Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(10)

Side by Side Diff: src/zone.cc

Issue 2299753002: Made zone segments aligned in memory and included a pointer to the zone in the header. Larger objec…
Patch Set: Made zone segments aligned in memory and included a pointer to the zone in the header. Larger objec… Created 4 years, 3 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View unified diff | Download patch
« src/zone.h ('K') | « src/zone.h ('k') | no next file » | no next file with comments »
Toggle Intra-line Diffs ('i') | Expand Comments ('e') | Collapse Comments ('c') | Show Comments Hide Comments ('s')
OLDNEW
1 // Copyright 2012 the V8 project authors. All rights reserved. 1 // Copyright 2012 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be 2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file. 3 // found in the LICENSE file.
4 4
5 #include "src/zone.h" 5 #include "src/zone.h"
6 6
7 #include <cstring> 7 #include <cstring>
8 8
9 #include "src/v8.h" 9 #include "src/v8.h"
10 10
(...skipping 25 matching lines...) Expand all
36 } while (false) 36 } while (false)
37 37
38 const size_t kASanRedzoneBytes = 0; 38 const size_t kASanRedzoneBytes = 0;
39 39
40 #endif // V8_USE_ADDRESS_SANITIZER 40 #endif // V8_USE_ADDRESS_SANITIZER
41 41
42 } // namespace 42 } // namespace
43 43
44 44
45 // Segments represent chunks of memory: They have starting address 45 // Segments represent chunks of memory: They have starting address
46 // (encoded in the this pointer) and a size in bytes. Segments are 46 // (encoded in the this pointer) and a VirtualMemory instance. Segments are
47 // chained together forming a LIFO structure with the newest segment 47 // chained together forming a LIFO structure with the newest segment
48 // available as segment_head_. Segments are allocated using malloc() 48 // available as segment_head_. Segments are allocated aligned via the
49 // and de-allocated using free(). 49 // VirtualMemory instance and released using it.
50 50
51 class Segment { 51 class Segment {
52 public: 52 public:
53 void Initialize(Segment* next, size_t size) { 53 void Initialize(Zone* zone, v8::base::VirtualMemory* virtual_memory) {
54 next_ = next; 54 DCHECK_EQ(reinterpret_cast<uintptr_t>(this) & Zone::kSegmentAlignmentMask,
55 size_ = size; 55 reinterpret_cast<uintptr_t>(this));
56
57 next_ = nullptr;
58 zone_ = zone;
59 virtual_memory_.Reset();
60 virtual_memory_.TakeControl(virtual_memory);
56 } 61 }
57 62
63 Zone* zone() const { return zone_; }
58 Segment* next() const { return next_; } 64 Segment* next() const { return next_; }
59 void clear_next() { next_ = nullptr; } 65 void set_next(Segment* const value) { next_ = value; }
60 66
61 size_t size() const { return size_; } 67 size_t size() const {
62 size_t capacity() const { return size_ - sizeof(Segment); } 68 return virtual_memory_.size() -
69 (reinterpret_cast<uintptr_t>(this) -
70 reinterpret_cast<uintptr_t>(virtual_memory_.address()));
71 }
72
73 size_t capacity() const { return size() - sizeof(Segment); }
63 74
64 Address start() const { return address(sizeof(Segment)); } 75 Address start() const { return address(sizeof(Segment)); }
65 Address end() const { return address(size_); } 76 Address end() const { return address(size()); }
77
78 bool is_big_object_segment() const {
79 return capacity() > Zone::kMaximumSegmentSize;
80 }
81
82 void Release() {
83 v8::base::VirtualMemory vm = v8::base::VirtualMemory();
84 vm.TakeControl(&virtual_memory_);
85
86 #ifdef DEBUG
87 // Un-poison first so the zapping doesn't trigger ASan complaints.
88 ASAN_UNPOISON_MEMORY_REGION(vm.address(), vm.size());
89 // Zap the entire current segment (including the header).
90 memset(vm.address(), kZapDeadByte, vm.size());
91 #endif
92
93 vm.Release();
94 }
95
96 void Reset() {
97 // Un-poison so neither the zapping not the reusing does trigger ASan
98 // complaints.
99 ASAN_UNPOISON_MEMORY_REGION(virtual_memory_.address(),
100 virtual_memory_.size());
101 #ifdef DEBUG
102 // Zap the entire current segment (including the header).
