Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(395)

Side by Side Diff: src/types.cc

Issue 2309823002: [turbofan] put src/types.[h/cc] into src/compiler/types.[h/cc] (Closed)
Patch Set: Updates/comments. Created 4 years, 3 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View unified diff | Download patch
« no previous file with comments | « src/types.h ('k') | src/v8.gyp » ('j') | no next file with comments »
Toggle Intra-line Diffs ('i') | Expand Comments ('e') | Collapse Comments ('c') | Show Comments Hide Comments ('s')
OLDNEW
(Empty)
1 // Copyright 2014 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 #include <iomanip>
6
7 #include "src/types.h"
8
9 #include "src/handles-inl.h"
10 #include "src/ostreams.h"
11
12 namespace v8 {
13 namespace internal {
14
15
16 // NOTE: If code is marked as being a "shortcut", this means that removing
17 // the code won't affect the semantics of the surrounding function definition.
18
19 // static
20 bool Type::IsInteger(i::Object* x) {
21 return x->IsNumber() && Type::IsInteger(x->Number());
22 }
23
24 // -----------------------------------------------------------------------------
25 // Range-related helper functions.
26
27 bool RangeType::Limits::IsEmpty() { return this->min > this->max; }
28
29 RangeType::Limits RangeType::Limits::Intersect(Limits lhs, Limits rhs) {
30 DisallowHeapAllocation no_allocation;
31 Limits result(lhs);
32 if (lhs.min < rhs.min) result.min = rhs.min;
33 if (lhs.max > rhs.max) result.max = rhs.max;
34 return result;
35 }
36
37 RangeType::Limits RangeType::Limits::Union(Limits lhs, Limits rhs) {
38 DisallowHeapAllocation no_allocation;
39 if (lhs.IsEmpty()) return rhs;
40 if (rhs.IsEmpty()) return lhs;
41 Limits result(lhs);
42 if (lhs.min > rhs.min) result.min = rhs.min;
43 if (lhs.max < rhs.max) result.max = rhs.max;
44 return result;
45 }
46
47 bool Type::Overlap(RangeType* lhs, RangeType* rhs) {
48 DisallowHeapAllocation no_allocation;
49 return !RangeType::Limits::Intersect(RangeType::Limits(lhs),
50 RangeType::Limits(rhs))
51 .IsEmpty();
52 }
53
54 bool Type::Contains(RangeType* lhs, RangeType* rhs) {
55 DisallowHeapAllocation no_allocation;
56 return lhs->Min() <= rhs->Min() && rhs->Max() <= lhs->Max();
57 }
58
59 bool Type::Contains(RangeType* lhs, ConstantType* rhs) {
60 DisallowHeapAllocation no_allocation;
61 return IsInteger(*rhs->Value()) &&
62 lhs->Min() <= rhs->Value()->Number() &&
63 rhs->Value()->Number() <= lhs->Max();
64 }
65
66 bool Type::Contains(RangeType* range, i::Object* val) {
67 DisallowHeapAllocation no_allocation;
68 return IsInteger(val) &&
69 range->Min() <= val->Number() && val->Number() <= range->Max();
70 }
71
72
73 // -----------------------------------------------------------------------------
74 // Min and Max computation.
75
76 double Type::Min() {
77 DCHECK(this->SemanticIs(Number()));
78 if (this->IsBitset()) return BitsetType::Min(this->AsBitset());
79 if (this->IsUnion()) {
80 double min = +V8_INFINITY;
81 for (int i = 0, n = this->AsUnion()->Length(); i < n; ++i) {
82 min = std::min(min, this->AsUnion()->Get(i)->Min());
83 }
84 return min;
85 }
86 if (this->IsRange()) return this->AsRange()->Min();
87 if (this->IsConstant()) return this->AsConstant()->Value()->Number();
88 UNREACHABLE();
89 return 0;
90 }
91
92 double Type::Max() {
93 DCHECK(this->SemanticIs(Number()));
94 if (this->IsBitset()) return BitsetType::Max(this->AsBitset());
95 if (this->IsUnion()) {
96 double max = -V8_INFINITY;
97 for (int i = 0, n = this->AsUnion()->Length(); i < n; ++i) {
98 max = std::max(max, this->AsUnion()->Get(i)->Max());
99 }
100 return max;
101 }
102 if (this->IsRange()) return this->AsRange()->Max();
103 if (this->IsConstant()) return this->AsConstant()->Value()->Number();
104 UNREACHABLE();
105 return 0;
106 }
107
108
109 // -----------------------------------------------------------------------------
110 // Glb and lub computation.
111
112
113 // The largest bitset subsumed by this type.
114 Type::bitset BitsetType::Glb(Type* type) {
115 DisallowHeapAllocation no_allocation;
116 // Fast case.
117 if (IsBitset(type)) {
118 return type->AsBitset();
119 } else if (type->IsUnion()) {
120 SLOW_DCHECK(type->AsUnion()->Wellformed());
121 return type->AsUnion()->Get(0)->BitsetGlb() |
122 SEMANTIC(type->AsUnion()->Get(1)->BitsetGlb()); // Shortcut.
123 } else if (type->IsRange()) {
124 bitset glb = SEMANTIC(
125 BitsetType::Glb(type->AsRange()->Min(), type->AsRange()->Max()));
126 return glb | REPRESENTATION(type->BitsetLub());
127 } else {
128 return type->Representation();
129 }
130 }
131
132
133 // The smallest bitset subsuming this type, possibly not a proper one.
134 Type::bitset BitsetType::Lub(Type* type) {
135 DisallowHeapAllocation no_allocation;
136 if (IsBitset(type)) return type->AsBitset();
137 if (type->IsUnion()) {
138 // Take the representation from the first element, which is always
139 // a bitset.
