| Index: src/zone.cc
|
| diff --git a/src/zone.cc b/src/zone.cc
|
| index a10b63612e484962870ab2004c6bf2a7ff44f49a..3f209ea21f4c6a768b3b7c34b36e18465a73351d 100644
|
| --- a/src/zone.cc
|
| +++ b/src/zone.cc
|
| @@ -43,33 +43,80 @@ const size_t kASanRedzoneBytes = 0;
|
|
|
|
|
| // Segments represent chunks of memory: They have starting address
|
| -// (encoded in the this pointer) and a size in bytes. Segments are
|
| +// (encoded in the this pointer) and a VirtualMemory instance. Segments are
|
| // chained together forming a LIFO structure with the newest segment
|
| -// available as segment_head_. Segments are allocated using malloc()
|
| -// and de-allocated using free().
|
| +// available as segment_head_. Segments are allocated aligned via the
|
| +// VirtualMemory instance and released using it.
|
|
|
| class Segment {
|
| public:
|
| - void Initialize(Segment* next, size_t size) {
|
| - next_ = next;
|
| - size_ = size;
|
| + void Initialize(Zone* zone, v8::base::VirtualMemory* virtual_memory) {
|
| + DCHECK_EQ(reinterpret_cast<uintptr_t>(this) & Zone::kSegmentAlignmentMask,
|
| + reinterpret_cast<uintptr_t>(this));
|
| +
|
| + next_ = nullptr;
|
| + zone_ = zone;
|
| + virtual_memory_.Reset();
|
| + virtual_memory_.TakeControl(virtual_memory);
|
| }
|
|
|
| + Zone* zone() const { return zone_; }
|
| Segment* next() const { return next_; }
|
| - void clear_next() { next_ = nullptr; }
|
| + void set_next(Segment* const value) { next_ = value; }
|
|
|
| - size_t size() const { return size_; }
|
| - size_t capacity() const { return size_ - sizeof(Segment); }
|
| + size_t size() const {
|
| + return virtual_memory_.size() -
|
| + (reinterpret_cast<uintptr_t>(this) -
|
| + reinterpret_cast<uintptr_t>(virtual_memory_.address()));
|
| + }
|
| +
|
| + size_t capacity() const { return size() - sizeof(Segment); }
|
|
|
| Address start() const { return address(sizeof(Segment)); }
|
| - Address end() const { return address(size_); }
|
| + Address end() const { return address(size()); }
|
| +
|
| + bool is_big_object_segment() const {
|
| + return capacity() > Zone::kMaximumSegmentSize;
|
| + }
|
| +
|
| + void Release() {
|
| + v8::base::VirtualMemory vm = v8::base::VirtualMemory();
|
| + vm.TakeControl(&virtual_memory_);
|
| +
|
| +#ifdef DEBUG
|
| + // Un-poison first so the zapping doesn't trigger ASan complaints.
|
| + ASAN_UNPOISON_MEMORY_REGION(vm.address(), vm.size());
|
| + // Zap the entire current segment (including the header).
|
| + memset(vm.address(), kZapDeadByte, vm.size());
|
| +#endif
|
| +
|
| + vm.Release();
|
| + }
|
| +
|
| + void Reset() {
|
| + // Un-poison so neither the zapping not the reusing does trigger ASan
|
| + // complaints.
|
| + ASAN_UNPOISON_MEMORY_REGION(virtual_memory_.address(),
|
| + virtual_memory_.size());
|
| +#ifdef DEBUG
|
| + // Zap the entire current segment (including the header).
|
| + memset(reinterpret_cast<void*>(start()), kZapDeadByte, capacity());
|
| +#endif
|
| + next_ = nullptr;
|
| + }
|
|
|
| private:
|
| +#ifdef DEBUG
|
| + // Constant byte value used for zapping dead memory in debug mode.
|
| + static const unsigned char kZapDeadByte = 0xcd;
|
| +#endif
|
| +
|
| // Computes the address of the nth byte in this segment.
