Chromium Code Reviews| Index: src/zone.cc |
| diff --git a/src/zone.cc b/src/zone.cc |
| index a10b63612e484962870ab2004c6bf2a7ff44f49a..32025aac1a29be9cc4d15712037fec02ce2ba449 100644 |
| --- a/src/zone.cc |
| +++ b/src/zone.cc |
| @@ -43,33 +43,79 @@ const size_t kASanRedzoneBytes = 0; |
| // Segments represent chunks of memory: They have starting address |
| -// (encoded in the this pointer) and a size in bytes. Segments are |
| +// (encoded in the this pointer) and a VirtualMemory instance. Segments are |
| // chained together forming a LIFO structure with the newest segment |
| -// available as segment_head_. Segments are allocated using malloc() |
| -// and de-allocated using free(). |
| +// available as segment_head_. Segments are allocated aligned via the |
| +// VirtualMemory instance and released using it. |
| class Segment { |
| public: |
| - void Initialize(Segment* next, size_t size) { |
| - next_ = next; |
| - size_ = size; |
| + void Initialize(Zone* zone, v8::base::VirtualMemory* virtual_memory) { |
| + DCHECK_EQ(reinterpret_cast<uintptr_t>(this) & Zone::kSegmentAlignmentMask, |
| + reinterpret_cast<uintptr_t>(this)); |
| + |
| + next_ = nullptr; |
| + zone_ = zone; |
| + virtual_memory_.Reset(); |
| + virtual_memory_.TakeControl(virtual_memory); |
| } |
| + Zone* zone() const { return zone_; } |
| Segment* next() const { return next_; } |
| - void clear_next() { next_ = nullptr; } |
| + void set_next(Segment* const value) { next_ = value; } |
| - size_t size() const { return size_; } |
| - size_t capacity() const { return size_ - sizeof(Segment); } |
| + size_t size() const { return virtual_memory_.size(); } |
| + |
| + size_t capacity() const { return size() - sizeof(Segment); } |
| Address start() const { return address(sizeof(Segment)); } |
| - Address end() const { return address(size_); } |
| + Address end() const { return address(size()); } |
| + |
| + bool is_big_object_segment() const { |
| + return size() > Zone::kMaximumSegmentSize; |
| + } |
| + |
| + void Release() { |
| +#ifdef ENABLE_HANDLE_ZAPPING |
| + v8::base::VirtualMemory vm = v8::base::VirtualMemory(); |
| + vm.TakeControl(&virtual_memory_); |
|
Jakob Kummerow
2016/09/05 12:05:23
Question still stands: why do you need |vm| at all
|
| + // Un-poison first so the zapping doesn't trigger ASan complaints. |
| + ASAN_UNPOISON_MEMORY_REGION(vm.address(), vm.size()); |
| + // Zap the entire current segment (including the header). |
| + memset(vm.address(), kZapDeadByte, vm.size()); |
| + |
| + vm.Release(); |
| +#else |
| + virtual_memory_.Release(); |
| +#endif |
| + } |
| + |
| + void Reset() { |
| + // Un-poison so neither the zapping not the reusing does trigger ASan |
| + // complaints. |
| + ASAN_UNPOISON_MEMORY_REGION(virtual_memory_.address(), |
| + virtual_memory_.size()); |
| +#ifdef ENABLE_HANDLE_ZAPPING |
| + // Zap the entire current segment (including the header). |
| + memset(reinterpret_cast<void*>(start()), kZapDeadByte, capacity()); |
| +#endif |
| + next_ = nullptr; |
| + } |
| private: |
| +#ifdef ENABLE_HANDLE_ZAPPING |
| + // Constant byte value used for zapping dead memory in debug mode. |
| + static const unsigned char kZapDeadByte = 0xcd; |
| +#endif |
| + |
| // Computes the address of the nth byte in this segment. |
| Address address(size_t n) const { return Address(this) + n; } |
| + Zone* zone_; |
| Segment* next_; |
| - size_t size_; |
| + v8::base::VirtualMemory virtual_memory_; |
| + |
| + DISALLOW_COPY_AND_ASSIGN(Segment); |
| }; |
| Zone::Zone(base::AccountingAllocator* allocator) |
| @@ -87,8 +133,39 @@ Zone::~Zone() { |
| DCHECK(segment_bytes_allocated_ == 0); |