140 int bitset = type->AsUnion()->Get(0)->BitsetLub();
141 for (int i = 0, n = type->AsUnion()->Length(); i < n; ++i) {
142 // Other elements only contribute their semantic part.
143 bitset |= SEMANTIC(type->AsUnion()->Get(i)->BitsetLub());
144 }
145 return bitset;
146 }
147 if (type->IsConstant()) return type->AsConstant()->Lub();
148 if (type->IsRange()) return type->AsRange()->Lub();
149 if (type->IsTuple()) return kOtherInternal;
150 UNREACHABLE();
151 return kNone;
152 }
153
154 Type::bitset BitsetType::Lub(i::Map* map) {
155 DisallowHeapAllocation no_allocation;
156 switch (map->instance_type()) {
157 case STRING_TYPE:
158 case ONE_BYTE_STRING_TYPE:
159 case CONS_STRING_TYPE:
160 case CONS_ONE_BYTE_STRING_TYPE:
161 case SLICED_STRING_TYPE:
162 case SLICED_ONE_BYTE_STRING_TYPE:
163 case EXTERNAL_STRING_TYPE:
164 case EXTERNAL_ONE_BYTE_STRING_TYPE:
165 case EXTERNAL_STRING_WITH_ONE_BYTE_DATA_TYPE:
166 case SHORT_EXTERNAL_STRING_TYPE:
167 case SHORT_EXTERNAL_ONE_BYTE_STRING_TYPE:
168 case SHORT_EXTERNAL_STRING_WITH_ONE_BYTE_DATA_TYPE:
169 return kOtherString;
170 case INTERNALIZED_STRING_TYPE:
171 case ONE_BYTE_INTERNALIZED_STRING_TYPE:
172 case EXTERNAL_INTERNALIZED_STRING_TYPE:
173 case EXTERNAL_ONE_BYTE_INTERNALIZED_STRING_TYPE:
174 case EXTERNAL_INTERNALIZED_STRING_WITH_ONE_BYTE_DATA_TYPE:
175 case SHORT_EXTERNAL_INTERNALIZED_STRING_TYPE:
176 case SHORT_EXTERNAL_ONE_BYTE_INTERNALIZED_STRING_TYPE:
177 case SHORT_EXTERNAL_INTERNALIZED_STRING_WITH_ONE_BYTE_DATA_TYPE:
178 return kInternalizedString;
179 case SYMBOL_TYPE:
180 return kSymbol;
181 case ODDBALL_TYPE: {
182 Heap* heap = map->GetHeap();
183 if (map == heap->undefined_map()) return kUndefined;
184 if (map == heap->null_map()) return kNull;
185 if (map == heap->boolean_map()) return kBoolean;
186 if (map == heap->the_hole_map()) return kHole;
187 DCHECK(map == heap->uninitialized_map() ||
188 map == heap->no_interceptor_result_sentinel_map() ||
189 map == heap->termination_exception_map() ||
190 map == heap->arguments_marker_map() ||
191 map == heap->optimized_out_map() ||
192 map == heap->stale_register_map());
193 return kOtherInternal & kTaggedPointer;
194 }
195 case HEAP_NUMBER_TYPE:
196 return kNumber & kTaggedPointer;
197 case SIMD128_VALUE_TYPE:
198 return kSimd;
199 case JS_OBJECT_TYPE:
200 case JS_ARGUMENTS_TYPE:
201 case JS_ERROR_TYPE:
202 case JS_GLOBAL_OBJECT_TYPE:
203 case JS_GLOBAL_PROXY_TYPE:
204 case JS_API_OBJECT_TYPE:
205 case JS_SPECIAL_API_OBJECT_TYPE:
206 if (map->is_undetectable()) return kOtherUndetectable;
207 return kOtherObject;
208 case JS_VALUE_TYPE:
209 case JS_MESSAGE_OBJECT_TYPE:
210 case JS_DATE_TYPE:
211 case JS_CONTEXT_EXTENSION_OBJECT_TYPE:
212 case JS_GENERATOR_OBJECT_TYPE:
213 case JS_MODULE_TYPE:
214 case JS_ARRAY_BUFFER_TYPE:
215 case JS_ARRAY_TYPE:
216 case JS_REGEXP_TYPE: // TODO(rossberg): there should be a RegExp type.
217 case JS_TYPED_ARRAY_TYPE:
218 case JS_DATA_VIEW_TYPE:
219 case JS_SET_TYPE:
220 case JS_MAP_TYPE:
221 case JS_SET_ITERATOR_TYPE:
222 case JS_MAP_ITERATOR_TYPE:
223 case JS_WEAK_MAP_TYPE:
224 case JS_WEAK_SET_TYPE:
225 case JS_PROMISE_TYPE:
226 case JS_BOUND_FUNCTION_TYPE:
227 DCHECK(!map->is_undetectable());
228 return kOtherObject;
229 case JS_FUNCTION_TYPE:
230 DCHECK(!map->is_undetectable());
231 return kFunction;
232 case JS_PROXY_TYPE:
233 DCHECK(!map->is_undetectable());
234 return kProxy;
235 case MAP_TYPE:
236 case ALLOCATION_SITE_TYPE:
237 case ACCESSOR_INFO_TYPE:
238 case SHARED_FUNCTION_INFO_TYPE:
239 case ACCESSOR_PAIR_TYPE:
240 case FIXED_ARRAY_TYPE:
241 case FIXED_DOUBLE_ARRAY_TYPE:
242 case BYTE_ARRAY_TYPE:
243 case BYTECODE_ARRAY_TYPE:
244 case TRANSITION_ARRAY_TYPE:
245 case FOREIGN_TYPE:
246 case SCRIPT_TYPE:
247 case CODE_TYPE:
248 case PROPERTY_CELL_TYPE:
249 return kOtherInternal & kTaggedPointer;
250
251 // Remaining instance types are unsupported for now. If any of them do
252 // require bit set types, they should get kOtherInternal & kTaggedPointer.
