OLD | NEW |
---|---|
(Empty) | |
1 // Copyright 2014 the V8 project authors. All rights reserved. | |
2 // Redistribution and use in source and binary forms, with or without | |
3 // modification, are permitted provided that the following conditions are | |
4 // met: | |
5 // | |
6 // * Redistributions of source code must retain the above copyright | |
7 // notice, this list of conditions and the following disclaimer. | |
8 // * Redistributions in binary form must reproduce the above | |
9 // copyright notice, this list of conditions and the following | |
10 // disclaimer in the documentation and/or other materials provided | |
11 // with the distribution. | |
12 // * Neither the name of Google Inc. nor the names of its | |
13 // contributors may be used to endorse or promote products derived | |
14 // from this software without specific prior written permission. | |
15 // | |
16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS | |
17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT | |
18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR | |
19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT | |
20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | |
21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT | |
22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, | |
23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY | |
24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT | |
25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE | |
26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | |
27 | |
28 #include "parser-symbol-table.h" | |
29 | |
30 #include "api.h" | |
31 #include "objects.h" | |
32 | |
33 namespace v8 { | |
34 namespace internal { | |
35 | |
36 namespace { | |
37 | |
38 template <typename Char> | |
39 int vector_hash(Vector<const Char> string) { | |
40 int hash = 0; | |
41 for (int i = 0; i < string.length(); i++) { | |
42 int c = static_cast<int>(string[i]); | |
43 hash += c; | |
44 hash += (hash << 10); | |
45 hash ^= (hash >> 6); | |
46 } | |
47 return hash; | |
48 } | |
49 | |
50 | |
51 bool vector_compare(void* a, void* b) { | |
52 ParserSymbolTable::Symbol* string1 = | |
53 reinterpret_cast<ParserSymbolTable::Symbol*>(a); | |
54 ParserSymbolTable::Symbol* string2 = | |
55 reinterpret_cast<ParserSymbolTable::Symbol*>(b); | |
56 if (string1->is_one_byte != string2->is_one_byte) return false; | |
57 if (string1->hash != string2->hash) return false; | |
ulan
2014/05/21 15:01:22
I think HashMap guarantees that the hashes are equ
marja
2014/05/21 17:16:45
Actually, not. Turns out this case is sometimes hi
| |
58 int length = string1->literal_bytes.length(); | |
59 if (string2->literal_bytes.length() != length) return false; | |
60 return memcmp(string1->literal_bytes.start(), | |
61 string2->literal_bytes.start(), length) == 0; | |
62 } | |
63 | |
64 } | |
65 | |
66 | |
67 ParserSymbolTable::ParserSymbolTable() | |
68 : literal_chars_(0), | |
69 symbol_keys_(0), | |
70 string_table_(vector_compare), | |
71 isolate_(NULL) { | |
72 { | |
ulan
2014/05/21 15:01:22
How about second order macro for this? :)
| |
73 const char* data = "(anonymous function)"; | |
74 anonymous_function_string_ = GetOneByteSymbol( | |
75 Vector<const uint8_t>(reinterpret_cast<const uint8_t*>(data), 20)); | |
76 } | |
77 { | |
78 const char* data = "arguments"; | |
79 arguments_string_ = GetOneByteSymbol( | |
80 Vector<const uint8_t>(reinterpret_cast<const uint8_t*>(data), 9)); | |
81 } | |
82 { | |
83 const char* data = ".for"; | |
84 dot_for_string_ = GetOneByteSymbol( | |
85 Vector<const uint8_t>(reinterpret_cast<const uint8_t*>(data), 4)); | |
86 } | |
87 { | |
88 const char* data = ".iterator"; | |
