| OLD | NEW |
| 1 // Copyright 2012 the V8 project authors. All rights reserved. | 1 // Copyright 2012 the V8 project authors. All rights reserved. |
| 2 // Use of this source code is governed by a BSD-style license that can be | 2 // Use of this source code is governed by a BSD-style license that can be |
| 3 // found in the LICENSE file. | 3 // found in the LICENSE file. |
| 4 | 4 |
| 5 #include "src/zone.h" | 5 #include "src/zone.h" |
| 6 | 6 |
| 7 #include <cstring> | 7 #include <cstring> |
| 8 | 8 |
| 9 #include "src/v8.h" | 9 #include "src/v8.h" |
| 10 | 10 |
| (...skipping 25 matching lines...) Expand all Loading... |
| 36 } while (false) | 36 } while (false) |
| 37 | 37 |
| 38 const size_t kASanRedzoneBytes = 0; | 38 const size_t kASanRedzoneBytes = 0; |
| 39 | 39 |
| 40 #endif // V8_USE_ADDRESS_SANITIZER | 40 #endif // V8_USE_ADDRESS_SANITIZER |
| 41 | 41 |
| 42 } // namespace | 42 } // namespace |
| 43 | 43 |
| 44 | 44 |
| 45 // Segments represent chunks of memory: They have starting address | 45 // Segments represent chunks of memory: They have starting address |
| 46 // (encoded in the this pointer) and a size in bytes. Segments are | 46 // (encoded in the this pointer) and a VirtualMemory instance. Segments are |
| 47 // chained together forming a LIFO structure with the newest segment | 47 // chained together forming a LIFO structure with the newest segment |
| 48 // available as segment_head_. Segments are allocated using malloc() | 48 // available as segment_head_. Segments are allocated aligned via the |
| 49 // and de-allocated using free(). | 49 // VirtualMemory instance and released using it. |
| 50 | 50 |
| 51 class Segment { | 51 class Segment { |
| 52 public: | 52 public: |
| 53 void Initialize(Segment* next, size_t size) { | 53 void Initialize(Zone* zone, v8::base::VirtualMemory* virtual_memory) { |
| 54 next_ = next; | 54 DCHECK_EQ(reinterpret_cast<uintptr_t>(this) & Zone::kSegmentAlignmentMask, |
| 55 size_ = size; | 55 reinterpret_cast<uintptr_t>(this)); |
| 56 |
| 57 next_ = nullptr; |
| 58 zone_ = zone; |
| 59 virtual_memory_.Reset(); |
| 60 virtual_memory_.TakeControl(virtual_memory); |
| 56 } | 61 } |
| 57 | 62 |
| 63 Zone* zone() const { return zone_; } |
| 58 Segment* next() const { return next_; } | 64 Segment* next() const { return next_; } |
| 59 void clear_next() { next_ = nullptr; } | 65 void set_next(Segment* const value) { next_ = value; } |
| 60 | 66 |
| 61 size_t size() const { return size_; } | 67 size_t size() const { |
| 62 size_t capacity() const { return size_ - sizeof(Segment); } | 68 return virtual_memory_.size() - |
| 69 (reinterpret_cast<uintptr_t>(this) - |
| 70 reinterpret_cast<uintptr_t>(virtual_memory_.address())); |
| 71 } |
| 72 |
| 73 size_t capacity() const { return size() - sizeof(Segment); } |
| 63 | 74 |
| 64 Address start() const { return address(sizeof(Segment)); } | 75 Address start() const { return address(sizeof(Segment)); } |
| 65 Address end() const { return address(size_); } | 76 Address end() const { return address(size()); } |
| 77 |
| 78 bool is_big_object_segment() const { |
| 79 return capacity() > Zone::kMaximumSegmentSize; |
| 80 } |
| 81 |
| 82 void Release() { |