253 case MUTABLE_HEAP_NUMBER_TYPE:
254 case FREE_SPACE_TYPE:
255 #define FIXED_TYPED_ARRAY_CASE(Type, type, TYPE, ctype, size) \
256 case FIXED_##TYPE##_ARRAY_TYPE:
257
258 TYPED_ARRAYS(FIXED_TYPED_ARRAY_CASE)
259 #undef FIXED_TYPED_ARRAY_CASE
260 case FILLER_TYPE:
261 case ACCESS_CHECK_INFO_TYPE:
262 case INTERCEPTOR_INFO_TYPE:
263 case CALL_HANDLER_INFO_TYPE:
264 case FUNCTION_TEMPLATE_INFO_TYPE:
265 case OBJECT_TEMPLATE_INFO_TYPE:
266 case SIGNATURE_INFO_TYPE:
267 case TYPE_SWITCH_INFO_TYPE:
268 case ALLOCATION_MEMENTO_TYPE:
269 case TYPE_FEEDBACK_INFO_TYPE:
270 case ALIASED_ARGUMENTS_ENTRY_TYPE:
271 case BOX_TYPE:
272 case DEBUG_INFO_TYPE:
273 case BREAK_POINT_INFO_TYPE:
274 case CELL_TYPE:
275 case WEAK_CELL_TYPE:
276 case PROTOTYPE_INFO_TYPE:
277 case CONTEXT_EXTENSION_TYPE:
278 UNREACHABLE();
279 return kNone;
280 }
281 UNREACHABLE();
282 return kNone;
283 }
284
285 Type::bitset BitsetType::Lub(i::Object* value) {
286 DisallowHeapAllocation no_allocation;
287 if (value->IsNumber()) {
288 return Lub(value->Number()) &
289 (value->IsSmi() ? kTaggedSigned : kTaggedPointer);
290 }
291 return Lub(i::HeapObject::cast(value)->map());
292 }
293
294 Type::bitset BitsetType::Lub(double value) {
295 DisallowHeapAllocation no_allocation;
296 if (i::IsMinusZero(value)) return kMinusZero;
297 if (std::isnan(value)) return kNaN;
298 if (IsUint32Double(value) || IsInt32Double(value)) return Lub(value, value);
299 return kOtherNumber;
300 }
301
302
303 // Minimum values of plain numeric bitsets.
304 const BitsetType::Boundary BitsetType::BoundariesArray[] = {
305 {kOtherNumber, kPlainNumber, -V8_INFINITY},
306 {kOtherSigned32, kNegative32, kMinInt},
307 {kNegative31, kNegative31, -0x40000000},
308 {kUnsigned30, kUnsigned30, 0},
309 {kOtherUnsigned31, kUnsigned31, 0x40000000},
310 {kOtherUnsigned32, kUnsigned32, 0x80000000},
311 {kOtherNumber, kPlainNumber, static_cast<double>(kMaxUInt32) + 1}};
312
313 const BitsetType::Boundary* BitsetType::Boundaries() { return BoundariesArray; }
314
315 size_t BitsetType::BoundariesSize() {
316 // Windows doesn't like arraysize here.
317 // return arraysize(BoundariesArray);
318 return 7;
319 }
320
321 Type::bitset BitsetType::ExpandInternals(Type::bitset bits) {
322 DisallowHeapAllocation no_allocation;
323 if (!(bits & SEMANTIC(kPlainNumber))) return bits; // Shortcut.
324 const Boundary* boundaries = Boundaries();
325 for (size_t i = 0; i < BoundariesSize(); ++i) {
326 DCHECK(BitsetType::Is(boundaries[i].internal, boundaries[i].external));
327 if (bits & SEMANTIC(boundaries[i].internal))
328 bits |= SEMANTIC(boundaries[i].external);
329 }
330 return bits;
331 }
332
333 Type::bitset BitsetType::Lub(double min, double max) {
334 DisallowHeapAllocation no_allocation;
335 int lub = kNone;
336 const Boundary* mins = Boundaries();
337
338 for (size_t i = 1; i < BoundariesSize(); ++i) {
339 if (min < mins[i].min) {
340 lub |= mins[i-1].internal;
341 if (max < mins[i].min) return lub;
342 }
343 }
344 return lub | mins[BoundariesSize() - 1].internal;
345 }
346
347 Type::bitset BitsetType::NumberBits(bitset bits) {
348 return SEMANTIC(bits & kPlainNumber);
349 }
350
351 Type::bitset BitsetType::Glb(double min, double max) {
352 DisallowHeapAllocation no_allocation;
353 int glb = kNone;
354 const Boundary* mins = Boundaries();
355
356 // If the range does not touch 0, the bound is empty.
357 if (max < -1 || min > 0) return glb;
358
359 for (size_t i = 1; i + 1 < BoundariesSize(); ++i) {
360 if (min <= mins[i].min) {
361 if (max + 1 < mins[i + 1].min) break;
362 glb |= mins[i].external;
363 }
364 }
365 // OtherNumber also contains float numbers, so it can never be
366 // in the greatest lower bound.
367 return glb & ~(SEMANTIC(kOtherNumber));
368 }
369
370 double BitsetType::Min(bitset bits) {
371 DisallowHeapAllocation no_allocation;
372 DCHECK(Is(SEMANTIC(bits), kNumber));
373 const Boundary* mins = Boundaries();
374 bool mz = SEMANTIC(bits & kMinusZero);
375 for (size_t i = 0; i < BoundariesSize(); ++i) {
376 if (Is(SEMANTIC(mins[i].internal), bits)) {
377 return mz ? std::min(0.0, mins[i].min) : mins[i].min;
378 }
379 }
380 if (mz) return 0;
381 return std::numeric_limits<double>::quiet_NaN();
382 }
383
384 double BitsetType::Max(bitset bits) {
385 DisallowHeapAllocation no_allocation;
386 DCHECK(Is(SEMANTIC(bits), kNumber));
387 const Boundary* mins = Boundaries();
388 bool mz = SEMANTIC(bits & kMinusZero);
389 if (BitsetType::Is(SEMANTIC(mins[BoundariesSize() - 1].internal), bits)) {
390 return +V8_INFINITY;
391 }
392 for (size_t i = BoundariesSize() - 1; i-- > 0;) {
393 if (Is(SEMANTIC(mins[i].internal), bits)) {
394 return mz ?