103 memset(reinterpret_cast<void*>(start()), kZapDeadByte, capacity());
104 #endif
105 next_ = nullptr;
106 }
66 107
67 private: 108 private:
109 #ifdef DEBUG
110 // Constant byte value used for zapping dead memory in debug mode.
111 static const unsigned char kZapDeadByte = 0xcd;
112 #endif
113
68 // Computes the address of the nth byte in this segment. 114 // Computes the address of the nth byte in this segment.
69 Address address(size_t n) const { return Address(this) + n; } 115 Address address(size_t n) const { return Address(this) + n; }
70 116
117 Zone* zone_;
71 Segment* next_; 118 Segment* next_;
72 size_t size_; 119 v8::base::VirtualMemory virtual_memory_;
73 }; 120 };
74 121
75 Zone::Zone(base::AccountingAllocator* allocator) 122 Zone::Zone(base::AccountingAllocator* allocator)
76 : allocation_size_(0), 123 : allocation_size_(0),
77 segment_bytes_allocated_(0), 124 segment_bytes_allocated_(0),
78 position_(0), 125 position_(0),
79 limit_(0), 126 limit_(0),
80 allocator_(allocator), 127 allocator_(allocator),
81 segment_head_(nullptr) {} 128 segment_head_(nullptr) {}
82 129
83 Zone::~Zone() { 130 Zone::~Zone() {
84 DeleteAll(); 131 DeleteAll();
85 DeleteKeptSegment(); 132 DeleteKeptSegment();
86 133
87 DCHECK(segment_bytes_allocated_ == 0); 134 DCHECK(segment_bytes_allocated_ == 0);
88 } 135 }
89 136
137 Segment* Zone::GetZoneSegmentFromPointer(const void* ptr) {
138 return reinterpret_cast<Segment*>(reinterpret_cast<uintptr_t>(ptr) &
139 kSegmentAlignmentMask);
140 }
141
142 Zone* Zone::GetZoneFromPointer(const void* ptr) {
143 return GetZoneSegmentFromPointer(ptr)->zone();
144 }
90 145
91 void* Zone::New(size_t size) { 146 void* Zone::New(size_t size) {
147 Address result = position_;
148
149 // corner case: zero size
150 if (size == 0) {
151 // there has to be a normal segment to reference
152 if (segment_head_ == nullptr || segment_head_->is_big_object_segment()) {
153 // we allocate a segment of minimal size
154 result = NewNormalSegment(kAlignment);
155 }
156
157 DCHECK(!GetZoneSegmentFromPointer(result)->is_big_object_segment());
158 DCHECK_EQ(GetZoneFromPointer(result), this);
159 return reinterpret_cast<void*>(result);
160 }
161
162 // Large objects are a special case and get their own segment to live in.
163 if (CalculateSegmentSize(size) > kMaximumSegmentSize) {
164 return reinterpret_cast<void*>(NewLargeObjectSegment(size));
165 DCHECK(GetZoneSegmentFromPointer(result)->is_big_object_segment());
166 }
167
92 // Round up the requested size to fit the alignment. 168 // Round up the requested size to fit the alignment.
93 size = RoundUp(size, kAlignment); 169 size = RoundUp(size, kAlignment);
94 170
95 // If the allocation size is divisible by 8 then we return an 8-byte aligned 171 // If the allocation size is divisible by 8 then we return an 8-byte aligned
96 // address. 172 // address.
97 if (kPointerSize == 4 && kAlignment == 4) { 173 if (kPointerSize == 4 && kAlignment == 4) {
98 position_ += ((~size) & 4) & (reinterpret_cast<intptr_t>(position_) & 4); 174 position_ += ((~size) & 4) & (reinterpret_cast<intptr_t>(position_) & 4);
99 } else { 175 } else {
100 DCHECK(kAlignment >= kPointerSize); 176 DCHECK(kAlignment >= kPointerSize);
101 } 177 }
102 178
103 // Check if the requested size is available without expanding. 179 // Check if the requested size is available without expanding.
104 Address result = position_;
105 180
106 const size_t size_with_redzone = size + kASanRedzoneBytes; 181 const size_t size_with_redzone = size + kASanRedzoneBytes;
107 const uintptr_t limit = reinterpret_cast<uintptr_t>(limit_); 182 const uintptr_t limit = reinterpret_cast<uintptr_t>(limit_);
108 const uintptr_t position = reinterpret_cast<uintptr_t>(position_); 183 const uintptr_t position = reinterpret_cast<uintptr_t>(position_);
109 // position_ > limit_ can be true after the alignment correction above. 184 // position_ > limit_ can be true after the alignment correction above.
