| Index: src/compiler/arm/code-generator-arm.cc
|
| diff --git a/src/compiler/arm/code-generator-arm.cc b/src/compiler/arm/code-generator-arm.cc
|
| index f7e317e3bc6c252420be8b86fca764347dfa0edd..4fa615576dc6c980aae2583eb5a470218fed2a60 100644
|
| --- a/src/compiler/arm/code-generator-arm.cc
|
| +++ b/src/compiler/arm/code-generator-arm.cc
|
| @@ -271,6 +271,37 @@ class OutOfLineRecordWrite final : public OutOfLineCode {
|
| UnwindingInfoWriter* const unwinding_info_writer_;
|
| };
|
|
|
| +template <typename T>
|
| +class OutOfLineFloatMin final : public OutOfLineCode {
|
| + public:
|
| + OutOfLineFloatMin(CodeGenerator* gen, T result, T left, T right)
|
| + : OutOfLineCode(gen), result_(result), left_(left), right_(right) {}
|
| +
|
| + void Generate() final { __ FloatMinOutOfLine(result_, left_, right_); }
|
| +
|
| + private:
|
| + T const result_;
|
| + T const left_;
|
| + T const right_;
|
| +};
|
| +typedef OutOfLineFloatMin<SwVfpRegister> OutOfLineFloat32Min;
|
| +typedef OutOfLineFloatMin<DwVfpRegister> OutOfLineFloat64Min;
|
| +
|
| +template <typename T>
|
| +class OutOfLineFloatMax final : public OutOfLineCode {
|
| + public:
|
| + OutOfLineFloatMax(CodeGenerator* gen, T result, T left, T right)
|
| + : OutOfLineCode(gen), result_(result), left_(left), right_(right) {}
|
| +
|
| + void Generate() final { __ FloatMaxOutOfLine(result_, left_, right_); }
|
| +
|
| + private:
|
| + T const result_;
|
| + T const left_;
|
| + T const right_;
|
| +};
|
| +typedef OutOfLineFloatMax<SwVfpRegister> OutOfLineFloat32Max;
|
| +typedef OutOfLineFloatMax<DwVfpRegister> OutOfLineFloat64Max;
|
|
|
| Condition FlagsConditionToCondition(FlagsCondition condition) {
|
| switch (condition) {
|
| @@ -1377,145 +1408,59 @@ CodeGenerator::CodeGenResult CodeGenerator::AssembleArchInstruction(
|
| DCHECK_EQ(LeaveCC, i.OutputSBit());
|
| break;
|
| case kArmFloat32Max: {
|
| - FloatRegister left_reg = i.InputFloat32Register(0);
|
| - FloatRegister right_reg = i.InputFloat32Register(1);
|
| - FloatRegister result_reg = i.OutputFloat32Register();
|
| - Label result_is_nan, return_left, return_right, check_zero, done;
|
| - __ VFPCompareAndSetFlags(left_reg, right_reg);
|
| - __ b(mi, &return_right);
|
| - __ b(gt, &return_left);
|
| - __ b(vs, &result_is_nan);
|
| - // Left equals right => check for -0.
|
| - __ VFPCompareAndSetFlags(left_reg, 0.0);
|
| - if (left_reg.is(result_reg) || right_reg.is(result_reg)) {
|
| - __ b(ne, &done); // left == right != 0.
|
| + SwVfpRegister result = i.OutputFloat32Register();
|
| + SwVfpRegister left = i.InputFloat32Register(0);
|
| + SwVfpRegister right = i.InputFloat32Register(1);
|
| + if (left.is(right)) {
|
| + __ Move(result, left);
|
| } else {
|
| - __ b(ne, &return_left); // left == right != 0.
|
| + auto ool = new (zone()) OutOfLineFloat32Max(this, result, left, right);
|
| + __ FloatMax(result, left, right, ool->entry());
|
| + __ bind(ool->exit());
|
| }
|
| - // At this point, both left and right are either 0 or -0.
|
| - // Since we operate on +0 and/or -0, vadd and vand have the same effect;
|
| - // the decision for vadd is easy because vand is a NEON instruction.