395 std::max(0.0, mins[i+1].min - 1) : mins[i+1].min - 1;
396 }
397 }
398 if (mz) return 0;
399 return std::numeric_limits<double>::quiet_NaN();
400 }
401
402
403 // -----------------------------------------------------------------------------
404 // Predicates.
405
406 bool Type::SimplyEquals(Type* that) {
407 DisallowHeapAllocation no_allocation;
408 if (this->IsConstant()) {
409 return that->IsConstant()
410 && *this->AsConstant()->Value() == *that->AsConstant()->Value();
411 }
412 if (this->IsTuple()) {
413 if (!that->IsTuple()) return false;
414 TupleType* this_tuple = this->AsTuple();
415 TupleType* that_tuple = that->AsTuple();
416 if (this_tuple->Arity() != that_tuple->Arity()) {
417 return false;
418 }
419 for (int i = 0, n = this_tuple->Arity(); i < n; ++i) {
420 if (!this_tuple->Element(i)->Equals(that_tuple->Element(i))) return false;
421 }
422 return true;
423 }
424 UNREACHABLE();
425 return false;
426 }
427
428 Type::bitset Type::Representation() {
429 return REPRESENTATION(this->BitsetLub());
430 }
431
432
433 // Check if [this] <= [that].
434 bool Type::SlowIs(Type* that) {
435 DisallowHeapAllocation no_allocation;
436
437 // Fast bitset cases
438 if (that->IsBitset()) {
439 return BitsetType::Is(this->BitsetLub(), that->AsBitset());
440 }
441
442 if (this->IsBitset()) {
443 return BitsetType::Is(this->AsBitset(), that->BitsetGlb());
444 }
445
446 // Check the representations.
447 if (!BitsetType::Is(Representation(), that->Representation())) {
448 return false;
449 }
450
451 // Check the semantic part.
452 return SemanticIs(that);
453 }
454
455
456 // Check if SEMANTIC([this]) <= SEMANTIC([that]). The result of the method
457 // should be independent of the representation axis of the types.
458 bool Type::SemanticIs(Type* that) {
459 DisallowHeapAllocation no_allocation;
460
461 if (this == that) return true;
462
463 if (that->IsBitset()) {
464 return BitsetType::Is(SEMANTIC(this->BitsetLub()), that->AsBitset());
465 }
466 if (this->IsBitset()) {
467 return BitsetType::Is(SEMANTIC(this->AsBitset()), that->BitsetGlb());
468 }
469
470 // (T1 \/ ... \/ Tn) <= T if (T1 <= T) /\ ... /\ (Tn <= T)
471 if (this->IsUnion()) {
472 for (int i = 0, n = this->AsUnion()->Length(); i < n; ++i) {
473 if (!this->AsUnion()->Get(i)->SemanticIs(that)) return false;
474 }
475 return true;
476 }
477
478 // T <= (T1 \/ ... \/ Tn) if (T <= T1) \/ ... \/ (T <= Tn)
479 if (that->IsUnion()) {
480 for (int i = 0, n = that->AsUnion()->Length(); i < n; ++i) {
481 if (this->SemanticIs(that->AsUnion()->Get(i))) return true;
482 if (i > 1 && this->IsRange()) return false; // Shortcut.
483 }
484 return false;
485 }
486
487 if (that->IsRange()) {
488 return (this->IsRange() && Contains(that->AsRange(), this->AsRange())) ||
489 (this->IsConstant() &&
490 Contains(that->AsRange(), this->AsConstant()));
491 }
492 if (this->IsRange()) return false;
493
494 return this->SimplyEquals(that);
495 }
496
497
498 // Check if [this] and [that] overlap.
499 bool Type::Maybe(Type* that) {
500 DisallowHeapAllocation no_allocation;
501
502 // Take care of the representation part (and also approximate
503 // the semantic part).
504 if (!BitsetType::IsInhabited(this->BitsetLub() & that->BitsetLub()))
505 return false;
506
507 return SemanticMaybe(that);
508 }
509
510 bool Type::SemanticMaybe(Type* that) {
511 DisallowHeapAllocation no_allocation;
512
513 // (T1 \/ ... \/ Tn) overlaps T if (T1 overlaps T) \/ ... \/ (Tn overlaps T)
514 if (this->IsUnion()) {
515 for (int i = 0, n = this->AsUnion()->Length(); i < n; ++i) {
516 if (this->AsUnion()->Get(i)->SemanticMaybe(that)) return true;
517 }
518 return false;
519 }
520
521 // T overlaps (T1 \/ ... \/ Tn) if (T overlaps T1) \/ ... \/ (T overlaps Tn)
522 if (that->IsUnion()) {
523 for (int i = 0, n = that->AsUnion()->Length(); i < n; ++i) {
524 if (this->SemanticMaybe(that->AsUnion()->Get(i))) return true;
525 }
526 return false;
527 }
528
529 if (!BitsetType::SemanticIsInhabited(this->BitsetLub() & that->BitsetLub()))
530 return false;
531
532 if (this->IsBitset() && that->IsBitset()) return true;
533
534 if (this->IsRange()) {
535 if (that->IsConstant()) {
536 return Contains(this->AsRange(), that->AsConstant());
537 }
538 if (that->IsRange()) {
539 return Overlap(this->AsRange(), that->AsRange());
540 }
541 if (that->IsBitset()) {
542 bitset number_bits = BitsetType::NumberBits(that->AsBitset());
543 if (number_bits == BitsetType::kNone) {
544 return false;
545 }
546 double min = std::max(BitsetType::Min(number_bits), this->Min());
547 double max = std::min(BitsetType::Max(number_bits), this->Max());
548 return min <= max;
549 }
550 }
551 if (that->IsRange()) {
552 return that->SemanticMaybe(this); // This case is handled above.
