Chromium Code Reviews| OLD | NEW |
|---|---|
| (Empty) | |
| 1 // Copyright 2014 the V8 project authors. All rights reserved. | |
| 2 // Redistribution and use in source and binary forms, with or without | |
| 3 // modification, are permitted provided that the following conditions are | |
| 4 // met: | |
| 5 // | |
| 6 // * Redistributions of source code must retain the above copyright | |
| 7 // notice, this list of conditions and the following disclaimer. | |
| 8 // * Redistributions in binary form must reproduce the above | |
| 9 // copyright notice, this list of conditions and the following | |
| 10 // disclaimer in the documentation and/or other materials provided | |
| 11 // with the distribution. | |
| 12 // * Neither the name of Google Inc. nor the names of its | |
| 13 // contributors may be used to endorse or promote products derived | |
| 14 // from this software without specific prior written permission. | |
| 15 // | |
| 16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS | |
| 17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT | |
| 18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR | |
| 19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT | |
| 20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | |
| 21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT | |
| 22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, | |
| 23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY | |
| 24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT | |
| 25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE | |
| 26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | |
| 27 | |
| 28 #include "parser-symbol-table.h" | |
| 29 | |
| 30 #include "api.h" | |
| 31 #include "objects.h" | |
| 32 | |
| 33 namespace v8 { | |
| 34 namespace internal { | |
| 35 | |
| 36 namespace { | |
| 37 | |
| 38 template <typename Char> | |
| 39 int vector_hash(Vector<const Char> string) { | |
| 40 int hash = 0; | |
| 41 for (int i = 0; i < string.length(); i++) { | |
| 42 int c = static_cast<int>(string[i]); | |
| 43 hash += c; | |
| 44 hash += (hash << 10); | |
| 45 hash ^= (hash >> 6); | |
| 46 } | |
| 47 return hash; | |
| 48 } | |
| 49 | |
| 50 | |
| 51 bool vector_compare(void* a, void* b) { | |
| 52 ParserSymbolTable::Symbol* string1 = | |
| 53 reinterpret_cast<ParserSymbolTable::Symbol*>(a); | |
| 54 ParserSymbolTable::Symbol* string2 = | |
| 55 reinterpret_cast<ParserSymbolTable::Symbol*>(b); | |
| 56 if (string1->is_one_byte != string2->is_one_byte) return false; | |
| 57 if (string1->hash != string2->hash) return false; | |
|
ulan
2014/05/21 15:01:22
I think HashMap guarantees that the hashes are equ
marja
2014/05/21 17:16:45
Actually, not. Turns out this case is sometimes hi
| |
| 58 int length = string1->literal_bytes.length(); | |
| 59 if (string2->literal_bytes.length() != length) return false; | |
| 60 return memcmp(string1->literal_bytes.start(), | |
| 61 string2->literal_bytes.start(), length) == 0; | |
| 62 } | |
| 63 | |
| 64 } | |
| 65 | |
| 66 | |
| 67 ParserSymbolTable::ParserSymbolTable() | |
| 68 : literal_chars_(0), | |
| 69 symbol_keys_(0), | |
| 70 string_table_(vector_compare), | |
| 71 isolate_(NULL) { | |
| 72 { | |
|
ulan
2014/05/21 15:01:22
How about second order macro for this? :)
| |
| 73 const char* data = "(anonymous function)"; | |
| 74 anonymous_function_string_ = GetOneByteSymbol( | |
| 75 Vector<const uint8_t>(reinterpret_cast<const uint8_t*>(data), 20)); | |
| 76 } | |
| 77 { | |
| 78 const char* data = "arguments"; | |
| 79 arguments_string_ = GetOneByteSymbol( | |
| 80 Vector<const uint8_t>(reinterpret_cast<const uint8_t*>(data), 9)); | |
| 81 } | |
| 82 { | |
| 83 const char* data = ".for"; | |
| 84 dot_for_string_ = GetOneByteSymbol( | |
| 85 Vector<const uint8_t>(reinterpret_cast<const uint8_t*>(data), 4)); | |
| 86 } | |
| 87 { | |
| 88 const char* data = ".iterator"; | |