|
| - __ vadd(result_reg, left_reg, right_reg);
|
| - __ b(&done);
|
| - __ bind(&result_is_nan);
|
| - __ vadd(result_reg, left_reg, right_reg);
|
| - __ b(&done);
|
| - __ bind(&return_right);
|
| - __ Move(result_reg, right_reg);
|
| - if (!left_reg.is(result_reg)) __ b(&done);
|
| - __ bind(&return_left);
|
| - __ Move(result_reg, left_reg);
|
| - __ bind(&done);
|
| + DCHECK_EQ(LeaveCC, i.OutputSBit());
|
| break;
|
| }
|
| case kArmFloat64Max: {
|
| - DwVfpRegister left_reg = i.InputDoubleRegister(0);
|
| - DwVfpRegister right_reg = i.InputDoubleRegister(1);
|
| - DwVfpRegister result_reg = i.OutputDoubleRegister();
|
| - Label result_is_nan, return_left, return_right, check_zero, done;
|
| - __ VFPCompareAndSetFlags(left_reg, right_reg);
|
| - __ b(mi, &return_right);
|
| - __ b(gt, &return_left);
|
| - __ b(vs, &result_is_nan);
|
| - // Left equals right => check for -0.
|
| - __ VFPCompareAndSetFlags(left_reg, 0.0);
|
| - if (left_reg.is(result_reg) || right_reg.is(result_reg)) {
|
| - __ b(ne, &done); // left == right != 0.
|
| + DwVfpRegister result = i.OutputDoubleRegister();
|
| + DwVfpRegister left = i.InputDoubleRegister(0);
|
| + DwVfpRegister right = i.InputDoubleRegister(1);
|
| + if (left.is(right)) {
|
| + __ Move(result, left);
|
| } else {
|
| - __ b(ne, &return_left); // left == right != 0.
|
| + auto ool = new (zone()) OutOfLineFloat64Max(this, result, left, right);
|
| + __ FloatMax(result, left, right, ool->entry());
|
| + __ bind(ool->exit());
|
| }
|
| - // At this point, both left and right are either 0 or -0.
|
| - // Since we operate on +0 and/or -0, vadd and vand have the same effect;
|
| - // the decision for vadd is easy because vand is a NEON instruction.
|
| - __ vadd(result_reg, left_reg, right_reg);
|
| - __ b(&done);
|
| - __ bind(&result_is_nan);
|
| - __ vadd(result_reg, left_reg, right_reg);
|
| - __ b(&done);
|
| - __ bind(&return_right);
|
| - __ Move(result_reg, right_reg);
|
| - if (!left_reg.is(result_reg)) __ b(&done);
|
| - __ bind(&return_left);
|
| - __ Move(result_reg, left_reg);
|
| - __ bind(&done);
|
| + DCHECK_EQ(LeaveCC, i.OutputSBit());
|
| break;
|
| }
|
| case kArmFloat32Min: {
|
| - FloatRegister left_reg = i.InputFloat32Register(0);
|
| - FloatRegister right_reg = i.InputFloat32Register(1);
|
| - FloatRegister result_reg = i.OutputFloat32Register();
|
| - Label result_is_nan, return_left, return_right, check_zero, done;
|
| - __ VFPCompareAndSetFlags(left_reg, right_reg);
|
| - __ b(mi, &return_left);
|
| - __ b(gt, &return_right);
|
| - __ b(vs, &result_is_nan);
|
| - // Left equals right => check for -0.
|
| - __ VFPCompareAndSetFlags(left_reg, 0.0);
|
| - if (left_reg.is(result_reg) || right_reg.is(result_reg)) {
|
| - __ b(ne, &done); // left == right != 0.
|
| + SwVfpRegister result = i.OutputFloat32Register();
|
| + SwVfpRegister left = i.InputFloat32Register(0);
|
| + SwVfpRegister right = i.InputFloat32Register(1);
|
| + if (left.is(right)) {
|
| + __ Move(result, left);
|
| } else {
|
| - __ b(ne, &return_left); // left == right != 0.