553 }
554
555 if (this->IsBitset() || that->IsBitset()) return true;
556
557 return this->SimplyEquals(that);
558 }
559
560
561 // Return the range in [this], or [NULL].
562 Type* Type::GetRange() {
563 DisallowHeapAllocation no_allocation;
564 if (this->IsRange()) return this;
565 if (this->IsUnion() && this->AsUnion()->Get(1)->IsRange()) {
566 return this->AsUnion()->Get(1);
567 }
568 return NULL;
569 }
570
571 bool Type::Contains(i::Object* value) {
572 DisallowHeapAllocation no_allocation;
573 for (Iterator<i::Object> it = this->Constants(); !it.Done(); it.Advance()) {
574 if (*it.Current() == value) return true;
575 }
576 if (IsInteger(value)) {
577 Type* range = this->GetRange();
578 if (range != NULL && Contains(range->AsRange(), value)) return true;
579 }
580 return BitsetType::New(BitsetType::Lub(value))->Is(this);
581 }
582
583 bool UnionType::Wellformed() {
584 DisallowHeapAllocation no_allocation;
585 // This checks the invariants of the union representation:
586 // 1. There are at least two elements.
587 // 2. The first element is a bitset, no other element is a bitset.
588 // 3. At most one element is a range, and it must be the second one.
589 // 4. No element is itself a union.
590 // 5. No element (except the bitset) is a subtype of any other.
591 // 6. If there is a range, then the bitset type does not contain
592 // plain number bits.
593 DCHECK(this->Length() >= 2); // (1)
594 DCHECK(this->Get(0)->IsBitset()); // (2a)
595
596 for (int i = 0; i < this->Length(); ++i) {
597 if (i != 0) DCHECK(!this->Get(i)->IsBitset()); // (2b)
598 if (i != 1) DCHECK(!this->Get(i)->IsRange()); // (3)
599 DCHECK(!this->Get(i)->IsUnion()); // (4)
600 for (int j = 0; j < this->Length(); ++j) {
601 if (i != j && i != 0)
602 DCHECK(!this->Get(i)->SemanticIs(this->Get(j))); // (5)
603 }
604 }
605 DCHECK(!this->Get(1)->IsRange() ||
606 (BitsetType::NumberBits(this->Get(0)->AsBitset()) ==
607 BitsetType::kNone)); // (6)
608 return true;
609 }
610
611
612 // -----------------------------------------------------------------------------
613 // Union and intersection
614
615
616 static bool AddIsSafe(int x, int y) {
617 return x >= 0 ?
618 y <= std::numeric_limits<int>::max() - x :
619 y >= std::numeric_limits<int>::min() - x;
620 }
621
622 Type* Type::Intersect(Type* type1, Type* type2, Zone* zone) {
623 // Fast case: bit sets.
624 if (type1->IsBitset() && type2->IsBitset()) {
625 return BitsetType::New(type1->AsBitset() & type2->AsBitset());
626 }
627
628 // Fast case: top or bottom types.
629 if (type1->IsNone() || type2->IsAny()) return type1; // Shortcut.
630 if (type2->IsNone() || type1->IsAny()) return type2; // Shortcut.
631
632 // Semi-fast case.
633 if (type1->Is(type2)) return type1;
634 if (type2->Is(type1)) return type2;
635
636 // Slow case: create union.
637
638 // Figure out the representation of the result first.
639 // The rest of the method should not change this representation and
640 // it should not make any decisions based on representations (i.e.,
641 // it should only use the semantic part of types).
642 const bitset representation =
643 type1->Representation() & type2->Representation();
644
645 // Semantic subtyping check - this is needed for consistency with the
646 // semi-fast case above - we should behave the same way regardless of
647 // representations. Intersection with a universal bitset should only update
648 // the representations.
649 if (type1->SemanticIs(type2)) {
650 type2 = Any();
651 } else if (type2->SemanticIs(type1)) {
652 type1 = Any();
653 }
654
655 bitset bits =
656 SEMANTIC(type1->BitsetGlb() & type2->BitsetGlb()) | representation;
657 int size1 = type1->IsUnion() ? type1->AsUnion()->Length() : 1;
658 int size2 = type2->IsUnion() ? type2->AsUnion()->Length() : 1;
659 if (!AddIsSafe(size1, size2)) return Any();
660 int size = size1 + size2;
661 if (!AddIsSafe(size, 2)) return Any();
662 size += 2;
663 Type* result_type = UnionType::New(size, zone);
664 UnionType* result = result_type->AsUnion();
665 size = 0;
666
667 // Deal with bitsets.
668 result->Set(size++, BitsetType::New(bits));
669
670 RangeType::Limits lims = RangeType::Limits::Empty();
671 size = IntersectAux(type1, type2, result, size, &lims, zone);
672
673 // If the range is not empty, then insert it into the union and
674 // remove the number bits from the bitset.
675 if (!lims.IsEmpty()) {
676 size = UpdateRange(RangeType::New(lims, representation, zone), result, size,
677 zone);
678
679 // Remove the number bits.
680 bitset number_bits = BitsetType::NumberBits(bits);
681 bits &= ~number_bits;
682 result->Set(0, BitsetType::New(bits));
683 }
684 return NormalizeUnion(result_type, size, zone);
685 }
686
687 int Type::UpdateRange(Type* range, UnionType* result, int size, Zone* zone) {
688 if (size == 1) {
689 result->Set(size++, range);
690 } else {
691 // Make space for the range.
