OLD | NEW |
(Empty) | |
| 1 // Copyright 2013 The Chromium Authors. All rights reserved. |
| 2 // Use of this source code is governed by a BSD-style license that can be |
| 3 // found in the LICENSE file. |
| 4 |
| 5 #include "components/variations/entropy_provider.h" |
| 6 |
| 7 #include <cmath> |
| 8 #include <limits> |
| 9 #include <numeric> |
| 10 |
| 11 #include "base/basictypes.h" |
| 12 #include "base/guid.h" |
| 13 #include "base/memory/scoped_ptr.h" |
| 14 #include "base/rand_util.h" |
| 15 #include "base/strings/string_number_conversions.h" |
| 16 #include "components/variations/metrics_util.h" |
| 17 #include "testing/gtest/include/gtest/gtest.h" |
| 18 |
| 19 namespace metrics { |
| 20 |
| 21 namespace { |
| 22 |
| 23 // Size of the low entropy source to use for the permuted entropy provider |
| 24 // in tests. |
| 25 const size_t kMaxLowEntropySize = 8000; |
| 26 |
| 27 // Field trial names used in unit tests. |
| 28 const char* const kTestTrialNames[] = { "TestTrial", "AnotherTestTrial", |
| 29 "NewTabButton" }; |
| 30 |
| 31 // Computes the Chi-Square statistic for |values| assuming they follow a uniform |
| 32 // distribution, where each entry has expected value |expected_value|. |
| 33 // |
| 34 // The Chi-Square statistic is defined as Sum((O-E)^2/E) where O is the observed |
| 35 // value and E is the expected value. |
| 36 double ComputeChiSquare(const std::vector<int>& values, |
| 37 double expected_value) { |
| 38 double sum = 0; |
| 39 for (size_t i = 0; i < values.size(); ++i) { |
| 40 const double delta = values[i] - expected_value; |
| 41 sum += (delta * delta) / expected_value; |
| 42 } |
| 43 return sum; |
| 44 } |
| 45 |
| 46 // Computes SHA1-based entropy for the given |trial_name| based on |
| 47 // |entropy_source| |
| 48 double GenerateSHA1Entropy(const std::string& entropy_source, |
| 49 const std::string& trial_name) { |
| 50 SHA1EntropyProvider sha1_provider(entropy_source); |
| 51 return sha1_provider.GetEntropyForTrial(trial_name, 0); |
| 52 } |
| 53 |
| 54 // Generates permutation-based entropy for the given |trial_name| based on |
| 55 // |entropy_source| which must be in the range [0, entropy_max). |
| 56 double GeneratePermutedEntropy(uint16 entropy_source, |
| 57 size_t entropy_max, |
| 58 const std::string& trial_name) { |
| 59 PermutedEntropyProvider permuted_provider(entropy_source, entropy_max); |
| 60 return permuted_provider.GetEntropyForTrial(trial_name, 0); |
| 61 } |
| 62 |
| 63 // Helper interface for testing used to generate entropy values for a given |
| 64 // field trial. Unlike EntropyProvider, which keeps the low/high entropy source |
| 65 // value constant and generates entropy for different trial names, instances |
| 66 // of TrialEntropyGenerator keep the trial name constant and generate low/high |
| 67 // entropy source values internally to produce each output entropy value. |
| 68 class TrialEntropyGenerator { |
| 69 public: |
| 70 virtual ~TrialEntropyGenerator() {} |
| 71 virtual double GenerateEntropyValue() const = 0; |
| 72 }; |
| 73 |
| 74 // An TrialEntropyGenerator that uses the SHA1EntropyProvider with the high |
| 75 // entropy source (random GUID with 128 bits of entropy + 13 additional bits of |
| 76 // entropy corresponding to a low entropy source). |
