| Index: src/zone.cc
|
| diff --git a/src/zone.cc b/src/zone.cc
|
| index a10b63612e484962870ab2004c6bf2a7ff44f49a..7d7135555a05063c7432aedc99260a37e38cdb6c 100644
|
| --- a/src/zone.cc
|
| +++ b/src/zone.cc
|
| @@ -5,6 +5,8 @@
|
| #include "src/zone.h"
|
|
|
| #include <cstring>
|
| +#include "include/v8-platform.h"
|
| +#include "src/base/platform/time.h"
|
|
|
| #include "src/v8.h"
|
|
|
| @@ -41,37 +43,251 @@ const size_t kASanRedzoneBytes = 0;
|
|
|
| } // namespace
|
|
|
| +clock_t begin = clock();
|
|
|
| // Segments represent chunks of memory: They have starting address
|
| -// (encoded in the this pointer) and a size in bytes. Segments are
|
| +// (encoded in the this pointer) and a VirtualMemory instance. Segments are
|
| // chained together forming a LIFO structure with the newest segment
|
| -// available as segment_head_. Segments are allocated using malloc()
|
| -// and de-allocated using free().
|
| +// available as segment_head_. Segments are allocated aligned via the
|
| +// VirtualMemory instance and released using it.
|
|
|
| class Segment {
|
| public:
|
| - void Initialize(Segment* next, size_t size) {
|
| - next_ = next;
|
| + void Initialize(Zone* zone, v8::base::VirtualMemory* virtual_memory,
|
| + size_t size) {
|
| + DCHECK_EQ(reinterpret_cast<uintptr_t>(this) & Zone::kSegmentAlignmentMask,
|
| + reinterpret_cast<uintptr_t>(this));
|
| +
|
| + next_ = nullptr;
|
| + zone_ = zone;
|
| + virtual_memory_.Reset();
|
| + virtual_memory_.TakeControl(virtual_memory);
|
| size_ = size;
|
| }
|
|
|
| + void set_zone(Zone* zone) { zone_ = zone; }
|
| +
|
| + Zone* zone() const { return zone_; }
|
| Segment* next() const { return next_; }
|
| - void clear_next() { next_ = nullptr; }
|
| + void set_next(Segment* const value) { next_ = value; }
|
|
|
| size_t size() const { return size_; }
|
| - size_t capacity() const { return size_ - sizeof(Segment); }
|
| +
|
| + size_t capacity() const { return size() - sizeof(Segment); }
|
|
|
| Address start() const { return address(sizeof(Segment)); }
|
| - Address end() const { return address(size_); }
|
| + Address end() const { return address(size()); }
|
| +
|
| + bool is_big_object_segment() const {
|
| + return size() > Zone::kMaximumSegmentSize;
|
| + }
|
| +
|
| + void Release() {
|
| +// PrintF("%f; -%lu;0\n", static_cast<double>(clock() - begin) / CLOCKS_PER_SEC,
|
| +// size_);
|
| +#ifdef ENABLE_HANDLE_ZAPPING
|
| + // We are going to zap the memory the segment is stored in, so we
|
| + // need to save the virtual memory information to be able to release
|
| + // it.
|
| + v8::base::VirtualMemory vm = v8::base::VirtualMemory();
|
| + vm.TakeControl(&virtual_memory_);
|
| + // Un-poison first so the zapping doesn't trigger ASan complaints.
|
| + ASAN_UNPOISON_MEMORY_REGION(this, size_);
|
| + // Zap the entire current segment (including the header).
|
| + memset(this, kZapDeadByte, size_);
|
| +
|
| + vm.Release();
|
| +#else
|
| + virtual_memory_.Release();
|
| +#endif
|
| + }
|
| +
|
| + void Reset() {
|
| + // Un-poison so neither the zapping not the reusing does trigger ASan
|
| + // complaints.
|
| + ASAN_UNPOISON_MEMORY_REGION(virtual_memory_.address(),
|
| + virtual_memory_.size());
|
| +#ifdef ENABLE_HANDLE_ZAPPING
|
| + // Zap the entire current segment (excluding the header).
|
| + memset(reinterpret_cast<void*>(start()), kZapDeadByte, capacity());
|
| +#endif
|
| + next_ = nullptr;
|
| + }
|
|
|
| private:
|
| +#ifdef ENABLE_HANDLE_ZAPPING
|
| + // Constant byte value used for zapping dead memory in debug mode.
