // V8_OS_WIN
482
483 } } // namespace v8::internal
OLDNEW
« src/time/elapsed-timer.h ('K') | « src/time/time.h ('k') | test/cctest/cctest.gyp » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698