Index: ui/gfx/transform_util.cc |
diff --git a/ui/gfx/transform_util.cc b/ui/gfx/transform_util.cc |
index 90c8b56e5547937f76686bfa6934064e74207112..d8e9e15e2785f7f214216d0192d62711496f6b9e 100644 |
--- a/ui/gfx/transform_util.cc |
+++ b/ui/gfx/transform_util.cc |
@@ -12,51 +12,52 @@ namespace gfx { |
namespace { |
-double Length3(double v[3]) { |
+SkMScalar Length3(SkMScalar v[3]) { |
return std::sqrt(v[0] * v[0] + v[1] * v[1] + v[2] * v[2]); |
} |
-void Scale3(double v[3], double scale) { |
+void Scale3(SkMScalar v[3], SkMScalar scale) { |
for (int i = 0; i < 3; ++i) |
v[i] *= scale; |
} |
template <int n> |
-double Dot(const double* a, const double* b) { |
- double toReturn = 0; |
+SkMScalar Dot(const SkMScalar* a, const SkMScalar* b) { |
+ SkMScalar toReturn = 0; |
for (int i = 0; i < n; ++i) |
toReturn += a[i] * b[i]; |
return toReturn; |
} |
template <int n> |
-void Combine(double* out, |
- const double* a, |
- const double* b, |
- double scale_a, |
- double scale_b) { |
+void Combine(SkMScalar* out, |
+ const SkMScalar* a, |
+ const SkMScalar* b, |
+ SkMScalar scale_a, |
+ SkMScalar scale_b) { |
for (int i = 0; i < n; ++i) |
out[i] = a[i] * scale_a + b[i] * scale_b; |
} |
-void Cross3(double out[3], double a[3], double b[3]) { |
- double x = a[1] * b[2] - a[2] * b[1]; |
- double y = a[2] * b[0] - a[0] * b[2]; |
- double z = a[0] * b[1] - a[1] * b[0]; |
+void Cross3(SkMScalar out[3], SkMScalar a[3], SkMScalar b[3]) { |
+ SkMScalar x = a[1] * b[2] - a[2] * b[1]; |
+ SkMScalar y = a[2] * b[0] - a[0] * b[2]; |
+ SkMScalar z = a[0] * b[1] - a[1] * b[0]; |
out[0] = x; |
out[1] = y; |
out[2] = z; |
} |
// Taken from http://www.w3.org/TR/css3-transforms/. |
-bool Slerp(double out[4], |
- const double q1[4], |
- const double q2[4], |
+bool Slerp(SkMScalar out[4], |
+ const SkMScalar q1[4], |
+ const SkMScalar q2[4], |
double progress) { |
- double product = Dot<4>(q1, q2); |
+ SkMScalar product = Dot<4>(q1, q2); |
// Clamp product to -1.0 <= product <= 1.0. |
- product = std::min(std::max(product, -1.0), 1.0); |
+ SkMScalar one(1); |
+ product = std::min(std::max(product, -one), one); |
danakj
2013/09/09 17:57:45
SK_MScalar1?
enne (OOO)
2013/09/10 22:32:32
Done.
|
// Interpolate angles along the shortest path. For example, to interpolate |
// between a 175 degree angle and a 185 degree angle, interpolate along the |
@@ -65,25 +66,25 @@ bool Slerp(double out[4], |
// the current W3C spec. Fixing the spec to match this approach is discussed |
// at: |
// http://lists.w3.org/Archives/Public/www-style/2013May/0131.html |
- double scale1 = 1.0; |
+ SkMScalar scale1 = 1.0; |
if (product < 0) { |
product = -product; |
scale1 = -1.0; |
} |
- const double epsilon = 1e-5; |
+ const SkMScalar epsilon = 1e-5; |
if (std::abs(product - 1.0) < epsilon) { |
danakj
2013/09/09 17:57:45
should this be SK_MScalar1? or integer literal? or
enne (OOO)
2013/09/10 22:32:32
Done.