|
| + static const unsigned char kZapDeadByte = 0xcd;
|
| +#endif
|
| +
|
| // Computes the address of the nth byte in this segment.
|
| Address address(size_t n) const { return Address(this) + n; }
|
|
|
| + Zone* zone_;
|
| Segment* next_;
|
| + v8::base::VirtualMemory virtual_memory_;
|
| +
|
| size_t size_;
|
| +
|
| + DISALLOW_COPY_AND_ASSIGN(Segment);
|
| };
|
|
|
| +namespace SegmentPool {
|
| +namespace {
|
| +static const uint8_t kMinSegmentSizePower = 13;
|
| +static const uint8_t kMaxSegmentSizePower = 17;
|
| +
|
| +static const uint8_t kMaxSegmentsPerBucket = 15;
|
| +
|
| +STATIC_ASSERT(kMinSegmentSizePower <= kMaxSegmentSizePower);
|
| +
|
| +static Segment* garbage_segment_stack_head_ = nullptr;
|
| +
|
| +static size_t garbage_segment_stack_size_ = 0;
|
| +
|
| +static v8::base::Mutex* garbage_segments_mutex_ = new base::Mutex();
|
| +
|
| +static Segment** unused_segments_heads_ =
|
| + new Segment*[1 + kMaxSegmentSizePower - kMinSegmentSizePower];
|
| +
|
| +static size_t* unused_segments_sizes =
|
| + new size_t[1 + kMaxSegmentSizePower - kMinSegmentSizePower];
|
| +
|
| +static size_t unused_segments_size_ = 0;
|
| +
|
| +static v8::base::Mutex* unused_segments_mutex_ = new base::Mutex();
|
| +
|
| +static v8::base::Semaphore* cleanup_semaphore = new base::Semaphore(1);
|
| +
|
| +static Segment* PopSegmentFromGarbageStack() {
|
| + garbage_segments_mutex_->Lock();
|
| + auto result = garbage_segment_stack_head_;
|
| +
|
| + if (result) {
|
| + garbage_segment_stack_head_ = result->next();
|
| + garbage_segment_stack_size_ -= result->size();
|
| + }
|
| +
|
| + garbage_segments_mutex_->Unlock();
|
| +
|
| + return result;
|
| +}
|
| +
|
| +class SegmentReleaser : public Task {
|
| + public:
|
| + void Run() override {
|
| + ReleaseGarbage();
|
| + cleanup_semaphore->Signal();
|
| + }
|
| +
|
| + private:
|
| + static void ReleaseGarbage() {
|
| + while (true) {
|
| + Segment* segment = PopSegmentFromGarbageStack();
|
| +
|
| + if (segment == nullptr) break;
|
| +
|
| + segment->Release();
|
| + }
|
| + }
|
| +};
|
| +
|
| +static void SignalGC() {
|
| + if (cleanup_semaphore->WaitFor(base::TimeDelta::FromSeconds(0))) {
|
| + V8::GetCurrentPlatform()->CallOnBackgroundThread(
|
| + new SegmentReleaser(), Platform::kShortRunningTask);
|
| + }
|
| +}
|
| +} // namespace
|
| +
|
| +static void PushSegmentToGarbageStack(Segment* segment) {
|
| + garbage_segments_mutex_->Lock();
|
| + segment->set_next(garbage_segment_stack_head_);
|
| + garbage_segment_stack_head_ = segment;
|
| + garbage_segment_stack_size_ += segment->size();
|
| +
|
| + if (garbage_segment_stack_size_ > 1 << 20) {
|
| + SignalGC();
|
| + }
|
| +
|
| + garbage_segments_mutex_->Unlock();
|
| +}
|
| +
|
| +static Segment* GetSegmentFromPool(size_t requested_size) {
|
| + if (requested_size > 1 << kMaxSegmentSizePower) {
|
| + return nullptr;
|
| + }
|
| +
|
| + uint8_t power = kMinSegmentSizePower;
|
| +
|
| + while (requested_size > 1 << power) power++;
|
| +
|
| + power -= kMinSegmentSizePower;
|
| +
|
| + DCHECK_GE(power, 0);
|
| +
|
| + unused_segments_mutex_->Lock();
|
| +
|
| + Segment* segment = unused_segments_heads_[power];
|
| +
|
| + if (segment) {
|
| + unused_segments_heads_[power] = segment->next();
|
| + segment->set_next(nullptr);
|
| +
|
| + unused_segments_sizes[power]--;
|