| } |
| +Segment* Zone::GetZoneSegmentFromPointer(const void* ptr) { |
| + return reinterpret_cast<Segment*>(reinterpret_cast<uintptr_t>(ptr) & |
| + kSegmentAlignmentMask); |
| +} |
| + |
| +Zone* Zone::GetZoneFromPointer(const void* ptr) { |
| + return GetZoneSegmentFromPointer(ptr)->zone(); |
| +} |
| void* Zone::New(size_t size) { |
| + Address result = position_; |
| + |
| + // In case the requested size is zero, we still want to return a pointer |
| + // to a valid segment, so the zone is obtainable from it. |
| + if (size == 0) { |
| + // there has to be a normal segment to reference |
| + if (segment_head_ == nullptr || segment_head_->is_big_object_segment()) { |
| + // We create a segment of minimal size. |
| + result = NewNormalSegment(kAlignment); |
| + } |
| + |
| + DCHECK(!GetZoneSegmentFromPointer(result)->is_big_object_segment()); |
| + DCHECK_EQ(GetZoneFromPointer(result), this); |
| + return reinterpret_cast<void*>(result); |
| + } |
| + |
| + // Large objects are a special case and get their own segment to live in. |
| + if (CalculateSegmentSize(size) > kMaximumSegmentSize) { |
| + result = NewLargeObjectSegment(size); |
| + DCHECK(GetZoneSegmentFromPointer(result)->is_big_object_segment()); |
| + return reinterpret_cast<void*>(result); |
| + } |
| + |
| // Round up the requested size to fit the alignment. |
| size = RoundUp(size, kAlignment); |
| @@ -101,14 +178,13 @@ void* Zone::New(size_t size) { |
| } |
| // Check if the requested size is available without expanding. |
| - Address result = position_; |
| const size_t size_with_redzone = size + kASanRedzoneBytes; |
| const uintptr_t limit = reinterpret_cast<uintptr_t>(limit_); |
| const uintptr_t position = reinterpret_cast<uintptr_t>(position_); |
| // position_ > limit_ can be true after the alignment correction above. |
| if (limit < position || size_with_redzone > limit - position) { |
| - result = NewExpand(size_with_redzone); |
| + result = NewNormalSegment(size_with_redzone); |
| } else { |
| position_ += size_with_redzone; |
| } |
| @@ -119,17 +195,14 @@ void* Zone::New(size_t size) { |
| // Check that the result has the proper alignment and return it. |
| DCHECK(IsAddressAligned(result, kAlignment, 0)); |
| + DCHECK(!GetZoneSegmentFromPointer(result)->is_big_object_segment()); |
| + DCHECK_EQ(GetZoneFromPointer(result), this); |
| allocation_size_ += size; |
| return reinterpret_cast<void*>(result); |
| } |
| void Zone::DeleteAll() { |
| -#ifdef DEBUG |
| - // Constant byte value used for zapping dead memory in debug mode. |
| - static const unsigned char kZapDeadByte = 0xcd; |
| -#endif |
| - |
| // Find a segment with a suitable size to keep around. |
| Segment* keep = nullptr; |
| // Traverse the chained list of segments, zapping (in debug mode) |
| @@ -139,16 +212,12 @@ void Zone::DeleteAll() { |
| if (!keep && current->size() <= kMaximumKeptSegmentSize) { |
| // Unlink the segment we wish to keep from the list. |
| keep = current; |
| - keep->clear_next(); |
| + keep->Reset(); |
| } else { |
| - size_t size = current->size(); |
| -#ifdef DEBUG |
| - // Un-poison first so the zapping doesn't trigger ASan complaints. |
| - ASAN_UNPOISON_MEMORY_REGION(current, size); |
| - // Zap the entire current segment (including the header). |
| - memset(current, kZapDeadByte, size); |
| -#endif |
| - DeleteSegment(current, size); |
| + segment_bytes_allocated_ -= current->size(); |
| + allocator_->ChangeCurrentMemoryUsage( |
| + -static_cast<int64_t>(current->size())); |
| + current->Release(); |
| } |
| current = next; |
| } |
| @@ -161,12 +230,6 @@ void Zone::DeleteAll() { |
| Address start = keep->start(); |