110 if (limit < position || size_with_redzone > limit - position) { 185 if (limit < position || size_with_redzone > limit - position) {
111 result = NewExpand(size_with_redzone); 186 result = NewNormalSegment(size_with_redzone);
112 } else { 187 } else {
113 position_ += size_with_redzone; 188 position_ += size_with_redzone;
114 } 189 }
115 190
116 Address redzone_position = result + size; 191 Address redzone_position = result + size;
117 DCHECK(redzone_position + kASanRedzoneBytes == position_); 192 DCHECK(redzone_position + kASanRedzoneBytes == position_);
118 ASAN_POISON_MEMORY_REGION(redzone_position, kASanRedzoneBytes); 193 ASAN_POISON_MEMORY_REGION(redzone_position, kASanRedzoneBytes);
119 194
120 // Check that the result has the proper alignment and return it. 195 // Check that the result has the proper alignment and return it.
121 DCHECK(IsAddressAligned(result, kAlignment, 0)); 196 DCHECK(IsAddressAligned(result, kAlignment, 0));
197 DCHECK(!GetZoneSegmentFromPointer(result)->is_big_object_segment());
198 DCHECK_EQ(GetZoneFromPointer(result), this);
122 allocation_size_ += size; 199 allocation_size_ += size;
123 return reinterpret_cast<void*>(result); 200 return reinterpret_cast<void*>(result);
124 } 201 }
125 202
126 203
127 void Zone::DeleteAll() { 204 void Zone::DeleteAll() {
128 #ifdef DEBUG
129 // Constant byte value used for zapping dead memory in debug mode.
130 static const unsigned char kZapDeadByte = 0xcd;
131 #endif
132
133 // Find a segment with a suitable size to keep around. 205 // Find a segment with a suitable size to keep around.
134 Segment* keep = nullptr; 206 Segment* keep = nullptr;
135 // Traverse the chained list of segments, zapping (in debug mode) 207 // Traverse the chained list of segments, zapping (in debug mode)
136 // and freeing every segment except the one we wish to keep. 208 // and freeing every segment except the one we wish to keep.
137 for (Segment* current = segment_head_; current;) { 209 for (Segment* current = segment_head_; current;) {
138 Segment* next = current->next(); 210 Segment* next = current->next();
139 if (!keep && current->size() <= kMaximumKeptSegmentSize) { 211 if (!keep && current->size() <= kMaximumKeptSegmentSize) {
140 // Unlink the segment we wish to keep from the list. 212 // Unlink the segment we wish to keep from the list.
141 keep = current; 213 keep = current;
142 keep->clear_next(); 214 keep->Reset();
143 } else { 215 } else {
144 size_t size = current->size(); 216 segment_bytes_allocated_ -= current->size();
145 #ifdef DEBUG 217 current->Release();
146 // Un-poison first so the zapping doesn't trigger ASan complaints.
147 ASAN_UNPOISON_MEMORY_REGION(current, size);
148 // Zap the entire current segment (including the header).
149 memset(current, kZapDeadByte, size);
150 #endif
151 DeleteSegment(current, size);
152 } 218 }
153 current = next; 219 current = next;
154 } 220 }
155 221
156 // If we have found a segment we want to keep, we must recompute the 222 // If we have found a segment we want to keep, we must recompute the
157 // variables 'position' and 'limit' to prepare for future allocate 223 // variables 'position' and 'limit' to prepare for future allocate
158 // attempts. Otherwise, we must clear the position and limit to 224 // attempts. Otherwise, we must clear the position and limit to
159 // force a new segment to be allocated on demand. 225 // force a new segment to be allocated on demand.
160 if (keep) { 226 if (keep) {
161 Address start = keep->start(); 227 Address start = keep->start();
162 position_ = RoundUp(start, kAlignment); 228 position_ = RoundUp(start, kAlignment);
163 limit_ = keep->end(); 229 limit_ = keep->end();
164 // Un-poison so we can re-use the segment later.
165 ASAN_UNPOISON_MEMORY_REGION(start, keep->capacity());
166 #ifdef DEBUG
167 // Zap the contents of the kept segment (but not the header).
168 memset(start, kZapDeadByte, keep->capacity());
169 #endif
170 } else { 230 } else {
171 position_ = limit_ = 0; 231 position_ = limit_ = 0;
172 } 232 }
173 233
174 allocation_size_ = 0; 234 allocation_size_ = 0;
175 // Update the head segment to be the kept segment (if any). 235 // Update the head segment to be the kept segment (if any).