| 77 class SHA1EntropyGenerator : public TrialEntropyGenerator { |
| 78 public: |
| 79 explicit SHA1EntropyGenerator(const std::string& trial_name) |
| 80 : trial_name_(trial_name) { |
| 81 } |
| 82 |
| 83 virtual ~SHA1EntropyGenerator() { |
| 84 } |
| 85 |
| 86 virtual double GenerateEntropyValue() const OVERRIDE { |
| 87 // Use a random GUID + 13 additional bits of entropy to match how the |
| 88 // SHA1EntropyProvider is used in metrics_service.cc. |
| 89 const int low_entropy_source = |
| 90 static_cast<uint16>(base::RandInt(0, kMaxLowEntropySize - 1)); |
| 91 const std::string high_entropy_source = |
| 92 base::GenerateGUID() + base::IntToString(low_entropy_source); |
| 93 return GenerateSHA1Entropy(high_entropy_source, trial_name_); |
| 94 } |
| 95 |
| 96 private: |
| 97 std::string trial_name_; |
| 98 |
| 99 DISALLOW_COPY_AND_ASSIGN(SHA1EntropyGenerator); |
| 100 }; |
| 101 |
| 102 // An TrialEntropyGenerator that uses the permuted entropy provider algorithm, |
| 103 // using 13-bit low entropy source values. |
| 104 class PermutedEntropyGenerator : public TrialEntropyGenerator { |
| 105 public: |
| 106 explicit PermutedEntropyGenerator(const std::string& trial_name) |
| 107 : mapping_(kMaxLowEntropySize) { |
| 108 // Note: Given a trial name, the computed mapping will be the same. |
| 109 // As a performance optimization, pre-compute the mapping once per trial |
| 110 // name and index into it for each entropy value. |
| 111 const uint32 randomization_seed = HashName(trial_name); |
| 112 internal::PermuteMappingUsingRandomizationSeed(randomization_seed, |
| 113 &mapping_); |
| 114 } |
| 115 |
| 116 virtual ~PermutedEntropyGenerator() { |
| 117 } |
| 118 |
| 119 virtual double GenerateEntropyValue() const OVERRIDE { |
| 120 const int low_entropy_source = |
| 121 static_cast<uint16>(base::RandInt(0, kMaxLowEntropySize - 1)); |
| 122 return mapping_[low_entropy_source] / |
| 123 static_cast<double>(kMaxLowEntropySize); |
| 124 } |
| 125 |
| 126 private: |
| 127 std::vector<uint16> mapping_; |
| 128 |
| 129 DISALLOW_COPY_AND_ASSIGN(PermutedEntropyGenerator); |
| 130 }; |
| 131 |
| 132 // Tests uniformity of a given |entropy_generator| using the Chi-Square Goodness |
| 133 // of Fit Test. |
| 134 void PerformEntropyUniformityTest( |
| 135 const std::string& trial_name, |
| 136 const TrialEntropyGenerator& entropy_generator) { |
| 137 // Number of buckets in the simulated field trials. |
| 138 const size_t kBucketCount = 20; |
| 139 // Max number of iterations to perform before giving up and failing. |
| 140 const size_t kMaxIterationCount = 100000; |
| 141 // The number of iterations to perform before each time the statistical |
| 142 // significance of the results is checked. |
| 143 const size_t kCheckIterationCount = 10000; |
| 144 // This is the Chi-Square threshold from the Chi-Square statistic table for |
| 145 // 19 degrees of freedom (based on |kBucketCount|) with a 99.9% confidence |
| 146 // level. See: http://www.medcalc.org/manual/chi-square-table.php |
| 147 const double kChiSquareThreshold = 43.82; |
| 148 |
| 149 std::vector<int> distribution(kBucketCount); |
| 150 |
| 151 for (size_t i = 1; i <= kMaxIterationCount; ++i) { |
| 152 const double entropy_value = entropy_generator.GenerateEntropyValue(); |
| 153 const size_t bucket = static_cast<size_t>(kBucketCount * entropy_value); |