692 result->Set(size++, result->Get(1));
693 result->Set(1, range);
694 }
695
696 // Remove any components that just got subsumed.
697 for (int i = 2; i < size; ) {
698 if (result->Get(i)->SemanticIs(range)) {
699 result->Set(i, result->Get(--size));
700 } else {
701 ++i;
702 }
703 }
704 return size;
705 }
706
707 RangeType::Limits Type::ToLimits(bitset bits, Zone* zone) {
708 bitset number_bits = BitsetType::NumberBits(bits);
709
710 if (number_bits == BitsetType::kNone) {
711 return RangeType::Limits::Empty();
712 }
713
714 return RangeType::Limits(BitsetType::Min(number_bits),
715 BitsetType::Max(number_bits));
716 }
717
718 RangeType::Limits Type::IntersectRangeAndBitset(Type* range, Type* bitset,
719 Zone* zone) {
720 RangeType::Limits range_lims(range->AsRange());
721 RangeType::Limits bitset_lims = ToLimits(bitset->AsBitset(), zone);
722 return RangeType::Limits::Intersect(range_lims, bitset_lims);
723 }
724
725 int Type::IntersectAux(Type* lhs, Type* rhs, UnionType* result, int size,
726 RangeType::Limits* lims, Zone* zone) {
727 if (lhs->IsUnion()) {
728 for (int i = 0, n = lhs->AsUnion()->Length(); i < n; ++i) {
729 size =
730 IntersectAux(lhs->AsUnion()->Get(i), rhs, result, size, lims, zone);
731 }
732 return size;
733 }
734 if (rhs->IsUnion()) {
735 for (int i = 0, n = rhs->AsUnion()->Length(); i < n; ++i) {
736 size =
737 IntersectAux(lhs, rhs->AsUnion()->Get(i), result, size, lims, zone);
738 }
739 return size;
740 }
741
742 if (!BitsetType::SemanticIsInhabited(lhs->BitsetLub() & rhs->BitsetLub())) {
743 return size;
744 }
745
746 if (lhs->IsRange()) {
747 if (rhs->IsBitset()) {
748 RangeType::Limits lim = IntersectRangeAndBitset(lhs, rhs, zone);
749
750 if (!lim.IsEmpty()) {
751 *lims = RangeType::Limits::Union(lim, *lims);
752 }
753 return size;
754 }
755 if (rhs->IsConstant() && Contains(lhs->AsRange(), rhs->AsConstant())) {
756 return AddToUnion(rhs, result, size, zone);
757 }
758 if (rhs->IsRange()) {
759 RangeType::Limits lim = RangeType::Limits::Intersect(
760 RangeType::Limits(lhs->AsRange()), RangeType::Limits(rhs->AsRange()));
761 if (!lim.IsEmpty()) {
762 *lims = RangeType::Limits::Union(lim, *lims);
763 }
764 }
765 return size;
766 }
767 if (rhs->IsRange()) {
768 // This case is handled symmetrically above.
769 return IntersectAux(rhs, lhs, result, size, lims, zone);
770 }
771 if (lhs->IsBitset() || rhs->IsBitset()) {
772 return AddToUnion(lhs->IsBitset() ? rhs : lhs, result, size, zone);
773 }
774 if (lhs->SimplyEquals(rhs)) {
775 return AddToUnion(lhs, result, size, zone);
776 }
777 return size;
778 }
779
780
781 // Make sure that we produce a well-formed range and bitset:
782 // If the range is non-empty, the number bits in the bitset should be
783 // clear. Moreover, if we have a canonical range (such as Signed32),
784 // we want to produce a bitset rather than a range.
785 Type* Type::NormalizeRangeAndBitset(Type* range, bitset* bits, Zone* zone) {
786 // Fast path: If the bitset does not mention numbers, we can just keep the
787 // range.
788 bitset number_bits = BitsetType::NumberBits(*bits);
789 if (number_bits == 0) {
790 return range;
791 }
792
793 // If the range is semantically contained within the bitset, return None and
794 // leave the bitset untouched.
795 bitset range_lub = SEMANTIC(range->BitsetLub());
796 if (BitsetType::Is(range_lub, *bits)) {
797 return None();
798 }
799
800 // Slow path: reconcile the bitset range and the range.
801 double bitset_min = BitsetType::Min(number_bits);
802 double bitset_max = BitsetType::Max(number_bits);
803
804 double range_min = range->Min();
805 double range_max = range->Max();
806
807 // Remove the number bits from the bitset, they would just confuse us now.
808 // NOTE: bits contains OtherNumber iff bits contains PlainNumber, in which
809 // case we already returned after the subtype check above.
810 *bits &= ~number_bits;
811
812 if (range_min <= bitset_min && range_max >= bitset_max) {
813 // Bitset is contained within the range, just return the range.
814 return range;
815 }
816
817 if (bitset_min < range_min) {
818 range_min = bitset_min;
819 }
820 if (bitset_max > range_max) {
821 range_max = bitset_max;
822 }
823 return RangeType::New(range_min, range_max, BitsetType::kNone, zone);
824 }
825
826 Type* Type::Union(Type* type1, Type* type2, Zone* zone) {
827 // Fast case: bit sets.
828 if (type1->IsBitset() && type2->IsBitset()) {
829 return BitsetType::New(type1->AsBitset() | type2->AsBitset());
830 }
831
832 // Fast case: top or bottom types.
833 if (type1->IsAny() || type2->IsNone()) return type1;
834 if (type2->IsAny() || type1->IsNone()) return type2;
835
836 // Semi-fast case.
837 if (type1->Is(type2)) return type2;
838 if (type2->Is(type1)) return type1;
839
840 // Figure out the representation of the result.