| + unused_segments_size_ -= segment->size();
|
| + }
|
| +
|
| + unused_segments_mutex_->Unlock();
|
| +
|
| + if (segment) {
|
| + DCHECK_GE(segment->size(), requested_size);
|
| + // PrintF("%f; 0;-%lu\n", static_cast<double>(clock() - begin) /
|
| + // CLOCKS_PER_SEC, segment->size());
|
| + }
|
| + return segment;
|
| +}
|
| +
|
| +static bool AddSegmentToPool(Segment* segment) {
|
| + size_t size = segment->size();
|
| +
|
| + if (size >= (1 << (kMaxSegmentSizePower + 1))) {
|
| + return false;
|
| + }
|
| +
|
| + if (size < (1 << kMinSegmentSizePower)) {
|
| + return false;
|
| + }
|
| +
|
| + uint8_t power = kMaxSegmentSizePower;
|
| +
|
| + while (size < 1 << power) power--;
|
| +
|
| + power -= kMinSegmentSizePower;
|
| +
|
| + DCHECK_GE(power, 0);
|
| +
|
| + unused_segments_mutex_->Lock();
|
| +
|
| + if (unused_segments_sizes[power] >= kMaxSegmentsPerBucket) {
|
| + unused_segments_mutex_->Unlock();
|
| + return false;
|
| + }
|
| +
|
| + segment->set_next(unused_segments_heads_[power]);
|
| + unused_segments_heads_[power] = segment;
|
| + unused_segments_size_ += size;
|
| + unused_segments_sizes[power]++;
|
| +
|
| + unused_segments_mutex_->Unlock();
|
| +
|
| + // PrintF("%f; 0;+%lu\n", static_cast<double>(clock() - begin) /
|
| + // CLOCKS_PER_SEC, size);
|
| +
|
| + return true;
|
| +}
|
| +} // namespace SegmentPool
|
| +
|
| Zone::Zone(base::AccountingAllocator* allocator)
|
| : allocation_size_(0),
|
| segment_bytes_allocated_(0),
|
| @@ -87,6 +303,14 @@ Zone::~Zone() {
|
| DCHECK(segment_bytes_allocated_ == 0);
|
| }
|
|
|
| +Segment* Zone::GetZoneSegmentFromPointer(const void* ptr) {
|
| + return reinterpret_cast<Segment*>(reinterpret_cast<uintptr_t>(ptr) &
|
| + kSegmentAlignmentMask);
|
| +}
|
| +
|
| +Zone* Zone::GetZoneFromPointer(const void* ptr) {
|
| + return GetZoneSegmentFromPointer(ptr)->zone();
|
| +}
|
|
|
| void* Zone::New(size_t size) {
|
| // Round up the requested size to fit the alignment.
|
| @@ -103,33 +327,52 @@ void* Zone::New(size_t size) {
|
| // Check if the requested size is available without expanding.
|
| Address result = position_;
|
|
|
| + // In case the requested size is zero, we still want to return a pointer
|
| + // to a valid segment, so the zone is obtainable from it.
|
| + if (size == 0) {
|
| + // there has to be a normal segment to reference
|
| + if (segment_head_ == nullptr || segment_head_->is_big_object_segment()) {
|
| + // We create a segment of minimal size.
|
| + result = NewNormalSegment(kAlignment);
|
| + }
|
| +
|
| + DCHECK(!GetZoneSegmentFromPointer(result)->is_big_object_segment());
|
| + DCHECK_EQ(GetZoneFromPointer(result), this);
|
| + return reinterpret_cast<void*>(result);
|
| + }
|
| +
|
| + // Large objects are a special case and get their own segment to live in.
|
| + if (CalculateSegmentSize(size) > kMaximumSegmentSize) {
|
| + result = NewLargeObjectSegment(size);
|
| + DCHECK(GetZoneSegmentFromPointer(result)->is_big_object_segment());
|
| + allocation_size_ += size;
|
| + return reinterpret_cast<void*>(result);
|
| + }
|
| +
|
| const size_t size_with_redzone = size + kASanRedzoneBytes;
|
| const uintptr_t limit = reinterpret_cast<uintptr_t>(limit_);
|
| const uintptr_t position = reinterpret_cast<uintptr_t>(position_);
|
| // position_ > limit_ can be true after the alignment correction above.