| 89 dot_iterator_string_ = GetOneByteSymbol( | |
| 90 Vector<const uint8_t>(reinterpret_cast<const uint8_t*>(data), 9)); | |
| 91 } | |
| 92 { | |
| 93 const char* data = ".module"; | |
| 94 dot_module_string_ = GetOneByteSymbol( | |
| 95 Vector<const uint8_t>(reinterpret_cast<const uint8_t*>(data), 7)); | |
| 96 } | |
| 97 { | |
| 98 const char* data = ".result"; | |
| 99 dot_result_string_ = GetOneByteSymbol( | |
| 100 Vector<const uint8_t>(reinterpret_cast<const uint8_t*>(data), 7)); | |
| 101 } | |
| 102 { | |
| 103 const char* data = ""; | |
| 104 empty_string_ = GetOneByteSymbol( | |
| 105 Vector<const uint8_t>(reinterpret_cast<const uint8_t*>(data), 0)); | |
| 106 } | |
| 107 { | |
| 108 const char* data = "eval"; | |
| 109 eval_string_ = GetOneByteSymbol( | |
| 110 Vector<const uint8_t>(reinterpret_cast<const uint8_t*>(data), 4)); | |
| 111 } | |
| 112 { | |
| 113 const char* data = "InitializeConstGlobal"; | |
| 114 initialize_const_global_string_ = GetOneByteSymbol( | |
| 115 Vector<const uint8_t>(reinterpret_cast<const uint8_t*>(data), 21)); | |
| 116 } | |
| 117 { | |
| 118 const char* data = "InitializeVarGlobal"; | |
| 119 initialize_var_global_string_ = GetOneByteSymbol( | |
| 120 Vector<const uint8_t>(reinterpret_cast<const uint8_t*>(data), 19)); | |
| 121 } | |
| 122 { | |
| 123 const char* data = "MakeReferenceError"; | |
| 124 make_reference_error_string_ = GetOneByteSymbol( | |
| 125 Vector<const uint8_t>(reinterpret_cast<const uint8_t*>(data), 18)); | |
| 126 } | |
| 127 { | |
| 128 const char* data = "MakeSyntaxError"; | |
| 129 make_syntax_error_string_ = GetOneByteSymbol( | |
| 130 Vector<const uint8_t>(reinterpret_cast<const uint8_t*>(data), 15)); | |
| 131 } | |
| 132 { | |
| 133 const char* data = "MakeTypeError"; | |
| 134 make_type_error_string_ = GetOneByteSymbol( | |
| 135 Vector<const uint8_t>(reinterpret_cast<const uint8_t*>(data), 13)); | |
| 136 } | |
| 137 { | |
| 138 const char* data = "module"; | |
| 139 module_string_ = GetOneByteSymbol( | |
| 140 Vector<const uint8_t>(reinterpret_cast<const uint8_t*>(data), 6)); | |
| 141 } | |
| 142 { | |
| 143 const char* data = "native"; | |
| 144 native_string_ = GetOneByteSymbol( | |
| 145 Vector<const uint8_t>(reinterpret_cast<const uint8_t*>(data), 6)); | |
| 146 } | |
| 147 { | |
| 148 const char* data = "prototype"; | |
| 149 prototype_string_ = GetOneByteSymbol( | |
| 150 Vector<const uint8_t>(reinterpret_cast<const uint8_t*>(data), 9)); | |
| 151 } | |
| 152 { | |
| 153 const char* data = "this"; | |
| 154 this_string_ = GetOneByteSymbol( | |
| 155 Vector<const uint8_t>(reinterpret_cast<const uint8_t*>(data), 4)); | |
| 156 } | |
| 157 { | |
| 158 const char* data = "use strict"; | |
| 159 use_strict_string_ = GetOneByteSymbol( | |
| 160 Vector<const uint8_t>(reinterpret_cast<const uint8_t*>(data), 10)); | |
| 161 } | |
| 162 } | |
| 163 | |
| 164 | |
| 165 ParserSymbolTable::Symbol* ParserSymbolTable::GetOneByteSymbol( | |
| 166 Vector<const uint8_t> literal) { | |
| 167 return GetSymbol(vector_hash(literal), true, literal); | |
| 168 } | |
| 169 | |
| 170 | |
| 171 ParserSymbolTable::Symbol* ParserSymbolTable::GetTwoByteSymbol( | |
| 172 Vector<const uint16_t> literal) { | |
| 173 return GetSymbol(vector_hash(literal), false, | |
| 174 Vector<const byte>::cast(literal)); | |
| 175 } | |
| 176 | |
| 177 | |
| 178 ParserSymbolTable::Symbol* ParserSymbolTable::GetSymbol( | |
| 179 Handle<String> literal) { | |
| 180 DisallowHeapAllocation no_gc; | |
| 181 String::FlatContent content = literal->GetFlatContent(); | |
| 182 if (content.IsAscii()) { | |
| 183 return GetOneByteSymbol(content.ToOneByteVector()); | |
| 184 } | |
| 185 ASSERT(content.IsTwoByte()); | |
| 186 return GetTwoByteSymbol(content.ToUC16Vector()); | |
| 187 } | |
| 188 | |
| 189 | |
| 190 bool ParserSymbolTable::SymbolMatches(Symbol* symbol, const char* data, | |