|
| Address address(size_t n) const { return Address(this) + n; }
|
|
|
| + Zone* zone_;
|
| Segment* next_;
|
| - size_t size_;
|
| + v8::base::VirtualMemory virtual_memory_;
|
| };
|
|
|
| Zone::Zone(base::AccountingAllocator* allocator)
|
| @@ -87,8 +134,37 @@ Zone::~Zone() {
|
| DCHECK(segment_bytes_allocated_ == 0);
|
| }
|
|
|
| +Segment* Zone::GetZoneSegmentFromPointer(const void* ptr) {
|
| + return reinterpret_cast<Segment*>(reinterpret_cast<uintptr_t>(ptr) &
|
| + kSegmentAlignmentMask);
|
| +}
|
| +
|
| +Zone* Zone::GetZoneFromPointer(const void* ptr) {
|
| + return GetZoneSegmentFromPointer(ptr)->zone();
|
| +}
|
|
|
| void* Zone::New(size_t size) {
|
| + Address result = position_;
|
| +
|
| + // corner case: zero size
|
| + if (size == 0) {
|
| + // there has to be a normal segment to reference
|
| + if (segment_head_ == nullptr || segment_head_->is_big_object_segment()) {
|
| + // we allocate a segment of minimal size
|
| + result = NewNormalSegment(kAlignment);
|
| + }
|
| +
|
| + DCHECK(!GetZoneSegmentFromPointer(result)->is_big_object_segment());
|
| + DCHECK_EQ(GetZoneFromPointer(result), this);
|
| + return reinterpret_cast<void*>(result);
|
| + }
|
| +
|
| + // Large objects are a special case and get their own segment to live in.
|
| + if (CalculateSegmentSize(size) > kMaximumSegmentSize) {
|
| + return reinterpret_cast<void*>(NewLargeObjectSegment(size));
|
| + DCHECK(GetZoneSegmentFromPointer(result)->is_big_object_segment());
|
| + }
|
| +
|
| // Round up the requested size to fit the alignment.
|
| size = RoundUp(size, kAlignment);
|
|
|
| @@ -101,14 +177,13 @@ void* Zone::New(size_t size) {
|
| }
|
|
|
| // Check if the requested size is available without expanding.
|
| - Address result = position_;
|
|
|
| const size_t size_with_redzone = size + kASanRedzoneBytes;
|
| const uintptr_t limit = reinterpret_cast<uintptr_t>(limit_);
|
| const uintptr_t position = reinterpret_cast<uintptr_t>(position_);
|
| // position_ > limit_ can be true after the alignment correction above.
|
| if (limit < position || size_with_redzone > limit - position) {
|
| - result = NewExpand(size_with_redzone);
|
| + result = NewNormalSegment(size_with_redzone);
|
| } else {
|
| position_ += size_with_redzone;
|
| }
|
| @@ -119,17 +194,14 @@ void* Zone::New(size_t size) {
|
|
|
| // Check that the result has the proper alignment and return it.
|
| DCHECK(IsAddressAligned(result, kAlignment, 0));
|
| + DCHECK(!GetZoneSegmentFromPointer(result)->is_big_object_segment());
|
| + DCHECK_EQ(GetZoneFromPointer(result), this);
|
| allocation_size_ += size;
|
| return reinterpret_cast<void*>(result);
|
| }
|
|
|
|
|
| void Zone::DeleteAll() {
|
| -#ifdef DEBUG
|
| - // Constant byte value used for zapping dead memory in debug mode.
|
| - static const unsigned char kZapDeadByte = 0xcd;
|
| -#endif
|
| -
|
| // Find a segment with a suitable size to keep around.
|
| Segment* keep = nullptr;
|
| // Traverse the chained list of segments, zapping (in debug mode)
|
| @@ -139,16 +211,10 @@ void Zone::DeleteAll() {
|
| if (!keep && current->size() <= kMaximumKeptSegmentSize) {
|
| // Unlink the segment we wish to keep from the list.
|
| keep = current;
|
| - keep->clear_next();
|
| + keep->Reset();
|
| } else {
|
| - size_t size = current->size();
|
| -#ifdef DEBUG
|
| - // Un-poison first so the zapping doesn't trigger ASan complaints.
|
| - ASAN_UNPOISON_MEMORY_REGION(current, size);
|
| - // Zap the entire current segment (including the header).
|
| - memset(current, kZapDeadByte, size);
|
| -#endif
|
| - DeleteSegment(current, size);
|
| + segment_bytes_allocated_ -= current->size();
|
| + current->Release();
|
| }
|
| current = next;
|
| }
|
| @@ -161,12 +227,6 @@ void Zone::DeleteAll() {
|
| Address start = keep->start();
|
| position_ = RoundUp(start, kAlignment);
|
| limit_ = keep->end();
|
| - // Un-poison so we can re-use the segment later.