|
| if (limit < position || size_with_redzone > limit - position) {
|
| - result = NewExpand(size_with_redzone);
|
| + result = NewNormalSegment(size_with_redzone);
|
| } else {
|
| position_ += size_with_redzone;
|
| }
|
|
|
| Address redzone_position = result + size;
|
| - DCHECK(redzone_position + kASanRedzoneBytes == position_);
|
| + DCHECK_EQ(redzone_position + kASanRedzoneBytes, position_);
|
| ASAN_POISON_MEMORY_REGION(redzone_position, kASanRedzoneBytes);
|
|
|
| // Check that the result has the proper alignment and return it.
|
| DCHECK(IsAddressAligned(result, kAlignment, 0));
|
| + DCHECK(!GetZoneSegmentFromPointer(result)->is_big_object_segment());
|
| + DCHECK_EQ(GetZoneFromPointer(result), this);
|
| allocation_size_ += size;
|
| return reinterpret_cast<void*>(result);
|
| }
|
|
|
|
|
| void Zone::DeleteAll() {
|
| -#ifdef DEBUG
|
| - // Constant byte value used for zapping dead memory in debug mode.
|
| - static const unsigned char kZapDeadByte = 0xcd;
|
| -#endif
|
| -
|
| // Find a segment with a suitable size to keep around.
|
| Segment* keep = nullptr;
|
| // Traverse the chained list of segments, zapping (in debug mode)
|
| @@ -139,16 +382,15 @@ void Zone::DeleteAll() {
|
| if (!keep && current->size() <= kMaximumKeptSegmentSize) {
|
| // Unlink the segment we wish to keep from the list.
|
| keep = current;
|
| - keep->clear_next();
|
| + keep->Reset();
|
| } else {
|
| - size_t size = current->size();
|
| -#ifdef DEBUG
|
| - // Un-poison first so the zapping doesn't trigger ASan complaints.
|
| - ASAN_UNPOISON_MEMORY_REGION(current, size);
|
| - // Zap the entire current segment (including the header).
|
| - memset(current, kZapDeadByte, size);
|
| -#endif
|
| - DeleteSegment(current, size);
|
| + segment_bytes_allocated_ -= current->size();
|
| + allocator_->ChangeCurrentMemoryUsage(
|
| + -static_cast<int64_t>(current->size()));
|
| +
|
| + if (!SegmentPool::AddSegmentToPool(current)) {
|
| + SegmentPool::PushSegmentToGarbageStack(current);
|
| + }
|
| }
|
| current = next;
|
| }
|
| @@ -161,12 +403,6 @@ void Zone::DeleteAll() {
|
| Address start = keep->start();
|
| position_ = RoundUp(start, kAlignment);
|
| limit_ = keep->end();
|
| - // Un-poison so we can re-use the segment later.
|
| - ASAN_UNPOISON_MEMORY_REGION(start, keep->capacity());
|
| -#ifdef DEBUG
|
| - // Zap the contents of the kept segment (but not the header).
|
| - memset(start, kZapDeadByte, keep->capacity());
|
| -#endif
|
| } else {
|
| position_ = limit_ = 0;
|
| }
|
| @@ -178,49 +414,97 @@ void Zone::DeleteAll() {
|
|
|
|
|
| void Zone::DeleteKeptSegment() {
|
| -#ifdef DEBUG
|
| - // Constant byte value used for zapping dead memory in debug mode.
|
| - static const unsigned char kZapDeadByte = 0xcd;
|
| -#endif
|
| -
|
| DCHECK(segment_head_ == nullptr || segment_head_->next() == nullptr);
|
| if (segment_head_ != nullptr) {
|
| - size_t size = segment_head_->size();
|
| -#ifdef DEBUG
|
| - // Un-poison first so the zapping doesn't trigger ASan complaints.
|
| - ASAN_UNPOISON_MEMORY_REGION(segment_head_, size);
|
| - // Zap the entire kept segment (including the header).