176 segment_head_ = keep; 236 segment_head_ = keep;
177 } 237 }
178 238
179 239
180 void Zone::DeleteKeptSegment() { 240 void Zone::DeleteKeptSegment() {
181 #ifdef DEBUG
182 // Constant byte value used for zapping dead memory in debug mode.
183 static const unsigned char kZapDeadByte = 0xcd;
184 #endif
185
186 DCHECK(segment_head_ == nullptr || segment_head_->next() == nullptr); 241 DCHECK(segment_head_ == nullptr || segment_head_->next() == nullptr);
187 if (segment_head_ != nullptr) { 242 if (segment_head_ != nullptr) {
188 size_t size = segment_head_->size(); 243 segment_bytes_allocated_ -= segment_head_->size();
189 #ifdef DEBUG 244 segment_head_->Release();
190 // Un-poison first so the zapping doesn't trigger ASan complaints.
191 ASAN_UNPOISON_MEMORY_REGION(segment_head_, size);
192 // Zap the entire kept segment (including the header).
193 memset(segment_head_, kZapDeadByte, size);
194 #endif
195 DeleteSegment(segment_head_, size);
196 segment_head_ = nullptr; 245 segment_head_ = nullptr;
197 } 246 }
198 247
199 DCHECK(segment_bytes_allocated_ == 0); 248 DCHECK(segment_bytes_allocated_ == 0);
200 } 249 }
201 250
202 251
203 // Creates a new segment, sets it size, and pushes it to the front
204 // of the segment chain. Returns the new segment.
205 Segment* Zone::NewSegment(size_t size) { 252 Segment* Zone::NewSegment(size_t size) {
206 Segment* result = reinterpret_cast<Segment*>(allocator_->Allocate(size)); 253 v8::base::VirtualMemory vm(size, kSegmentAlignmentSize);
207 segment_bytes_allocated_ += size; 254
208 if (result != nullptr) { 255 if (vm.IsReserved()) {
209 result->Initialize(segment_head_, size); 256 DCHECK_EQ(reinterpret_cast<uintptr_t>(vm.address()) & kSegmentAlignmentMask,
210 segment_head_ = result; 257 reinterpret_cast<uintptr_t>(vm.address()));
258 DCHECK_EQ(vm.size(), size);
259 v8::base::VirtualMemory::CommitRegion(vm.address(), vm.size(), false);
260
261 Segment* result = reinterpret_cast<Segment*>(vm.address());
262
263 result->Initialize(this, &vm);
264
265 segment_bytes_allocated_ += result->size();
266
267 return result;
268 } else {
269 V8::FatalProcessOutOfMemory("Zone");
270 return nullptr;
211 } 271 }
272 }
273
274 Address Zone::NewLargeObjectSegment(size_t size) {
275 size_t new_size = CalculateSegmentSize(size);
276 Segment* segment = NewSegment(new_size);
277
278 if (segment_head_ == nullptr) {
279 // corner case in which a large object segment becomes the head
280 // of the segment list.
281 segment_head_ = segment;
282 } else {
283 // large object segments should be inserted second into the list
284 segment->set_next(segment_head_->next());
285 segment_head_->set_next(segment);
286 }
287
288 Address result = RoundUp(segment->start(), kAlignment);
289 DCHECK_EQ(GetZoneFromPointer(segment), this);
290 DCHECK_EQ(GetZoneFromPointer(result), this);
212 return result; 291 return result;
213 } 292 }
214 293
215 294 Address Zone::NewNormalSegment(size_t size) {
216 // Deletes the given segment. Does not touch the segment chain.
217 void Zone::DeleteSegment(Segment* segment, size_t size) {
218 segment_bytes_allocated_ -= size;
219 allocator_->Free(segment, size);
220 }
221
222
223 Address Zone::NewExpand(size_t size) {
224 // Make sure the requested size is already properly aligned and that 295 // Make sure the requested size is already properly aligned and that
225 // there isn't enough room in the Zone to satisfy the request. 296 // there isn't enough room in the Zone to satisfy the request.