| 83 v8::base::VirtualMemory vm = v8::base::VirtualMemory(); |
| 84 vm.TakeControl(&virtual_memory_); |
| 85 |
| 86 #ifdef DEBUG |
| 87 // Un-poison first so the zapping doesn't trigger ASan complaints. |
| 88 ASAN_UNPOISON_MEMORY_REGION(vm.address(), vm.size()); |
| 89 // Zap the entire current segment (including the header). |
| 90 memset(vm.address(), kZapDeadByte, vm.size()); |
| 91 #endif |
| 92 |
| 93 vm.Release(); |
| 94 } |
| 95 |
| 96 void Reset() { |
| 97 // Un-poison so neither the zapping not the reusing does trigger ASan |
| 98 // complaints. |
| 99 ASAN_UNPOISON_MEMORY_REGION(virtual_memory_.address(), |
| 100 virtual_memory_.size()); |
| 101 #ifdef DEBUG |
| 102 // Zap the entire current segment (including the header). |
| 103 memset(reinterpret_cast<void*>(start()), kZapDeadByte, capacity()); |
| 104 #endif |
| 105 next_ = nullptr; |
| 106 } |
| 66 | 107 |
| 67 private: | 108 private: |
| 109 #ifdef DEBUG |
| 110 // Constant byte value used for zapping dead memory in debug mode. |
| 111 static const unsigned char kZapDeadByte = 0xcd; |
| 112 #endif |
| 113 |
| 68 // Computes the address of the nth byte in this segment. | 114 // Computes the address of the nth byte in this segment. |
| 69 Address address(size_t n) const { return Address(this) + n; } | 115 Address address(size_t n) const { return Address(this) + n; } |
| 70 | 116 |
| 117 Zone* zone_; |
| 71 Segment* next_; | 118 Segment* next_; |
| 72 size_t size_; | 119 v8::base::VirtualMemory virtual_memory_; |
| 73 }; | 120 }; |
| 74 | 121 |
| 75 Zone::Zone(base::AccountingAllocator* allocator) | 122 Zone::Zone(base::AccountingAllocator* allocator) |
| 76 : allocation_size_(0), | 123 : allocation_size_(0), |
| 77 segment_bytes_allocated_(0), | 124 segment_bytes_allocated_(0), |
| 78 position_(0), | 125 position_(0), |
| 79 limit_(0), | 126 limit_(0), |
| 80 allocator_(allocator), | 127 allocator_(allocator), |
| 81 segment_head_(nullptr) {} | 128 segment_head_(nullptr) {} |
| 82 | 129 |
| 83 Zone::~Zone() { | 130 Zone::~Zone() { |
| 84 DeleteAll(); | 131 DeleteAll(); |
| 85 DeleteKeptSegment(); | 132 DeleteKeptSegment(); |
| 86 | 133 |
| 87 DCHECK(segment_bytes_allocated_ == 0); | 134 DCHECK(segment_bytes_allocated_ == 0); |
| 88 } | 135 } |
| 89 | 136 |
| 137 Segment* Zone::GetZoneSegmentFromPointer(const void* ptr) { |
| 138 return reinterpret_cast<Segment*>(reinterpret_cast<uintptr_t>(ptr) & |
| 139 kSegmentAlignmentMask); |
| 140 } |
| 141 |
| 142 Zone* Zone::GetZoneFromPointer(const void* ptr) { |
| 143 return GetZoneSegmentFromPointer(ptr)->zone(); |
| 144 } |
| 90 | 145 |
| 91 void* Zone::New(size_t size) { | 146 void* Zone::New(size_t size) { |
| 147 Address result = position_; |
| 148 |
| 149 // corner case: zero size |
| 150 if (size == 0) { |
| 151 // there has to be a normal segment to reference |
| 152 if (segment_head_ == nullptr || segment_head_->is_big_object_segment()) { |
| 153 // we allocate a segment of minimal size |
| 154 result = NewNormalSegment(kAlignment); |
| 155 } |
| 156 |
| 157 DCHECK(!GetZoneSegmentFromPointer(result)->is_big_object_segment()); |
| 158 DCHECK_EQ(GetZoneFromPointer(result), this); |
| 159 return reinterpret_cast<void*>(result); |
| 160 } |
| 161 |