|
| - memset(segment_head_, kZapDeadByte, size);
|
| -#endif
|
| - DeleteSegment(segment_head_, size);
|
| - segment_head_ = nullptr;
|
| + segment_bytes_allocated_ -= segment_head_->size();
|
| + allocator_->ChangeCurrentMemoryUsage(
|
| + -static_cast<int64_t>(segment_head_->size()));
|
| + if (!SegmentPool::AddSegmentToPool(segment_head_)) {
|
| + SegmentPool::PushSegmentToGarbageStack(segment_head_);
|
| + }
|
| }
|
|
|
| DCHECK(segment_bytes_allocated_ == 0);
|
| }
|
|
|
|
|
| -// Creates a new segment, sets it size, and pushes it to the front
|
| -// of the segment chain. Returns the new segment.
|
| Segment* Zone::NewSegment(size_t size) {
|
| - Segment* result = reinterpret_cast<Segment*>(allocator_->Allocate(size));
|
| - segment_bytes_allocated_ += size;
|
| - if (result != nullptr) {
|
| - result->Initialize(segment_head_, size);
|
| - segment_head_ = result;
|
| + Segment* result = SegmentPool::GetSegmentFromPool(size);
|
| +
|
| + if (!result) {
|
| + v8::base::VirtualMemory vm(size, kSegmentAlignmentSize);
|
| +
|
| + if (!vm.IsReserved()) {
|
| + V8::FatalProcessOutOfMemory("Zone");
|
| + return nullptr;
|
| + }
|
| +
|
| + // PrintF("%f; +%lu;0\n", static_cast<double>(clock() - begin) /
|
| + // CLOCKS_PER_SEC, size);
|
| +
|
| + Address base = Address(reinterpret_cast<uintptr_t>(vm.address()) &
|
| + kSegmentAlignmentMask);
|
| +
|
| + // On Windows, VirtualMemory can fail to allocate aligned memory.
|
| + if (base != vm.address()) {
|
| + // Address is not aligned.
|
| + base += kSegmentAlignmentSize;
|
| + }
|
| +
|
| + // The address of the end of the virtual memory
|
| + Address end =
|
| + Address(reinterpret_cast<uintptr_t>(vm.address()) + vm.size());
|
| +
|
| + // Check whether the virtual memory is big enough to fit our aligned chunk.
|
| + DCHECK_LE(base + size, end);
|
| +
|
| + // In case the virtual memory is too big, we want to use as much of it as
|
| + // possible. In normal segments, the segment alignment size is the upper
|
| + // limit.
|
| + if (size <= kSegmentAlignmentSize) {
|
| + size = Min(static_cast<size_t>(end - base), kSegmentAlignmentSize);
|
| + }
|
| +
|
| + if (!v8::base::VirtualMemory::CommitRegion(reinterpret_cast<void*>(base),
|
| + size, false)) {
|
| + V8::FatalProcessOutOfMemory("Zone");
|
| + return nullptr;
|
| + }
|
| +
|
| + result = reinterpret_cast<Segment*>(base);
|
| + result->Initialize(this, &vm, size);
|
| + } else {
|
| + result->set_zone(this);
|
| }
|
| +
|
| + segment_bytes_allocated_ += result->size();
|
| + allocator_->ChangeCurrentMemoryUsage(result->size());
|
| +
|
| return result;
|
| }
|
|
|
| +Address Zone::NewLargeObjectSegment(size_t size) {
|
| + size_t new_size = CalculateSegmentSize(size);
|
| + Segment* segment = NewSegment(new_size);
|
|
|
| -// Deletes the given segment. Does not touch the segment chain.
|
| -void Zone::DeleteSegment(Segment* segment, size_t size) {
|
| - segment_bytes_allocated_ -= size;
|
| - allocator_->Free(segment, size);
|
| -}
|
| + if (segment_head_ == nullptr) {
|
| + // This is the only case in which a large object segment becomes head of
|
| + // the segment list.
|
| + segment_head_ = segment;
|
| + } else {
|
| + // Large object segments should be inserted second into the list when
|
| + // possible.
|
| + segment->set_next(segment_head_->next());
|
| + segment_head_->set_next(segment);
|
| + }
|
|
|
| + Address result = RoundUp(segment->start(), kAlignment);
|
| + DCHECK_EQ(GetZoneFromPointer(segment), this);
|
| + DCHECK_EQ(GetZoneFromPointer(result), this);
|
| + return result;
|
| +}
|
|
|
| -Address Zone::NewExpand(size_t size) {
|
| +Address Zone::NewNormalSegment(size_t size) {
|
| // Make sure the requested size is already properly aligned and that
|
| // there isn't enough room in the Zone to satisfy the request.