| position_ = RoundUp(start, kAlignment); |
| limit_ = keep->end(); |
| - // Un-poison so we can re-use the segment later. |
| - ASAN_UNPOISON_MEMORY_REGION(start, keep->capacity()); |
| -#ifdef DEBUG |
| - // Zap the contents of the kept segment (but not the header). |
| - memset(start, kZapDeadByte, keep->capacity()); |
| -#endif |
| } else { |
| position_ = limit_ = 0; |
| } |
| @@ -178,21 +241,12 @@ void Zone::DeleteAll() { |
| void Zone::DeleteKeptSegment() { |
| -#ifdef DEBUG |
| - // Constant byte value used for zapping dead memory in debug mode. |
| - static const unsigned char kZapDeadByte = 0xcd; |
| -#endif |
| - |
| DCHECK(segment_head_ == nullptr || segment_head_->next() == nullptr); |
| if (segment_head_ != nullptr) { |
| - size_t size = segment_head_->size(); |
| -#ifdef DEBUG |
| - // Un-poison first so the zapping doesn't trigger ASan complaints. |
| - ASAN_UNPOISON_MEMORY_REGION(segment_head_, size); |
| - // Zap the entire kept segment (including the header). |
| - memset(segment_head_, kZapDeadByte, size); |
| -#endif |
| - DeleteSegment(segment_head_, size); |
| + segment_bytes_allocated_ -= segment_head_->size(); |
| + allocator_->ChangeCurrentMemoryUsage( |
| + -static_cast<int64_t>(segment_head_->size())); |
| + segment_head_->Release(); |
| segment_head_ = nullptr; |
| } |
| @@ -200,27 +254,55 @@ void Zone::DeleteKeptSegment() { |
| } |
| -// Creates a new segment, sets it size, and pushes it to the front |
| -// of the segment chain. Returns the new segment. |
| Segment* Zone::NewSegment(size_t size) { |
| - Segment* result = reinterpret_cast<Segment*>(allocator_->Allocate(size)); |
| - segment_bytes_allocated_ += size; |
| - if (result != nullptr) { |
| - result->Initialize(segment_head_, size); |
| - segment_head_ = result; |
| + v8::base::VirtualMemory vm(size, kSegmentAlignmentSize); |
| + |
| + if (!vm.IsReserved()) { |
| + V8::FatalProcessOutOfMemory("Zone"); |
| + return nullptr; |
| + } |
| + |
| + DCHECK_EQ(reinterpret_cast<uintptr_t>(vm.address()) & kSegmentAlignmentMask, |
| + reinterpret_cast<uintptr_t>(vm.address())); |
| + DCHECK_EQ(vm.size(), size); |
| + |
| + if (!v8::base::VirtualMemory::CommitRegion(vm.address(), vm.size(), false)) { |
| + V8::FatalProcessOutOfMemory("Zone"); |
| + return nullptr; |
| } |
| + |
| + Segment* result = reinterpret_cast<Segment*>(vm.address()); |
| + |
| + result->Initialize(this, &vm); |
| + |
| + segment_bytes_allocated_ += result->size(); |
| + allocator_->ChangeCurrentMemoryUsage(result->size()); |
| + |
| return result; |
| } |
| +Address Zone::NewLargeObjectSegment(size_t size) { |
| + size_t new_size = CalculateSegmentSize(size); |
| + Segment* segment = NewSegment(new_size); |
| -// Deletes the given segment. Does not touch the segment chain. |
| -void Zone::DeleteSegment(Segment* segment, size_t size) { |
| - segment_bytes_allocated_ -= size; |
| - allocator_->Free(segment, size); |
| -} |
| + if (segment_head_ == nullptr) { |
| + // This is the only case in which a large object segment becomes head of |
| + // the segment list. |
| + segment_head_ = segment; |
| + } else { |
| + // Large object segments should be inserted second into the list when |
| + // possible. |
| + segment->set_next(segment_head_->next()); |
| + segment_head_->set_next(segment); |
| + } |
| + Address result = RoundUp(segment->start(), kAlignment); |
| + DCHECK_EQ(GetZoneFromPointer(segment), this); |
| + DCHECK_EQ(GetZoneFromPointer(result), this); |
| + return result; |
| +} |
| -Address Zone::NewExpand(size_t size) { |
| +Address Zone::NewNormalSegment(size_t size) { |
| // Make sure the requested size is already properly aligned and that |