| 154 ASSERT_LT(bucket, kBucketCount); |
| 155 distribution[bucket] += 1; |
| 156 |
| 157 // After |kCheckIterationCount| iterations, compute the Chi-Square |
| 158 // statistic of the distribution. If the resulting statistic is greater |
| 159 // than |kChiSquareThreshold|, we can conclude with 99.9% confidence |
| 160 // that the observed samples do not follow a uniform distribution. |
| 161 // |
| 162 // However, since 99.9% would still result in a false negative every |
| 163 // 1000 runs of the test, do not treat it as a failure (else the test |
| 164 // will be flaky). Instead, perform additional iterations to determine |
| 165 // if the distribution will converge, up to |kMaxIterationCount|. |
| 166 if ((i % kCheckIterationCount) == 0) { |
| 167 const double expected_value_per_bucket = |
| 168 static_cast<double>(i) / kBucketCount; |
| 169 const double chi_square = |
| 170 ComputeChiSquare(distribution, expected_value_per_bucket); |
| 171 if (chi_square < kChiSquareThreshold) |
| 172 break; |
| 173 |
| 174 // If |i == kMaxIterationCount|, the Chi-Square statistic did not |
| 175 // converge after |kMaxIterationCount|. |
| 176 EXPECT_NE(i, kMaxIterationCount) << "Failed for trial " << |
| 177 trial_name << " with chi_square = " << chi_square << |
| 178 " after " << kMaxIterationCount << " iterations."; |
| 179 } |
| 180 } |
| 181 } |
| 182 |
| 183 } // namespace |
| 184 |
| 185 TEST(EntropyProviderTest, UseOneTimeRandomizationSHA1) { |
| 186 // Simply asserts that two trials using one-time randomization |
| 187 // that have different names, normally generate different results. |
| 188 // |
| 189 // Note that depending on the one-time random initialization, they |
| 190 // _might_ actually give the same result, but we know that given |
| 191 // the particular client_id we use for unit tests they won't. |
| 192 base::FieldTrialList field_trial_list(new SHA1EntropyProvider("client_id")); |
| 193 const int kNoExpirationYear = base::FieldTrialList::kNoExpirationYear; |
| 194 scoped_refptr<base::FieldTrial> trials[] = { |
| 195 base::FieldTrialList::FactoryGetFieldTrial( |
| 196 "one", 100, "default", kNoExpirationYear, 1, 1, |
| 197 base::FieldTrial::ONE_TIME_RANDOMIZED, NULL), |
| 198 base::FieldTrialList::FactoryGetFieldTrial( |
| 199 "two", 100, "default", kNoExpirationYear, 1, 1, |
| 200 base::FieldTrial::ONE_TIME_RANDOMIZED, NULL), |
| 201 }; |
| 202 |
| 203 for (size_t i = 0; i < arraysize(trials); ++i) { |
| 204 for (int j = 0; j < 100; ++j) |
| 205 trials[i]->AppendGroup(std::string(), 1); |
| 206 } |
| 207 |
| 208 // The trials are most likely to give different results since they have |
| 209 // different names. |
| 210 EXPECT_NE(trials[0]->group(), trials[1]->group()); |
| 211 EXPECT_NE(trials[0]->group_name(), trials[1]->group_name()); |
| 212 } |
| 213 |
| 214 TEST(EntropyProviderTest, UseOneTimeRandomizationPermuted) { |
| 215 // Simply asserts that two trials using one-time randomization |
| 216 // that have different names, normally generate different results. |
| 217 // |
| 218 // Note that depending on the one-time random initialization, they |
| 219 // _might_ actually give the same result, but we know that given |
| 220 // the particular client_id we use for unit tests they won't. |
| 221 base::FieldTrialList field_trial_list( |