|
| DCHECK_EQ(size, RoundDown(size, kAlignment));
|
| @@ -229,39 +513,24 @@ Address Zone::NewExpand(size_t size) {
|
| reinterpret_cast<uintptr_t>(position_) <
|
| size);
|
|
|
| - // Compute the new segment size. We use a 'high water mark'
|
| - // strategy, where we increase the segment size every time we expand
|
| - // except that we employ a maximum segment size when we delete. This
|
| - // is to avoid excessive malloc() and free() overhead.
|
| - Segment* head = segment_head_;
|
| - const size_t old_size = (head == nullptr) ? 0 : head->size();
|
| - static const size_t kSegmentOverhead = sizeof(Segment) + kAlignment;
|
| - const size_t new_size_no_overhead = size + (old_size << 1);
|
| - size_t new_size = kSegmentOverhead + new_size_no_overhead;
|
| - const size_t min_new_size = kSegmentOverhead + size;
|
| - // Guard against integer overflow.
|
| - if (new_size_no_overhead < size || new_size < kSegmentOverhead) {
|
| - V8::FatalProcessOutOfMemory("Zone");
|
| - return nullptr;
|
| - }
|
| - if (new_size < kMinimumSegmentSize) {
|
| - new_size = kMinimumSegmentSize;
|
| - } else if (new_size > kMaximumSegmentSize) {
|
| - // Limit the size of new segments to avoid growing the segment size
|
| - // exponentially, thus putting pressure on contiguous virtual address space.
|
| - // All the while making sure to allocate a segment large enough to hold the
|
| - // requested size.
|
| - new_size = Max(min_new_size, kMaximumSegmentSize);
|
| - }
|
| - if (new_size > INT_MAX) {
|
| - V8::FatalProcessOutOfMemory("Zone");
|
| - return nullptr;
|
| - }
|
| + DCHECK_LE(size, kMaximumSegmentSize + 0);
|
| +
|
| + size_t new_size = CalculateSegmentSize(size);
|
| + const size_t old_size =
|
| + (segment_head_ == nullptr) ? 0 : segment_head_->size();
|
| + new_size = Max(new_size, old_size << 1);
|
| + new_size = Min(new_size, kMaximumSegmentSize);
|
| +
|
| + DCHECK_LE(new_size, kMaximumSegmentSize + 0);
|
| +
|
| Segment* segment = NewSegment(new_size);
|
| - if (segment == nullptr) {
|
| - V8::FatalProcessOutOfMemory("Zone");
|
| - return nullptr;
|
| - }
|
| +
|
| + // Put segment in front of the segment list.
|
| + segment->set_next(segment_head_);
|
| + segment_head_ = segment;
|
| +
|
| + // Normal segments must not be bigger than the alignment size.
|
| + DCHECK_LE(segment->size(), kSegmentAlignmentSize + 0);
|
|
|
| // Recompute 'top' and 'limit' based on the new segment.
|
| Address result = RoundUp(segment->start(), kAlignment);
|
| @@ -269,12 +538,23 @@ Address Zone::NewExpand(size_t size) {
|
| // Check for address overflow.
|
| // (Should not happen since the segment is guaranteed to accomodate
|
| // size bytes + header and alignment padding)
|
| - DCHECK(reinterpret_cast<uintptr_t>(position_) >=
|
| - reinterpret_cast<uintptr_t>(result));
|
| + DCHECK_GE(reinterpret_cast<uintptr_t>(position_),
|
| + reinterpret_cast<uintptr_t>(result));
|
| + DCHECK_EQ(GetZoneFromPointer(segment), this);
|
| + DCHECK_EQ(GetZoneFromPointer(result), this);
|
| + DCHECK_EQ(GetZoneFromPointer(segment->end() - 1), this);
|
| limit_ = segment->end();
|
| DCHECK(position_ <= limit_);
|
| return result;
|
| }
|
|
|
| +size_t Zone::CalculateSegmentSize(const size_t requested) {
|
| + if (UINTPTR_MAX - (sizeof(Segment) + kAlignment) < requested) {
|
| + V8::FatalProcessOutOfMemory("Zone");
|
| + }
|
| +
|
| + return RoundUp(requested + sizeof(Segment) + kAlignment, kMinimumSegmentSize);
|
| +}
|
| +
|
| } // namespace internal
|
| } // namespace v8
|
|
|