|
| + auto ool = new (zone()) OutOfLineFloat32Min(this, result, left, right);
|
| + __ FloatMin(result, left, right, ool->entry());
|
| + __ bind(ool->exit());
|
| }
|
| - // At this point, both left and right are either 0 or -0.
|
| - // We could use a single 'vorr' instruction here if we had NEON support.
|
| - // The algorithm is: -((-L) + (-R)), which in case of L and R being
|
| - // different registers is most efficiently expressed as -((-L) - R).
|
| - __ vneg(left_reg, left_reg);
|
| - if (left_reg.is(right_reg)) {
|
| - __ vadd(result_reg, left_reg, right_reg);
|
| - } else {
|
| - __ vsub(result_reg, left_reg, right_reg);
|
| - }
|
| - __ vneg(result_reg, result_reg);
|
| - __ b(&done);
|
| - __ bind(&result_is_nan);
|
| - __ vadd(result_reg, left_reg, right_reg);
|
| - __ b(&done);
|
| - __ bind(&return_right);
|
| - __ Move(result_reg, right_reg);
|
| - if (!left_reg.is(result_reg)) __ b(&done);
|
| - __ bind(&return_left);
|
| - __ Move(result_reg, left_reg);
|
| - __ bind(&done);
|
| + DCHECK_EQ(LeaveCC, i.OutputSBit());
|
| break;
|
| }
|
| case kArmFloat64Min: {
|
| - DwVfpRegister left_reg = i.InputDoubleRegister(0);
|
| - DwVfpRegister right_reg = i.InputDoubleRegister(1);
|
| - DwVfpRegister result_reg = i.OutputDoubleRegister();
|
| - Label result_is_nan, return_left, return_right, check_zero, done;
|
| - __ VFPCompareAndSetFlags(left_reg, right_reg);
|
| - __ b(mi, &return_left);
|
| - __ b(gt, &return_right);
|
| - __ b(vs, &result_is_nan);
|
| - // Left equals right => check for -0.
|
| - __ VFPCompareAndSetFlags(left_reg, 0.0);
|
| - if (left_reg.is(result_reg) || right_reg.is(result_reg)) {
|
| - __ b(ne, &done); // left == right != 0.
|
| + DwVfpRegister result = i.OutputDoubleRegister();
|
| + DwVfpRegister left = i.InputDoubleRegister(0);
|
| + DwVfpRegister right = i.InputDoubleRegister(1);
|
| + if (left.is(right)) {
|
| + __ Move(result, left);
|
| } else {
|
| - __ b(ne, &return_left); // left == right != 0.
|
| + auto ool = new (zone()) OutOfLineFloat64Min(this, result, left, right);
|
| + __ FloatMin(result, left, right, ool->entry());
|
| + __ bind(ool->exit());
|
| }
|
| - // At this point, both left and right are either 0 or -0.
|
| - // We could use a single 'vorr' instruction here if we had NEON support.
|
| - // The algorithm is: -((-L) + (-R)), which in case of L and R being
|
| - // different registers is most efficiently expressed as -((-L) - R).
|
| - __ vneg(left_reg, left_reg);
|
| - if (left_reg.is(right_reg)) {
|
| - __ vadd(result_reg, left_reg, right_reg);
|
| - } else {
|
| - __ vsub(result_reg, left_reg, right_reg);
|
| - }
|
| - __ vneg(result_reg, result_reg);
|
| - __ b(&done);
|
| - __ bind(&result_is_nan);
|
| - __ vadd(result_reg, left_reg, right_reg);
|
| - __ b(&done);
|
| - __ bind(&return_right);
|
| - __ Move(result_reg, right_reg);
|
| - if (!left_reg.is(result_reg)) __ b(&done);
|
| - __ bind(&return_left);
|
| - __ Move(result_reg, left_reg);
|
| - __ bind(&done);
|
| + DCHECK_EQ(LeaveCC, i.OutputSBit());
|
| break;
|
| }
|
| case kArmFloat64SilenceNaN: {
|
|
|