|
| - ASAN_UNPOISON_MEMORY_REGION(start, keep->capacity());
|
| -#ifdef DEBUG
|
| - // Zap the contents of the kept segment (but not the header).
|
| - memset(start, kZapDeadByte, keep->capacity());
|
| -#endif
|
| } else {
|
| position_ = limit_ = 0;
|
| }
|
| @@ -178,21 +238,10 @@ void Zone::DeleteAll() {
|
|
|
|
|
| void Zone::DeleteKeptSegment() {
|
| -#ifdef DEBUG
|
| - // Constant byte value used for zapping dead memory in debug mode.
|
| - static const unsigned char kZapDeadByte = 0xcd;
|
| -#endif
|
| -
|
| DCHECK(segment_head_ == nullptr || segment_head_->next() == nullptr);
|
| if (segment_head_ != nullptr) {
|
| - size_t size = segment_head_->size();
|
| -#ifdef DEBUG
|
| - // Un-poison first so the zapping doesn't trigger ASan complaints.
|
| - ASAN_UNPOISON_MEMORY_REGION(segment_head_, size);
|
| - // Zap the entire kept segment (including the header).
|
| - memset(segment_head_, kZapDeadByte, size);
|
| -#endif
|
| - DeleteSegment(segment_head_, size);
|
| + segment_bytes_allocated_ -= segment_head_->size();
|
| + segment_head_->Release();
|
| segment_head_ = nullptr;
|
| }
|
|
|
| @@ -200,27 +249,49 @@ void Zone::DeleteKeptSegment() {
|
| }
|
|
|
|
|
| -// Creates a new segment, sets it size, and pushes it to the front
|
| -// of the segment chain. Returns the new segment.
|
| Segment* Zone::NewSegment(size_t size) {
|
| - Segment* result = reinterpret_cast<Segment*>(allocator_->Allocate(size));
|
| - segment_bytes_allocated_ += size;
|
| - if (result != nullptr) {
|
| - result->Initialize(segment_head_, size);
|
| - segment_head_ = result;
|
| + v8::base::VirtualMemory vm(size, kSegmentAlignmentSize);
|
| +
|
| + if (vm.IsReserved()) {
|
| + DCHECK_EQ(reinterpret_cast<uintptr_t>(vm.address()) & kSegmentAlignmentMask,
|
| + reinterpret_cast<uintptr_t>(vm.address()));
|
| + DCHECK_EQ(vm.size(), size);
|
| + v8::base::VirtualMemory::CommitRegion(vm.address(), vm.size(), false);
|
| +
|
| + Segment* result = reinterpret_cast<Segment*>(vm.address());
|
| +
|
| + result->Initialize(this, &vm);
|
| +
|
| + segment_bytes_allocated_ += result->size();
|
| +
|
| + return result;
|
| + } else {
|
| + V8::FatalProcessOutOfMemory("Zone");
|
| + return nullptr;
|
| }
|
| - return result;
|
| }
|
|
|
| +Address Zone::NewLargeObjectSegment(size_t size) {
|
| + size_t new_size = CalculateSegmentSize(size);
|
| + Segment* segment = NewSegment(new_size);
|
|
|
| -// Deletes the given segment. Does not touch the segment chain.
|
| -void Zone::DeleteSegment(Segment* segment, size_t size) {
|
| - segment_bytes_allocated_ -= size;
|
| - allocator_->Free(segment, size);
|
| -}
|
| + if (segment_head_ == nullptr) {
|
| + // corner case in which a large object segment becomes the head
|
| + // of the segment list.
|
| + segment_head_ = segment;
|
| + } else {
|
| + // large object segments should be inserted second into the list
|
| + segment->set_next(segment_head_->next());
|
| + segment_head_->set_next(segment);
|
| + }
|
|
|
| + Address result = RoundUp(segment->start(), kAlignment);
|
| + DCHECK_EQ(GetZoneFromPointer(segment), this);
|
| + DCHECK_EQ(GetZoneFromPointer(result), this);
|
| + return result;
|
| +}
|
|
|
| -Address Zone::NewExpand(size_t size) {
|
| +Address Zone::NewNormalSegment(size_t size) {
|
| // Make sure the requested size is already properly aligned and that
|
| // there isn't enough room in the Zone to satisfy the request.