| 222 new PermutedEntropyProvider(1234, kMaxLowEntropySize)); |
| 223 const int kNoExpirationYear = base::FieldTrialList::kNoExpirationYear; |
| 224 scoped_refptr<base::FieldTrial> trials[] = { |
| 225 base::FieldTrialList::FactoryGetFieldTrial( |
| 226 "one", 100, "default", kNoExpirationYear, 1, 1, |
| 227 base::FieldTrial::ONE_TIME_RANDOMIZED, NULL), |
| 228 base::FieldTrialList::FactoryGetFieldTrial( |
| 229 "two", 100, "default", kNoExpirationYear, 1, 1, |
| 230 base::FieldTrial::ONE_TIME_RANDOMIZED, NULL), |
| 231 }; |
| 232 |
| 233 for (size_t i = 0; i < arraysize(trials); ++i) { |
| 234 for (int j = 0; j < 100; ++j) |
| 235 trials[i]->AppendGroup(std::string(), 1); |
| 236 } |
| 237 |
| 238 // The trials are most likely to give different results since they have |
| 239 // different names. |
| 240 EXPECT_NE(trials[0]->group(), trials[1]->group()); |
| 241 EXPECT_NE(trials[0]->group_name(), trials[1]->group_name()); |
| 242 } |
| 243 |
| 244 TEST(EntropyProviderTest, UseOneTimeRandomizationWithCustomSeedPermuted) { |
| 245 // Ensures that two trials with different names but the same custom seed used |
| 246 // for one time randomization produce the same group assignments. |
| 247 base::FieldTrialList field_trial_list( |
| 248 new PermutedEntropyProvider(1234, kMaxLowEntropySize)); |
| 249 const int kNoExpirationYear = base::FieldTrialList::kNoExpirationYear; |
| 250 const uint32 kCustomSeed = 9001; |
| 251 scoped_refptr<base::FieldTrial> trials[] = { |
| 252 base::FieldTrialList::FactoryGetFieldTrialWithRandomizationSeed( |
| 253 "one", 100, "default", kNoExpirationYear, 1, 1, |
| 254 base::FieldTrial::ONE_TIME_RANDOMIZED, kCustomSeed, NULL), |
| 255 base::FieldTrialList::FactoryGetFieldTrialWithRandomizationSeed( |
| 256 "two", 100, "default", kNoExpirationYear, 1, 1, |
| 257 base::FieldTrial::ONE_TIME_RANDOMIZED, kCustomSeed, NULL), |
| 258 }; |
| 259 |
| 260 for (size_t i = 0; i < arraysize(trials); ++i) { |
| 261 for (int j = 0; j < 100; ++j) |
| 262 trials[i]->AppendGroup(std::string(), 1); |
| 263 } |
| 264 |
| 265 // Normally, these trials should produce different groups, but if the same |
| 266 // custom seed is used, they should produce the same group assignment. |
| 267 EXPECT_EQ(trials[0]->group(), trials[1]->group()); |
| 268 EXPECT_EQ(trials[0]->group_name(), trials[1]->group_name()); |
| 269 } |
| 270 |
| 271 TEST(EntropyProviderTest, SHA1Entropy) { |
| 272 const double results[] = { GenerateSHA1Entropy("hi", "1"), |
| 273 GenerateSHA1Entropy("there", "1") }; |
| 274 |
| 275 EXPECT_NE(results[0], results[1]); |
| 276 for (size_t i = 0; i < arraysize(results); ++i) { |
| 277 EXPECT_LE(0.0, results[i]); |
| 278 EXPECT_GT(1.0, results[i]); |
| 279 } |
| 280 |
| 281 EXPECT_EQ(GenerateSHA1Entropy("yo", "1"), |
| 282 GenerateSHA1Entropy("yo", "1")); |
| 283 EXPECT_NE(GenerateSHA1Entropy("yo", "something"), |
| 284 GenerateSHA1Entropy("yo", "else")); |
| 285 } |
| 286 |
| 287 TEST(EntropyProviderTest, PermutedEntropy) { |
| 288 const double results[] = { |
| 289 GeneratePermutedEntropy(1234, kMaxLowEntropySize, "1"), |
| 290 GeneratePermutedEntropy(4321, kMaxLowEntropySize, "1") }; |
| 291 |
| 292 EXPECT_NE(results[0], results[1]); |
| 293 for (size_t i = 0; i < arraysize(results); ++i) { |
| 294 EXPECT_LE(0.0, results[i]); |