226 DCHECK_EQ(size, RoundDown(size, kAlignment)); 297 DCHECK_EQ(size, RoundDown(size, kAlignment));
227 DCHECK(limit_ < position_ || 298 DCHECK(limit_ < position_ ||
228 reinterpret_cast<uintptr_t>(limit_) - 299 reinterpret_cast<uintptr_t>(limit_) -
229 reinterpret_cast<uintptr_t>(position_) < 300 reinterpret_cast<uintptr_t>(position_) <
230 size); 301 size);
231 302
232 // Compute the new segment size. We use a 'high water mark' 303 // Only normal segments here
233 // strategy, where we increase the segment size every time we expand 304 DCHECK_LE(size, kMaximumSegmentSize + 0);
234 // except that we employ a maximum segment size when we delete. This 305
235 // is to avoid excessive malloc() and free() overhead. 306 size_t new_size = CalculateSegmentSize(size);
236 Segment* head = segment_head_; 307 const size_t old_size =
237 const size_t old_size = (head == nullptr) ? 0 : head->size(); 308 (segment_head_ == nullptr) ? 0 : segment_head_->size();
238 static const size_t kSegmentOverhead = sizeof(Segment) + kAlignment; 309 new_size = Max(new_size, old_size << 1);
239 const size_t new_size_no_overhead = size + (old_size << 1); 310 new_size = Min(new_size, kMaximumSegmentSize);
240 size_t new_size = kSegmentOverhead + new_size_no_overhead; 311
241 const size_t min_new_size = kSegmentOverhead + size; 312 // Rounding up shall not mess with our limits
242 // Guard against integer overflow. 313 DCHECK_LE(new_size, kMaximumSegmentSize + 0);
243 if (new_size_no_overhead < size || new_size < kSegmentOverhead) { 314
244 V8::FatalProcessOutOfMemory("Zone");
245 return nullptr;
246 }
247 if (new_size < kMinimumSegmentSize) {
248 new_size = kMinimumSegmentSize;
249 } else if (new_size > kMaximumSegmentSize) {
250 // Limit the size of new segments to avoid growing the segment size
251 // exponentially, thus putting pressure on contiguous virtual address space.
252 // All the while making sure to allocate a segment large enough to hold the
253 // requested size.
254 new_size = Max(min_new_size, kMaximumSegmentSize);
255 }
256 if (new_size > INT_MAX) {
257 V8::FatalProcessOutOfMemory("Zone");
258 return nullptr;
259 }
260 Segment* segment = NewSegment(new_size); 315 Segment* segment = NewSegment(new_size);
261 if (segment == nullptr) { 316
262 V8::FatalProcessOutOfMemory("Zone"); 317 // Put in front of the segment list
263 return nullptr; 318 segment->set_next(segment_head_);
264 } 319 segment_head_ = segment;
320
321 // Normal segments must not be bigger than the alignment size
322 DCHECK_LE(segment->size(), kSegmentAlignmentSize + 0);
265 323
266 // Recompute 'top' and 'limit' based on the new segment. 324 // Recompute 'top' and 'limit' based on the new segment.
267 Address result = RoundUp(segment->start(), kAlignment); 325 Address result = RoundUp(segment->start(), kAlignment);
268 position_ = result + size; 326 position_ = result + size;
269 // Check for address overflow. 327 // Check for address overflow.
270 // (Should not happen since the segment is guaranteed to accomodate 328 // (Should not happen since the segment is guaranteed to accomodate
271 // size bytes + header and alignment padding) 329 // size bytes + header and alignment padding)
272 DCHECK(reinterpret_cast<uintptr_t>(position_) >= 330 DCHECK_GE(reinterpret_cast<uintptr_t>(position_),
273 reinterpret_cast<uintptr_t>(result)); 331 reinterpret_cast<uintptr_t>(result));
332 DCHECK_EQ(GetZoneFromPointer(segment), this);
333 DCHECK_EQ(GetZoneFromPointer(result), this);
334 DCHECK_EQ(GetZoneFromPointer(segment->end() - 1), this);
274 limit_ = segment->end(); 335 limit_ = segment->end();
275 DCHECK(position_ <= limit_); 336 DCHECK(position_ <= limit_);
276 return result; 337 return result;
277 } 338 }
278 339
340 size_t Zone::CalculateSegmentSize(const size_t requested) {
341 if (requested > INT_MAX) {
342 V8::FatalProcessOutOfMemory("Zone");
343 }
344
345 return RoundUp(requested + sizeof(Segment) + kAlignment, kMinimumSegmentSize);
346 }
347
279 } // namespace internal 348 } // namespace internal
280 } // namespace v8 349 } // namespace v8
OLDNEW
« src/zone.h ('K') | « src/zone.h ('k') | no next file » | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698