89 dot_iterator_string_ = GetOneByteSymbol( | |
90 Vector<const uint8_t>(reinterpret_cast<const uint8_t*>(data), 9)); | |
91 } | |
92 { | |
93 const char* data = ".module"; | |
94 dot_module_string_ = GetOneByteSymbol( | |
95 Vector<const uint8_t>(reinterpret_cast<const uint8_t*>(data), 7)); | |
96 } | |
97 { | |
98 const char* data = ".result"; | |
99 dot_result_string_ = GetOneByteSymbol( | |
100 Vector<const uint8_t>(reinterpret_cast<const uint8_t*>(data), 7)); | |
101 } | |
102 { | |
103 const char* data = ""; | |
104 empty_string_ = GetOneByteSymbol( | |
105 Vector<const uint8_t>(reinterpret_cast<const uint8_t*>(data), 0)); | |
106 } | |
107 { | |
108 const char* data = "eval"; | |
109 eval_string_ = GetOneByteSymbol( | |
110 Vector<const uint8_t>(reinterpret_cast<const uint8_t*>(data), 4)); | |
111 } | |
112 { | |
113 const char* data = "InitializeConstGlobal"; | |
114 initialize_const_global_string_ = GetOneByteSymbol( | |
115 Vector<const uint8_t>(reinterpret_cast<const uint8_t*>(data), 21)); | |
116 } | |
117 { | |
118 const char* data = "InitializeVarGlobal"; | |
119 initialize_var_global_string_ = GetOneByteSymbol( | |
120 Vector<const uint8_t>(reinterpret_cast<const uint8_t*>(data), 19)); | |
121 } | |
122 { | |
123 const char* data = "MakeReferenceError"; | |
124 make_reference_error_string_ = GetOneByteSymbol( | |
125 Vector<const uint8_t>(reinterpret_cast<const uint8_t*>(data), 18)); | |
126 } | |
127 { | |
128 const char* data = "MakeSyntaxError"; | |
129 make_syntax_error_string_ = GetOneByteSymbol( | |
130 Vector<const uint8_t>(reinterpret_cast<const uint8_t*>(data), 15)); | |
131 } | |
132 { | |
133 const char* data = "MakeTypeError"; | |
134 make_type_error_string_ = GetOneByteSymbol( | |
135 Vector<const uint8_t>(reinterpret_cast<const uint8_t*>(data), 13)); | |
136 } | |
137 { | |
138 const char* data = "module"; | |
139 module_string_ = GetOneByteSymbol( | |
140 Vector<const uint8_t>(reinterpret_cast<const uint8_t*>(data), 6)); | |
141 } | |
142 { | |
143 const char* data = "native"; | |
144 native_string_ = GetOneByteSymbol( | |
145 Vector<const uint8_t>(reinterpret_cast<const uint8_t*>(data), 6)); | |
146 } | |
147 { | |
148 const char* data = "prototype"; | |
149 prototype_string_ = GetOneByteSymbol( | |
150 Vector<const uint8_t>(reinterpret_cast<const uint8_t*>(data), 9)); | |
151 } | |
152 { | |
153 const char* data = "this"; | |
154 this_string_ = GetOneByteSymbol( | |
155 Vector<const uint8_t>(reinterpret_cast<const uint8_t*>(data), 4)); | |
156 } | |
157 { | |
158 const char* data = "use strict"; | |
159 use_strict_string_ = GetOneByteSymbol( | |
160 Vector<const uint8_t>(reinterpret_cast<const uint8_t*>(data), 10)); | |
161 } | |
162 } | |
163 | |
164 | |
165 ParserSymbolTable::Symbol* ParserSymbolTable::GetOneByteSymbol( | |
166 Vector<const uint8_t> literal) { | |
167 return GetSymbol(vector_hash(literal), true, literal); | |
168 } | |
169 | |
170 | |
171 ParserSymbolTable::Symbol* ParserSymbolTable::GetTwoByteSymbol( | |
172 Vector<const uint16_t> literal) { | |
173 return GetSymbol(vector_hash(literal), false, | |
174 Vector<const byte>::cast(literal)); | |
175 } | |
176 | |
177 | |
178 ParserSymbolTable::Symbol* ParserSymbolTable::GetSymbol( | |
179 Handle<String> literal) { | |
180 DisallowHeapAllocation no_gc; | |
181 String::FlatContent content = literal->GetFlatContent(); | |
182 if (content.IsAscii()) { | |
183 return GetOneByteSymbol(content.ToOneByteVector()); | |
184 } | |
185 ASSERT(content.IsTwoByte()); | |
186 return GetTwoByteSymbol(content.ToUC16Vector()); | |
187 } | |
188 | |
189 | |
190 bool ParserSymbolTable::SymbolMatches(Symbol* symbol, const char* data, | |