841 // The rest of the method should not change this representation and
842 // it should not make any decisions based on representations (i.e.,
843 // it should only use the semantic part of types).
844 const bitset representation =
845 type1->Representation() | type2->Representation();
846
847 // Slow case: create union.
848 int size1 = type1->IsUnion() ? type1->AsUnion()->Length() : 1;
849 int size2 = type2->IsUnion() ? type2->AsUnion()->Length() : 1;
850 if (!AddIsSafe(size1, size2)) return Any();
851 int size = size1 + size2;
852 if (!AddIsSafe(size, 2)) return Any();
853 size += 2;
854 Type* result_type = UnionType::New(size, zone);
855 UnionType* result = result_type->AsUnion();
856 size = 0;
857
858 // Compute the new bitset.
859 bitset new_bitset = SEMANTIC(type1->BitsetGlb() | type2->BitsetGlb());
860
861 // Deal with ranges.
862 Type* range = None();
863 Type* range1 = type1->GetRange();
864 Type* range2 = type2->GetRange();
865 if (range1 != NULL && range2 != NULL) {
866 RangeType::Limits lims =
867 RangeType::Limits::Union(RangeType::Limits(range1->AsRange()),
868 RangeType::Limits(range2->AsRange()));
869 Type* union_range = RangeType::New(lims, representation, zone);
870 range = NormalizeRangeAndBitset(union_range, &new_bitset, zone);
871 } else if (range1 != NULL) {
872 range = NormalizeRangeAndBitset(range1, &new_bitset, zone);
873 } else if (range2 != NULL) {
874 range = NormalizeRangeAndBitset(range2, &new_bitset, zone);
875 }
876 new_bitset = SEMANTIC(new_bitset) | representation;
877 Type* bits = BitsetType::New(new_bitset);
878 result->Set(size++, bits);
879 if (!range->IsNone()) result->Set(size++, range);
880
881 size = AddToUnion(type1, result, size, zone);
882 size = AddToUnion(type2, result, size, zone);
883 return NormalizeUnion(result_type, size, zone);
884 }
885
886
887 // Add [type] to [result] unless [type] is bitset, range, or already subsumed.
888 // Return new size of [result].
889 int Type::AddToUnion(Type* type, UnionType* result, int size, Zone* zone) {
890 if (type->IsBitset() || type->IsRange()) return size;
891 if (type->IsUnion()) {
892 for (int i = 0, n = type->AsUnion()->Length(); i < n; ++i) {
893 size = AddToUnion(type->AsUnion()->Get(i), result, size, zone);
894 }
895 return size;
896 }
897 for (int i = 0; i < size; ++i) {
898 if (type->SemanticIs(result->Get(i))) return size;
899 }
900 result->Set(size++, type);
901 return size;
902 }
903
904 Type* Type::NormalizeUnion(Type* union_type, int size, Zone* zone) {
905 UnionType* unioned = union_type->AsUnion();
906 DCHECK(size >= 1);
907 DCHECK(unioned->Get(0)->IsBitset());
908 // If the union has just one element, return it.
909 if (size == 1) {
910 return unioned->Get(0);
911 }
912 bitset bits = unioned->Get(0)->AsBitset();
913 // If the union only consists of a range, we can get rid of the union.
914 if (size == 2 && SEMANTIC(bits) == BitsetType::kNone) {
915 bitset representation = REPRESENTATION(bits);
916 if (representation == unioned->Get(1)->Representation()) {
917 return unioned->Get(1);
918 }
919 if (unioned->Get(1)->IsRange()) {
920 return RangeType::New(unioned->Get(1)->AsRange()->Min(),
921 unioned->Get(1)->AsRange()->Max(),
922 unioned->Get(0)->AsBitset(), zone);
923 }
924 }
925 unioned->Shrink(size);
926 SLOW_DCHECK(unioned->Wellformed());
927 return union_type;
928 }
929
930
931 // -----------------------------------------------------------------------------
932 // Component extraction
933
934 // static
935 Type* Type::Representation(Type* t, Zone* zone) {
936 return BitsetType::New(t->Representation());
937 }
938
939
940 // static
941 Type* Type::Semantic(Type* t, Zone* zone) {
942 return Intersect(t, BitsetType::New(BitsetType::kSemantic), zone);
943 }
944
945
946 // -----------------------------------------------------------------------------
947 // Iteration.
948
949 int Type::NumConstants() {
950 DisallowHeapAllocation no_allocation;
951 if (this->IsConstant()) {
952 return 1;
953 } else if (this->IsUnion()) {
954 int result = 0;
955 for (int i = 0, n = this->AsUnion()->Length(); i < n; ++i) {
956 if (this->AsUnion()->Get(i)->IsConstant()) ++result;
957 }
958 return result;
959 } else {
960 return 0;
961 }
962 }
963
964 template <class T>
965 Type* Type::Iterator<T>::get_type() {
966 DCHECK(!Done());
967 return type_->IsUnion() ? type_->AsUnion()->Get(index_) : type_;
968 }
969
970
971 // C++ cannot specialise nested templates, so we have to go through this
972 // contortion with an auxiliary template to simulate it.
973 template <class T>
974 struct TypeImplIteratorAux {
975 static bool matches(Type* type);
976 static i::Handle<T> current(Type* type);
977 };
978
979 template <>
980 struct TypeImplIteratorAux<i::Object> {
981 static bool matches(Type* type) { return type->IsConstant(); }
982 static i::Handle<i::Object> current(Type* type) {
983 return type->AsConstant()->Value();
984 }
985 };
986
987 template <class T>
988 bool Type::Iterator<T>::matches(Type* type) {
989 return TypeImplIteratorAux<T>::matches(type);
990 }
991
992 template <class T>
993 i::Handle<T> Type::Iterator<T>::Current() {
994 return TypeImplIteratorAux<T>::current(get_type());
995 }
996
997 template <class T>
998 void Type::Iterator<T>::Advance() {
999 DisallowHeapAllocation no_allocation;
1000 ++index_;
1001 if (type_->IsUnion()) {
1002 for (int n = type_->AsUnion()->Length(); index_ < n; ++index_) {
1003 if (matches(type_->AsUnion()->Get(index_))) return;
1004 }
1005 } else if (index_ == 0 && matches(type_)) {
1006 return;
1007 }
1008 index_ = -1;
1009 }
1010
1011
1012 // -----------------------------------------------------------------------------
1013 // Printing.