| 191 int length) { | |
| 192 if (symbol != NULL && symbol->is_one_byte && | |
| 193 symbol->literal_bytes.length() == length) { | |
| 194 const char* token = | |
| 195 reinterpret_cast<const char*>(symbol->literal_bytes.start()); | |
| 196 return !strncmp(token, data, length); | |
| 197 } | |
| 198 return false; | |
| 199 } | |
| 200 | |
| 201 | |
| 202 void ParserSymbolTable::Internalize(Isolate* isolate) { | |
| 203 for (HashMap::Entry* p = string_table_.Start(); p != NULL; | |
| 204 p = string_table_.Next(p)) { | |
| 205 ParserSymbolTable::Symbol* symbol = | |
| 206 reinterpret_cast<ParserSymbolTable::Symbol*>(p->key); | |
| 207 Internalize(symbol, isolate); | |
| 208 } | |
| 209 // FIXME: can we free the backing store now? Maybe not. | |
| 210 isolate_ = isolate; | |
| 211 } | |
| 212 | |
| 213 | |
| 214 bool ParserSymbolTable::IsArrayIndexSlow(Symbol* symbol, uint32_t* index) { | |
| 215 ASSERT(symbol != NULL); | |
| 216 if (!symbol->is_one_byte) return false; | |
| 217 if (symbol->literal_bytes.length() == 0 || | |
| 218 symbol->literal_bytes.length() > String::kMaxArrayIndexSize) | |
| 219 return false; | |
| 220 | |
| 221 uint16_t ch = symbol->literal_bytes.at(0); | |
| 222 // If the string begins with a '0' character, it must only consist | |
| 223 // of it to be a legal array index. | |
| 224 if (ch == '0') { | |
| 225 if (index != NULL) *index = 0; | |
| 226 return symbol->literal_bytes.length() == 1; | |
| 227 } | |
| 228 | |
| 229 int d = ch - '0'; | |
| 230 if (d < 0 || d > 9) return false; | |
| 231 uint32_t result = d; | |
| 232 for (int i = 1; i < symbol->literal_bytes.length(); ++i) { | |
| 233 d = symbol->literal_bytes.at(i) - '0'; | |
| 234 if (d < 0 || d > 9) return false; | |
| 235 // Check that the new result is below the 32 bit limit. | |
| 236 if (result > 429496729U - ((d > 5) ? 1 : 0)) return false; | |
| 237 result = (result * 10) + d; | |
| 238 } | |
| 239 if (index != NULL) *index = result; | |
| 240 return true; | |
| 241 } | |
| 242 | |
| 243 | |
| 244 ParserSymbolTable::Symbol* ParserSymbolTable::GetSymbol( | |
| 245 int hash, bool is_one_byte, Vector<const byte> literal_bytes) { | |
| 246 // literal_bytes here points to whatever the user passed, and this is OK | |
| 247 // because we use vector_compare (which checks the contents) to compare | |
| 248 // against the Symbols which are in the string_table_. We should not return | |
| 249 // this Symbol. | |
| 250 Symbol key(is_one_byte, literal_bytes, hash); | |
| 251 HashMap::Entry* entry = string_table_.Lookup(&key, hash, true); | |
| 252 if (entry->value == NULL) { | |
| 253 // Copy literal contents for later comparison. | |
| 254 key.literal_bytes = | |
| 255 Vector<const byte>::cast(literal_chars_.AddBlock(literal_bytes)); | |
| 256 // This Vector will be valid as long as the Collector is alive (meaning that | |
| 257 // the Symbol will not be moved). | |
| 258 Vector<Symbol> symbol = symbol_keys_.AddBlock(1, key); | |
| 259 entry->key = &symbol[0]; | |
| 260 if (isolate_) { | |
| 261 Internalize(&symbol[0], isolate_); | |
| 262 } | |
| 263 entry->value = reinterpret_cast<void*>(1); | |
| 264 } | |
| 265 return reinterpret_cast<Symbol*>(entry->key); | |
| 266 } | |
| 267 | |
| 268 | |
| 269 void ParserSymbolTable::Internalize(ParserSymbolTable::Symbol* symbol, Isolate* isolate) { | |
| 270 ASSERT(symbol != NULL); | |
| 271 if (symbol->literal_bytes.length() == 0) { | |
| 272 symbol->string_ = isolate->factory()->empty_string(); | |
| 273 } | |
| 274 else if (symbol->is_one_byte) { | |
| 275 symbol->string_ = isolate->factory()->InternalizeOneByteString(symbol->liter al_bytes); | |
| 276 } else { | |
| 277 symbol->string_ = isolate->factory()->InternalizeTwoByteString( | |
| 278 Vector<const uint16_t>::cast(symbol->literal_bytes)); | |
| 279 } | |
| 280 } | |
| 281 | |
| 282 | |
| 283 } } // namespace v8::internal | |
| OLD | NEW |