| 162 // Large objects are a special case and get their own segment to live in. |
| 163 if (CalculateSegmentSize(size) > kMaximumSegmentSize) { |
| 164 return reinterpret_cast<void*>(NewLargeObjectSegment(size)); |
| 165 DCHECK(GetZoneSegmentFromPointer(result)->is_big_object_segment()); |
| 166 } |
| 167 |
| 92 // Round up the requested size to fit the alignment. | 168 // Round up the requested size to fit the alignment. |
| 93 size = RoundUp(size, kAlignment); | 169 size = RoundUp(size, kAlignment); |
| 94 | 170 |
| 95 // If the allocation size is divisible by 8 then we return an 8-byte aligned | 171 // If the allocation size is divisible by 8 then we return an 8-byte aligned |
| 96 // address. | 172 // address. |
| 97 if (kPointerSize == 4 && kAlignment == 4) { | 173 if (kPointerSize == 4 && kAlignment == 4) { |
| 98 position_ += ((~size) & 4) & (reinterpret_cast<intptr_t>(position_) & 4); | 174 position_ += ((~size) & 4) & (reinterpret_cast<intptr_t>(position_) & 4); |
| 99 } else { | 175 } else { |
| 100 DCHECK(kAlignment >= kPointerSize); | 176 DCHECK(kAlignment >= kPointerSize); |
| 101 } | 177 } |
| 102 | 178 |
| 103 // Check if the requested size is available without expanding. | 179 // Check if the requested size is available without expanding. |
| 104 Address result = position_; | |
| 105 | 180 |
| 106 const size_t size_with_redzone = size + kASanRedzoneBytes; | 181 const size_t size_with_redzone = size + kASanRedzoneBytes; |
| 107 const uintptr_t limit = reinterpret_cast<uintptr_t>(limit_); | 182 const uintptr_t limit = reinterpret_cast<uintptr_t>(limit_); |
| 108 const uintptr_t position = reinterpret_cast<uintptr_t>(position_); | 183 const uintptr_t position = reinterpret_cast<uintptr_t>(position_); |
| 109 // position_ > limit_ can be true after the alignment correction above. | 184 // position_ > limit_ can be true after the alignment correction above. |
| 110 if (limit < position || size_with_redzone > limit - position) { | 185 if (limit < position || size_with_redzone > limit - position) { |
| 111 result = NewExpand(size_with_redzone); | 186 result = NewNormalSegment(size_with_redzone); |
| 112 } else { | 187 } else { |
| 113 position_ += size_with_redzone; | 188 position_ += size_with_redzone; |
| 114 } | 189 } |
| 115 | 190 |
| 116 Address redzone_position = result + size; | 191 Address redzone_position = result + size; |
| 117 DCHECK(redzone_position + kASanRedzoneBytes == position_); | 192 DCHECK(redzone_position + kASanRedzoneBytes == position_); |
| 118 ASAN_POISON_MEMORY_REGION(redzone_position, kASanRedzoneBytes); | 193 ASAN_POISON_MEMORY_REGION(redzone_position, kASanRedzoneBytes); |
| 119 | 194 |
| 120 // Check that the result has the proper alignment and return it. | 195 // Check that the result has the proper alignment and return it. |
| 121 DCHECK(IsAddressAligned(result, kAlignment, 0)); | 196 DCHECK(IsAddressAligned(result, kAlignment, 0)); |
| 197 DCHECK(!GetZoneSegmentFromPointer(result)->is_big_object_segment()); |
| 198 DCHECK_EQ(GetZoneFromPointer(result), this); |
| 122 allocation_size_ += size; | 199 allocation_size_ += size; |
| 123 return reinterpret_cast<void*>(result); | 200 return reinterpret_cast<void*>(result); |
| 124 } | 201 } |
| 125 | 202 |