1014
1015 const char* BitsetType::Name(bitset bits) {
1016 switch (bits) {
1017 case REPRESENTATION(kAny): return "Any";
1018 #define RETURN_NAMED_REPRESENTATION_TYPE(type, value) \
1019 case REPRESENTATION(k##type): return #type;
1020 REPRESENTATION_BITSET_TYPE_LIST(RETURN_NAMED_REPRESENTATION_TYPE)
1021 #undef RETURN_NAMED_REPRESENTATION_TYPE
1022
1023 #define RETURN_NAMED_SEMANTIC_TYPE(type, value) \
1024 case SEMANTIC(k##type): return #type;
1025 SEMANTIC_BITSET_TYPE_LIST(RETURN_NAMED_SEMANTIC_TYPE)
1026 INTERNAL_BITSET_TYPE_LIST(RETURN_NAMED_SEMANTIC_TYPE)
1027 #undef RETURN_NAMED_SEMANTIC_TYPE
1028
1029 default:
1030 return NULL;
1031 }
1032 }
1033
1034 void BitsetType::Print(std::ostream& os, // NOLINT
1035 bitset bits) {
1036 DisallowHeapAllocation no_allocation;
1037 const char* name = Name(bits);
1038 if (name != NULL) {
1039 os << name;
1040 return;
1041 }
1042
1043 // clang-format off
1044 static const bitset named_bitsets[] = {
1045 #define BITSET_CONSTANT(type, value) REPRESENTATION(k##type),
1046 REPRESENTATION_BITSET_TYPE_LIST(BITSET_CONSTANT)
1047 #undef BITSET_CONSTANT
1048
1049 #define BITSET_CONSTANT(type, value) SEMANTIC(k##type),
1050 INTERNAL_BITSET_TYPE_LIST(BITSET_CONSTANT)
1051 SEMANTIC_BITSET_TYPE_LIST(BITSET_CONSTANT)
1052 #undef BITSET_CONSTANT
1053 };
1054 // clang-format on
1055
1056 bool is_first = true;
1057 os << "(";
1058 for (int i(arraysize(named_bitsets) - 1); bits != 0 && i >= 0; --i) {
1059 bitset subset = named_bitsets[i];
1060 if ((bits & subset) == subset) {
1061 if (!is_first) os << " | ";
1062 is_first = false;
1063 os << Name(subset);
1064 bits -= subset;
1065 }
1066 }
1067 DCHECK(bits == 0);
1068 os << ")";
1069 }
1070
1071 void Type::PrintTo(std::ostream& os, PrintDimension dim) {
1072 DisallowHeapAllocation no_allocation;
1073 if (dim != REPRESENTATION_DIM) {
1074 if (this->IsBitset()) {
1075 BitsetType::Print(os, SEMANTIC(this->AsBitset()));
1076 } else if (this->IsConstant()) {
1077 os << "Constant(" << Brief(*this->AsConstant()->Value()) << ")";
1078 } else if (this->IsRange()) {
1079 std::ostream::fmtflags saved_flags = os.setf(std::ios::fixed);
1080 std::streamsize saved_precision = os.precision(0);
1081 os << "Range(" << this->AsRange()->Min() << ", " << this->AsRange()->Max()
1082 << ")";
1083 os.flags(saved_flags);
1084 os.precision(saved_precision);
1085 } else if (this->IsUnion()) {
1086 os << "(";
1087 for (int i = 0, n = this->AsUnion()->Length(); i < n; ++i) {
1088 Type* type_i = this->AsUnion()->Get(i);
1089 if (i > 0) os << " | ";
1090 type_i->PrintTo(os, dim);
1091 }
1092 os << ")";
1093 } else if (this->IsTuple()) {
1094 os << "<";
1095 for (int i = 0, n = this->AsTuple()->Arity(); i < n; ++i) {
1096 Type* type_i = this->AsTuple()->Element(i);
1097 if (i > 0) os << ", ";
1098 type_i->PrintTo(os, dim);
1099 }
1100 os << ">";
1101 } else {
1102 UNREACHABLE();
1103 }
1104 }
1105 if (dim == BOTH_DIMS) os << "/";
1106 if (dim != SEMANTIC_DIM) {
1107 BitsetType::Print(os, REPRESENTATION(this->BitsetLub()));
1108 }
1109 }
1110
1111
1112 #ifdef DEBUG
1113 void Type::Print() {
1114 OFStream os(stdout);
1115 PrintTo(os);
1116 os << std::endl;
1117 }
1118 void BitsetType::Print(bitset bits) {
1119 OFStream os(stdout);
1120 Print(os, bits);
1121 os << std::endl;
1122 }
1123 #endif
1124
1125 BitsetType::bitset BitsetType::SignedSmall() {
1126 return i::SmiValuesAre31Bits() ? kSigned31 : kSigned32;
1127 }
1128
1129 BitsetType::bitset BitsetType::UnsignedSmall() {
1130 return i::SmiValuesAre31Bits() ? kUnsigned30 : kUnsigned31;
1131 }
1132
1133 // -----------------------------------------------------------------------------
1134 // Instantiations.
1135
1136 template class Type::Iterator<i::Object>;
1137
1138 } // namespace internal
1139 } // namespace v8
OLDNEW
« no previous file with comments | « src/types.h ('k') | src/v8.gyp » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698