| 295 EXPECT_GT(1.0, results[i]); |
| 296 } |
| 297 |
| 298 EXPECT_EQ(GeneratePermutedEntropy(1234, kMaxLowEntropySize, "1"), |
| 299 GeneratePermutedEntropy(1234, kMaxLowEntropySize, "1")); |
| 300 EXPECT_NE(GeneratePermutedEntropy(1234, kMaxLowEntropySize, "something"), |
| 301 GeneratePermutedEntropy(1234, kMaxLowEntropySize, "else")); |
| 302 } |
| 303 |
| 304 TEST(EntropyProviderTest, PermutedEntropyProviderResults) { |
| 305 // Verifies that PermutedEntropyProvider produces expected results. This |
| 306 // ensures that the results are the same between platforms and ensures that |
| 307 // changes to the implementation do not regress this accidentally. |
| 308 |
| 309 EXPECT_DOUBLE_EQ(2194 / static_cast<double>(kMaxLowEntropySize), |
| 310 GeneratePermutedEntropy(1234, kMaxLowEntropySize, "XYZ")); |
| 311 EXPECT_DOUBLE_EQ(5676 / static_cast<double>(kMaxLowEntropySize), |
| 312 GeneratePermutedEntropy(1, kMaxLowEntropySize, "Test")); |
| 313 EXPECT_DOUBLE_EQ(1151 / static_cast<double>(kMaxLowEntropySize), |
| 314 GeneratePermutedEntropy(5000, kMaxLowEntropySize, "Foo")); |
| 315 } |
| 316 |
| 317 TEST(EntropyProviderTest, SHA1EntropyIsUniform) { |
| 318 for (size_t i = 0; i < arraysize(kTestTrialNames); ++i) { |
| 319 SHA1EntropyGenerator entropy_generator(kTestTrialNames[i]); |
| 320 PerformEntropyUniformityTest(kTestTrialNames[i], entropy_generator); |
| 321 } |
| 322 } |
| 323 |
| 324 TEST(EntropyProviderTest, PermutedEntropyIsUniform) { |
| 325 for (size_t i = 0; i < arraysize(kTestTrialNames); ++i) { |
| 326 PermutedEntropyGenerator entropy_generator(kTestTrialNames[i]); |
| 327 PerformEntropyUniformityTest(kTestTrialNames[i], entropy_generator); |
| 328 } |
| 329 } |
| 330 |
| 331 TEST(EntropyProviderTest, SeededRandGeneratorIsUniform) { |
| 332 // Verifies that SeededRandGenerator has a uniform distribution. |
| 333 // |
| 334 // Mirrors RandUtilTest.RandGeneratorIsUniform in base/rand_util_unittest.cc. |
| 335 |
| 336 const uint32 kTopOfRange = (std::numeric_limits<uint32>::max() / 4ULL) * 3ULL; |
| 337 const uint32 kExpectedAverage = kTopOfRange / 2ULL; |
| 338 const uint32 kAllowedVariance = kExpectedAverage / 50ULL; // +/- 2% |
| 339 const int kMinAttempts = 1000; |
| 340 const int kMaxAttempts = 1000000; |
| 341 |
| 342 for (size_t i = 0; i < arraysize(kTestTrialNames); ++i) { |
| 343 const uint32 seed = HashName(kTestTrialNames[i]); |
| 344 internal::SeededRandGenerator rand_generator(seed); |
| 345 |
| 346 double cumulative_average = 0.0; |
| 347 int count = 0; |
| 348 while (count < kMaxAttempts) { |
| 349 uint32 value = rand_generator(kTopOfRange); |
| 350 cumulative_average = (count * cumulative_average + value) / (count + 1); |
| 351 |
| 352 // Don't quit too quickly for things to start converging, or we may have |
| 353 // a false positive. |
| 354 if (count > kMinAttempts && |
| 355 kExpectedAverage - kAllowedVariance < cumulative_average && |
| 356 cumulative_average < kExpectedAverage + kAllowedVariance) { |
| 357 break; |
| 358 } |
| 359 |
| 360 ++count; |
| 361 } |
| 362 |
| 363 ASSERT_LT(count, kMaxAttempts) << "Expected average was " << |
| 364 kExpectedAverage << ", average ended at " << cumulative_average << |
| 365 ", for trial " << kTestTrialNames[i]; |
| 366 } |
| 367 } |
| 368 |
| 369 } // namespace metrics |
OLD | NEW |