| 126 | 203 |
| 127 void Zone::DeleteAll() { | 204 void Zone::DeleteAll() { |
| 128 #ifdef DEBUG | |
| 129 // Constant byte value used for zapping dead memory in debug mode. | |
| 130 static const unsigned char kZapDeadByte = 0xcd; | |
| 131 #endif | |
| 132 | |
| 133 // Find a segment with a suitable size to keep around. | 205 // Find a segment with a suitable size to keep around. |
| 134 Segment* keep = nullptr; | 206 Segment* keep = nullptr; |
| 135 // Traverse the chained list of segments, zapping (in debug mode) | 207 // Traverse the chained list of segments, zapping (in debug mode) |
| 136 // and freeing every segment except the one we wish to keep. | 208 // and freeing every segment except the one we wish to keep. |
| 137 for (Segment* current = segment_head_; current;) { | 209 for (Segment* current = segment_head_; current;) { |
| 138 Segment* next = current->next(); | 210 Segment* next = current->next(); |
| 139 if (!keep && current->size() <= kMaximumKeptSegmentSize) { | 211 if (!keep && current->size() <= kMaximumKeptSegmentSize) { |
| 140 // Unlink the segment we wish to keep from the list. | 212 // Unlink the segment we wish to keep from the list. |
| 141 keep = current; | 213 keep = current; |
| 142 keep->clear_next(); | 214 keep->Reset(); |
| 143 } else { | 215 } else { |
| 144 size_t size = current->size(); | 216 segment_bytes_allocated_ -= current->size(); |
| 145 #ifdef DEBUG | 217 current->Release(); |
| 146 // Un-poison first so the zapping doesn't trigger ASan complaints. | |
| 147 ASAN_UNPOISON_MEMORY_REGION(current, size); | |
| 148 // Zap the entire current segment (including the header). | |
| 149 memset(current, kZapDeadByte, size); | |
| 150 #endif | |
| 151 DeleteSegment(current, size); | |
| 152 } | 218 } |
| 153 current = next; | 219 current = next; |
| 154 } | 220 } |
| 155 | 221 |
| 156 // If we have found a segment we want to keep, we must recompute the | 222 // If we have found a segment we want to keep, we must recompute the |
| 157 // variables 'position' and 'limit' to prepare for future allocate | 223 // variables 'position' and 'limit' to prepare for future allocate |
| 158 // attempts. Otherwise, we must clear the position and limit to | 224 // attempts. Otherwise, we must clear the position and limit to |
| 159 // force a new segment to be allocated on demand. | 225 // force a new segment to be allocated on demand. |
| 160 if (keep) { | 226 if (keep) { |
| 161 Address start = keep->start(); | 227 Address start = keep->start(); |
| 162 position_ = RoundUp(start, kAlignment); | 228 position_ = RoundUp(start, kAlignment); |
| 163 limit_ = keep->end(); | 229 limit_ = keep->end(); |
| 164 // Un-poison so we can re-use the segment later. | |
| 165 ASAN_UNPOISON_MEMORY_REGION(start, keep->capacity()); | |
| 166 #ifdef DEBUG | |
| 167 // Zap the contents of the kept segment (but not the header). | |
| 168 memset(start, kZapDeadByte, keep->capacity()); | |
| 169 #endif | |
| 170 } else { | 230 } else { |
| 171 position_ = limit_ = 0; | 231 position_ = limit_ = 0; |
| 172 } | 232 } |
| 173 | 233 |
| 174 allocation_size_ = 0; | 234 allocation_size_ = 0; |
| 175 // Update the head segment to be the kept segment (if any). | 235 // Update the head segment to be the kept segment (if any). |