191 int length) { | |
192 if (symbol != NULL && symbol->is_one_byte && | |
193 symbol->literal_bytes.length() == length) { | |
194 const char* token = | |
195 reinterpret_cast<const char*>(symbol->literal_bytes.start()); | |
196 return !strncmp(token, data, length); | |
197 } | |
198 return false; | |
199 } | |
200 | |
201 | |
202 void ParserSymbolTable::Internalize(Isolate* isolate) { | |
203 for (HashMap::Entry* p = string_table_.Start(); p != NULL; | |
204 p = string_table_.Next(p)) { | |
205 ParserSymbolTable::Symbol* symbol = | |
206 reinterpret_cast<ParserSymbolTable::Symbol*>(p->key); | |
207 Internalize(symbol, isolate); | |
208 } | |
209 // FIXME: can we free the backing store now? Maybe not. | |
210 isolate_ = isolate; | |
211 } | |
212 | |
213 | |
214 bool ParserSymbolTable::IsArrayIndexSlow(Symbol* symbol, uint32_t* index) { | |
215 ASSERT(symbol != NULL); | |
216 if (!symbol->is_one_byte) return false; | |
217 if (symbol->literal_bytes.length() == 0 || | |
218 symbol->literal_bytes.length() > String::kMaxArrayIndexSize) | |
219 return false; | |
220 | |
221 uint16_t ch = symbol->literal_bytes.at(0); | |
222 // If the string begins with a '0' character, it must only consist | |
223 // of it to be a legal array index. | |
224 if (ch == '0') { | |
225 if (index != NULL) *index = 0; | |
226 return symbol->literal_bytes.length() == 1; | |
227 } | |
228 | |
229 int d = ch - '0'; | |
230 if (d < 0 || d > 9) return false; | |
231 uint32_t result = d; | |
232 for (int i = 1; i < symbol->literal_bytes.length(); ++i) { | |
233 d = symbol->literal_bytes.at(i) - '0'; | |
234 if (d < 0 || d > 9) return false; | |
235 // Check that the new result is below the 32 bit limit. | |
236 if (result > 429496729U - ((d > 5) ? 1 : 0)) return false; | |
237 result = (result * 10) + d; | |
238 } | |
239 if (index != NULL) *index = result; | |
240 return true; | |
241 } | |
242 | |
243 | |
244 ParserSymbolTable::Symbol* ParserSymbolTable::GetSymbol( | |
245 int hash, bool is_one_byte, Vector<const byte> literal_bytes) { | |
246 // literal_bytes here points to whatever the user passed, and this is OK | |
247 // because we use vector_compare (which checks the contents) to compare | |
248 // against the Symbols which are in the string_table_. We should not return | |
249 // this Symbol. | |
250 Symbol key(is_one_byte, literal_bytes, hash); | |
251 HashMap::Entry* entry = string_table_.Lookup(&key, hash, true); | |
252 if (entry->value == NULL) { | |
253 // Copy literal contents for later comparison. | |
254 key.literal_bytes = | |
255 Vector<const byte>::cast(literal_chars_.AddBlock(literal_bytes)); | |
256 // This Vector will be valid as long as the Collector is alive (meaning that | |
257 // the Symbol will not be moved). | |
258 Vector<Symbol> symbol = symbol_keys_.AddBlock(1, key); | |
259 entry->key = &symbol[0]; | |
260 if (isolate_) { | |
261 Internalize(&symbol[0], isolate_); | |
262 } | |
263 entry->value = reinterpret_cast<void*>(1); | |
264 } | |
265 return reinterpret_cast<Symbol*>(entry->key); | |
266 } | |
267 | |
268 | |
269 void ParserSymbolTable::Internalize(ParserSymbolTable::Symbol* symbol, Isolate* isolate) { | |
270 ASSERT(symbol != NULL); | |
271 if (symbol->literal_bytes.length() == 0) { | |
272 symbol->string_ = isolate->factory()->empty_string(); | |
273 } | |
274 else if (symbol->is_one_byte) { | |
275 symbol->string_ = isolate->factory()->InternalizeOneByteString(symbol->liter al_bytes); | |
276 } else { | |
277 symbol->string_ = isolate->factory()->InternalizeTwoByteString( | |
278 Vector<const uint16_t>::cast(symbol->literal_bytes)); | |
279 } | |
280 } | |
281 | |
282 | |
283 } } // namespace v8::internal | |
OLD | NEW |