|
| DCHECK_EQ(size, RoundDown(size, kAlignment));
|
| @@ -229,39 +300,26 @@ Address Zone::NewExpand(size_t size) {
|
| reinterpret_cast<uintptr_t>(position_) <
|
| size);
|
|
|
| - // Compute the new segment size. We use a 'high water mark'
|
| - // strategy, where we increase the segment size every time we expand
|
| - // except that we employ a maximum segment size when we delete. This
|
| - // is to avoid excessive malloc() and free() overhead.
|
| - Segment* head = segment_head_;
|
| - const size_t old_size = (head == nullptr) ? 0 : head->size();
|
| - static const size_t kSegmentOverhead = sizeof(Segment) + kAlignment;
|
| - const size_t new_size_no_overhead = size + (old_size << 1);
|
| - size_t new_size = kSegmentOverhead + new_size_no_overhead;
|
| - const size_t min_new_size = kSegmentOverhead + size;
|
| - // Guard against integer overflow.
|
| - if (new_size_no_overhead < size || new_size < kSegmentOverhead) {
|
| - V8::FatalProcessOutOfMemory("Zone");
|
| - return nullptr;
|
| - }
|
| - if (new_size < kMinimumSegmentSize) {
|
| - new_size = kMinimumSegmentSize;
|
| - } else if (new_size > kMaximumSegmentSize) {
|
| - // Limit the size of new segments to avoid growing the segment size
|
| - // exponentially, thus putting pressure on contiguous virtual address space.
|
| - // All the while making sure to allocate a segment large enough to hold the
|
| - // requested size.
|
| - new_size = Max(min_new_size, kMaximumSegmentSize);
|
| - }
|
| - if (new_size > INT_MAX) {
|
| - V8::FatalProcessOutOfMemory("Zone");
|
| - return nullptr;
|
| - }
|
| + // Only normal segments here
|
| + DCHECK_LE(size, kMaximumSegmentSize + 0);
|
| +
|
| + size_t new_size = CalculateSegmentSize(size);
|
| + const size_t old_size =
|
| + (segment_head_ == nullptr) ? 0 : segment_head_->size();
|
| + new_size = Max(new_size, old_size << 1);
|
| + new_size = Min(new_size, kMaximumSegmentSize);
|
| +
|
| + // Rounding up shall not mess with our limits
|
| + DCHECK_LE(new_size, kMaximumSegmentSize + 0);
|
| +
|
| Segment* segment = NewSegment(new_size);
|
| - if (segment == nullptr) {
|
| - V8::FatalProcessOutOfMemory("Zone");
|
| - return nullptr;
|
| - }
|
| +
|
| + // Put in front of the segment list
|
| + segment->set_next(segment_head_);
|
| + segment_head_ = segment;
|
| +
|
| + // Normal segments must not be bigger than the alignment size
|
| + DCHECK_LE(segment->size(), kSegmentAlignmentSize + 0);
|
|
|
| // Recompute 'top' and 'limit' based on the new segment.
|
| Address result = RoundUp(segment->start(), kAlignment);
|
| @@ -269,12 +327,23 @@ Address Zone::NewExpand(size_t size) {
|
| // Check for address overflow.
|
| // (Should not happen since the segment is guaranteed to accomodate
|
| // size bytes + header and alignment padding)
|
| - DCHECK(reinterpret_cast<uintptr_t>(position_) >=
|
| - reinterpret_cast<uintptr_t>(result));
|
| + DCHECK_GE(reinterpret_cast<uintptr_t>(position_),
|
| + reinterpret_cast<uintptr_t>(result));
|
| + DCHECK_EQ(GetZoneFromPointer(segment), this);
|
| + DCHECK_EQ(GetZoneFromPointer(result), this);
|
| + DCHECK_EQ(GetZoneFromPointer(segment->end() - 1), this);
|
| limit_ = segment->end();
|
| DCHECK(position_ <= limit_);
|
| return result;
|
| }
|
|
|
| +size_t Zone::CalculateSegmentSize(const size_t requested) {
|
| + if (requested > INT_MAX) {
|
| + V8::FatalProcessOutOfMemory("Zone");
|
| + }
|
| +
|
| + return RoundUp(requested + sizeof(Segment) + kAlignment, kMinimumSegmentSize);
|
| +}
|
| +
|
| } // namespace internal
|
| } // namespace v8
|
|
|