| // there isn't enough room in the Zone to satisfy the request. |
| DCHECK_EQ(size, RoundDown(size, kAlignment)); |
| @@ -229,39 +311,24 @@ Address Zone::NewExpand(size_t size) { |
| reinterpret_cast<uintptr_t>(position_) < |
| size); |
| - // Compute the new segment size. We use a 'high water mark' |
| - // strategy, where we increase the segment size every time we expand |
| - // except that we employ a maximum segment size when we delete. This |
| - // is to avoid excessive malloc() and free() overhead. |
| - Segment* head = segment_head_; |
| - const size_t old_size = (head == nullptr) ? 0 : head->size(); |
| - static const size_t kSegmentOverhead = sizeof(Segment) + kAlignment; |
| - const size_t new_size_no_overhead = size + (old_size << 1); |
| - size_t new_size = kSegmentOverhead + new_size_no_overhead; |
| - const size_t min_new_size = kSegmentOverhead + size; |
| - // Guard against integer overflow. |
| - if (new_size_no_overhead < size || new_size < kSegmentOverhead) { |
| - V8::FatalProcessOutOfMemory("Zone"); |
| - return nullptr; |
| - } |
| - if (new_size < kMinimumSegmentSize) { |
| - new_size = kMinimumSegmentSize; |
| - } else if (new_size > kMaximumSegmentSize) { |
| - // Limit the size of new segments to avoid growing the segment size |
| - // exponentially, thus putting pressure on contiguous virtual address space. |
| - // All the while making sure to allocate a segment large enough to hold the |
| - // requested size. |
| - new_size = Max(min_new_size, kMaximumSegmentSize); |
| - } |
| - if (new_size > INT_MAX) { |
| - V8::FatalProcessOutOfMemory("Zone"); |
| - return nullptr; |
| - } |
| + DCHECK_LE(size, kMaximumSegmentSize + 0); |
|
Jakob Kummerow
2016/09/05 12:05:24
Question still stands: why "+ 0"?
|
| + |
| + size_t new_size = CalculateSegmentSize(size); |
| + const size_t old_size = |
| + (segment_head_ == nullptr) ? 0 : segment_head_->size(); |
| + new_size = Max(new_size, old_size << 1); |
| + new_size = Min(new_size, kMaximumSegmentSize); |
| + |
| + DCHECK_LE(new_size, kMaximumSegmentSize + 0); |
| + |
| Segment* segment = NewSegment(new_size); |
| - if (segment == nullptr) { |
| - V8::FatalProcessOutOfMemory("Zone"); |
| - return nullptr; |
| - } |
| + |
| + // Put segment in front of the segment list. |
| + segment->set_next(segment_head_); |
| + segment_head_ = segment; |
| + |
| + // Normal segments must not be bigger than the alignment size. |
| + DCHECK_LE(segment->size(), kSegmentAlignmentSize + 0); |
| // Recompute 'top' and 'limit' based on the new segment. |
| Address result = RoundUp(segment->start(), kAlignment); |
| @@ -269,12 +336,23 @@ Address Zone::NewExpand(size_t size) { |
| // Check for address overflow. |
| // (Should not happen since the segment is guaranteed to accomodate |
| // size bytes + header and alignment padding) |
| - DCHECK(reinterpret_cast<uintptr_t>(position_) >= |
| - reinterpret_cast<uintptr_t>(result)); |
| + DCHECK_GE(reinterpret_cast<uintptr_t>(position_), |
| + reinterpret_cast<uintptr_t>(result)); |
| + DCHECK_EQ(GetZoneFromPointer(segment), this); |
| + DCHECK_EQ(GetZoneFromPointer(result), this); |
| + DCHECK_EQ(GetZoneFromPointer(segment->end() - 1), this); |
| limit_ = segment->end(); |
| DCHECK(position_ <= limit_); |
| return result; |
| } |
| +size_t Zone::CalculateSegmentSize(const size_t requested) { |
| + if (UINTPTR_MAX - (sizeof(Segment) + kAlignment) < requested) { |
| + V8::FatalProcessOutOfMemory("Zone"); |
| + } |
| + |
| + return RoundUp(requested + sizeof(Segment) + kAlignment, kMinimumSegmentSize); |
| +} |
| + |
| } // namespace internal |
| } // namespace v8 |