|
for (int i = 0; i < 4; ++i) |
out[i] = q1[i]; |
return true; |
} |
- double denom = std::sqrt(1 - product * product); |
- double theta = std::acos(product); |
- double w = std::sin(progress * theta) * (1 / denom); |
+ SkMScalar denom = std::sqrt(1 - product * product); |
+ SkMScalar theta = std::acos(product); |
danakj
2013/09/09 17:57:45
Should |product| and |w| and all these variables a
enne (OOO)
2013/09/10 22:32:32
I think it's less important here. The doubles for
|
+ SkMScalar w = std::sin(progress * theta) * (1 / denom); |
scale1 *= std::cos(progress * theta) - product * w; |
- double scale2 = w; |
+ SkMScalar scale2 = w; |
Combine<4>(out, q1, q2, scale1, scale2); |
return true; |
@@ -91,14 +92,14 @@ bool Slerp(double out[4], |
// Returns false if the matrix cannot be normalized. |
bool Normalize(SkMatrix44& m) { |
- if (m.getDouble(3, 3) == 0.0) |
+ if (m.get(3, 3) == 0.0) |
// Cannot normalize. |
return false; |
- double scale = 1.0 / m.getDouble(3, 3); |
+ SkMScalar scale = 1.0 / m.get(3, 3); |
for (int i = 0; i < 4; i++) |
for (int j = 0; j < 4; j++) |
- m.setDouble(i, j, m.getDouble(i, j) * scale); |
+ m.set(i, j, m.get(i, j) * scale); |
return true; |
} |
@@ -152,18 +153,17 @@ bool DecomposeTransform(DecomposedTransform* decomp, |
SkMatrix44 perspectiveMatrix = matrix; |
for (int i = 0; i < 3; ++i) |
- perspectiveMatrix.setDouble(3, i, 0.0); |
+ perspectiveMatrix.set(3, i, 0.0); |
- perspectiveMatrix.setDouble(3, 3, 1.0); |
+ perspectiveMatrix.set(3, 3, 1.0); |
// If the perspective matrix is not invertible, we are also unable to |
// decompose, so we'll bail early. Constant taken from SkMatrix44::invert. |
if (std::abs(perspectiveMatrix.determinant()) < 1e-8) |
return false; |
- if (matrix.getDouble(3, 0) != 0.0 || |
- matrix.getDouble(3, 1) != 0.0 || |
- matrix.getDouble(3, 2) != 0.0) { |
+ if (matrix.get(3, 0) != 0.0 || matrix.get(3, 1) != 0.0 || |
+ matrix.get(3, 2) != 0.0) { |
// rhs is the right hand side of the equation. |
SkMScalar rhs[4] = { |
matrix.get(3, 0), |
@@ -195,12 +195,12 @@ bool DecomposeTransform(DecomposedTransform* decomp, |
} |
for (int i = 0; i < 3; i++) |
- decomp->translate[i] = matrix.getDouble(i, 3); |
+ decomp->translate[i] = matrix.get(i, 3); |
- double row[3][3]; |
+ SkMScalar row[3][3]; |
for (int i = 0; i < 3; i++) |
for (int j = 0; j < 3; ++j) |
- row[i][j] = matrix.getDouble(j, i); |
+ row[i][j] = matrix.get(j, i); |
// Compute X scale factor and normalize first row. |
decomp->scale[0] = Length3(row[0]); |
@@ -235,7 +235,7 @@ bool DecomposeTransform(DecomposedTransform* decomp, |
// At this point, the matrix (in rows) is orthonormal. |
// Check for a coordinate system flip. If the determinant |
// is -1, then negate the matrix and the scaling factors. |
- double pdum3[3]; |
+ SkMScalar pdum3[3]; |
Cross3(pdum3, row[1], row[2]); |
if (Dot<3>(row[0], pdum3) < 0) { |
for (int i = 0; i < 3; i++) { |
@@ -268,16 +268,15 @@ bool DecomposeTransform(DecomposedTransform* decomp, |
Transform ComposeTransform(const DecomposedTransform& decomp) { |
SkMatrix44 matrix(SkMatrix44::kIdentity_Constructor); |
for (int i = 0; i < 4; i++) |
- matrix.setDouble(3, i, decomp.perspective[i]); |
+ matrix.set(3, i, decomp.perspective[i]); |
- matrix.preTranslate(SkDoubleToMScalar(decomp.translate[0]), |
- SkDoubleToMScalar(decomp.translate[1]), |
- SkDoubleToMScalar(decomp.translate[2])); |
+ matrix.preTranslate( |
+ decomp.translate[0], decomp.translate[1], decomp.translate[2]); |
- double x = decomp.quaternion[0]; |
- double y = decomp.quaternion[1]; |
- double z = decomp.quaternion[2]; |
- double w = decomp.quaternion[3]; |
+ SkMScalar x = decomp.quaternion[0]; |
+ SkMScalar y = decomp.quaternion[1]; |
+ SkMScalar z = decomp.quaternion[2]; |
+ SkMScalar w = decomp.quaternion[3]; |
SkMatrix44 rotation_matrix(SkMatrix44::kUninitialized_Constructor); |
rotation_matrix.set3x3(1.0 - 2.0 * (y * y + z * z), |
@@ -294,25 +293,23 @@ Transform ComposeTransform(const DecomposedTransform& decomp) { |
SkMatrix44 temp(SkMatrix44::kIdentity_Constructor); |
if (decomp.skew[2]) { |
- temp.setDouble(1, 2, decomp.skew[2]); |
+ temp.set(1, 2, decomp.skew[2]); |
matrix.preConcat(temp); |
} |
if (decomp.skew[1]) { |
- temp.setDouble(1, 2, 0); |
- temp.setDouble(0, 2, decomp.skew[1]); |
+ temp.set(1, 2, 0); |
+ temp.set(0, 2, decomp.skew[1]); |
matrix.preConcat(temp); |
} |
if (decomp.skew[0]) { |
- temp.setDouble(0, 2, 0); |
- temp.setDouble(0, 1, decomp.skew[0]); |
+ temp.set(0, 2, 0); |
+ temp.set(0, 1, decomp.skew[0]); |
matrix.preConcat(temp); |
} |
- matrix.preScale(SkDoubleToMScalar(decomp.scale[0]), |
- SkDoubleToMScalar(decomp.scale[1]), |
- SkDoubleToMScalar(decomp.scale[2])); |
+ matrix.preScale(decomp.scale[0], decomp.scale[1], decomp.scale[2]); |
Transform to_return; |
to_return.matrix() = matrix; |