Index: src/core/SkColorSpace.cpp |
diff --git a/src/core/SkColorSpace.cpp b/src/core/SkColorSpace.cpp |
index c6bf4b9431300460b4fbe4dd2b6f276de9dda4a2..66b980b8f969860b1e169bb3353d08d1ee9ef427 100644 |
--- a/src/core/SkColorSpace.cpp |
+++ b/src/core/SkColorSpace.cpp |
@@ -9,6 +9,82 @@ |
#include "SkColorSpace_Base.h" |
#include "SkColorSpacePriv.h" |
#include "SkOnce.h" |
+#include "SkPoint3.h" |
+ |
+static inline bool is_zero_to_one(float v) { |
+ return (0.0f <= v) && (v <= 1.0f); |
+} |
+ |
+bool SkColorSpacePrimaries::toXYZD50(SkMatrix44* toXYZ_D50) const { |
+ if (!is_zero_to_one(fRX) || !is_zero_to_one(fRY) || |
+ !is_zero_to_one(fGX) || !is_zero_to_one(fGY) || |
+ !is_zero_to_one(fBX) || !is_zero_to_one(fBY) || |
+ !is_zero_to_one(fWX) || !is_zero_to_one(fWY)) |
+ { |
+ return false; |
+ } |
+ |
+ // First, we need to convert xy values (primaries) to XYZ. |
+ SkMatrix primaries; |
+ primaries.setAll( fRX, fGX, fBX, |
+ fRY, fGY, fBY, |
+ 1.0f - fRX - fRY, 1.0f - fGX - fGY, 1.0f - fBX - fBY); |
+ SkMatrix primariesInv; |
+ if (!primaries.invert(&primariesInv)) { |
+ return false; |
+ } |
+ |
+ // Assumes that Y is 1.0f. |
+ SkVector3 wXYZ = SkVector3::Make(fWX / fWY, 1.0f, (1.0f - fWX - fWY) / fWY); |
+ SkVector3 XYZ; |
+ XYZ.fX = primariesInv[0] * wXYZ.fX + primariesInv[1] * wXYZ.fY + primariesInv[2] * wXYZ.fZ; |
+ XYZ.fY = primariesInv[3] * wXYZ.fX + primariesInv[4] * wXYZ.fY + primariesInv[5] * wXYZ.fZ; |
+ XYZ.fZ = primariesInv[6] * wXYZ.fX + primariesInv[7] * wXYZ.fY + primariesInv[8] * wXYZ.fZ; |
+ SkMatrix toXYZ; |
+ toXYZ.setAll(XYZ.fX, 0.0f, 0.0f, |
+ 0.0f, XYZ.fY, 0.0f, |
+ 0.0f, 0.0f, XYZ.fZ); |
+ toXYZ.postConcat(primaries); |
+ |
+ // Now convert toXYZ matrix to toXYZD50. |
+ SkVector3 wXYZD50 = SkVector3::Make(0.96422f, 1.0f, 0.82521f); |
+ |
+ // Calculate the chromatic adaptation matrix. We will use the Bradford method, thus |
+ // the matrices below. The Bradford method is used by Adobe and is widely considered |
+ // to be the best. |
+ SkMatrix mA, mAInv; |
+ mA.setAll(+0.8951f, +0.2664f, -0.1614f, |
+ -0.7502f, +1.7135f, +0.0367f, |
+ +0.0389f, -0.0685f, +1.0296f); |
+ mAInv.setAll(+0.9869929f, -0.1470543f, +0.1599627f, |
+ +0.4323053f, +0.5183603f, +0.0492912f, |
+ -0.0085287f, +0.0400428f, +0.9684867f); |
+ |
+ SkVector3 srcCone; |
+ srcCone.fX = mA[0] * wXYZ.fX + mA[1] * wXYZ.fY + mA[2] * wXYZ.fZ; |
+ srcCone.fY = mA[3] * wXYZ.fX + mA[4] * wXYZ.fY + mA[5] * wXYZ.fZ; |
+ srcCone.fZ = mA[6] * wXYZ.fX + mA[7] * wXYZ.fY + mA[8] * wXYZ.fZ; |
+ SkVector3 dstCone; |
+ dstCone.fX = mA[0] * wXYZD50.fX + mA[1] * wXYZD50.fY + mA[2] * wXYZD50.fZ; |
+ dstCone.fY = mA[3] * wXYZD50.fX + mA[4] * wXYZD50.fY + mA[5] * wXYZD50.fZ; |
+ dstCone.fZ = mA[6] * wXYZD50.fX + mA[7] * wXYZD50.fY + mA[8] * wXYZD50.fZ; |
+ |
+ SkMatrix DXToD50; |
+ DXToD50.setIdentity(); |
+ DXToD50[0] = dstCone.fX / srcCone.fX; |
+ DXToD50[4] = dstCone.fY / srcCone.fY; |
+ DXToD50[8] = dstCone.fZ / srcCone.fZ; |
+ DXToD50.postConcat(mAInv); |
+ DXToD50.preConcat(mA); |
+ |
+ toXYZ.postConcat(DXToD50); |
+ toXYZ_D50->set3x3(toXYZ[0], toXYZ[3], toXYZ[6], |
+ toXYZ[1], toXYZ[4], toXYZ[7], |
+ toXYZ[2], toXYZ[5], toXYZ[8]); |
+ return true; |
+} |
+ |
+/////////////////////////////////////////////////////////////////////////////////////////////////// |
SkColorSpace_Base::SkColorSpace_Base(SkGammaNamed gammaNamed, const SkMatrix44& toXYZD50) |
: fGammaNamed(gammaNamed) |