| 176 segment_head_ = keep; | 236 segment_head_ = keep; |
| 177 } | 237 } |
| 178 | 238 |
| 179 | 239 |
| 180 void Zone::DeleteKeptSegment() { | 240 void Zone::DeleteKeptSegment() { |
| 181 #ifdef DEBUG | |
| 182 // Constant byte value used for zapping dead memory in debug mode. | |
| 183 static const unsigned char kZapDeadByte = 0xcd; | |
| 184 #endif | |
| 185 | |
| 186 DCHECK(segment_head_ == nullptr || segment_head_->next() == nullptr); | 241 DCHECK(segment_head_ == nullptr || segment_head_->next() == nullptr); |
| 187 if (segment_head_ != nullptr) { | 242 if (segment_head_ != nullptr) { |
| 188 size_t size = segment_head_->size(); | 243 segment_bytes_allocated_ -= segment_head_->size(); |
| 189 #ifdef DEBUG | 244 segment_head_->Release(); |
| 190 // Un-poison first so the zapping doesn't trigger ASan complaints. | |
| 191 ASAN_UNPOISON_MEMORY_REGION(segment_head_, size); | |
| 192 // Zap the entire kept segment (including the header). | |
| 193 memset(segment_head_, kZapDeadByte, size); | |
| 194 #endif | |
| 195 DeleteSegment(segment_head_, size); | |
| 196 segment_head_ = nullptr; | 245 segment_head_ = nullptr; |
| 197 } | 246 } |
| 198 | 247 |
| 199 DCHECK(segment_bytes_allocated_ == 0); | 248 DCHECK(segment_bytes_allocated_ == 0); |
| 200 } | 249 } |
| 201 | 250 |
| 202 | 251 |
| 203 // Creates a new segment, sets it size, and pushes it to the front | |
| 204 // of the segment chain. Returns the new segment. | |
| 205 Segment* Zone::NewSegment(size_t size) { | 252 Segment* Zone::NewSegment(size_t size) { |
| 206 Segment* result = reinterpret_cast<Segment*>(allocator_->Allocate(size)); | 253 v8::base::VirtualMemory vm(size, kSegmentAlignmentSize); |
| 207 segment_bytes_allocated_ += size; | 254 |
| 208 if (result != nullptr) { | 255 if (vm.IsReserved()) { |
| 209 result->Initialize(segment_head_, size); | 256 DCHECK_EQ(reinterpret_cast<uintptr_t>(vm.address()) & kSegmentAlignmentMask, |
| 210 segment_head_ = result; | 257 reinterpret_cast<uintptr_t>(vm.address())); |
| 258 DCHECK_EQ(vm.size(), size); |
| 259 v8::base::VirtualMemory::CommitRegion(vm.address(), vm.size(), false); |
| 260 |
| 261 Segment* result = reinterpret_cast<Segment*>(vm.address()); |
| 262 |
| 263 result->Initialize(this, &vm); |
| 264 |
| 265 segment_bytes_allocated_ += result->size(); |
| 266 |
| 267 return result; |
| 268 } else { |
| 269 V8::FatalProcessOutOfMemory("Zone"); |
| 270 return nullptr; |
| 211 } | 271 } |
| 272 } |
| 273 |
| 274 Address Zone::NewLargeObjectSegment(size_t size) { |
| 275 size_t new_size = CalculateSegmentSize(size); |
| 276 Segment* segment = NewSegment(new_size); |
| 277 |
| 278 if (segment_head_ == nullptr) { |
| 279 // corner case in which a large object segment becomes the head |
| 280 // of the segment list. |
| 281 segment_head_ = segment; |
| 282 } else { |
| 283 // large object segments should be inserted second into the list |
| 284 segment->set_next(segment_head_->next()); |
| 285 segment_head_->set_next(segment); |
| 286 } |
| 287 |
| 288 Address result = RoundUp(segment->start(), kAlignment); |
| 289 DCHECK_EQ(GetZoneFromPointer(segment), this); |
| 290 DCHECK_EQ(GetZoneFromPointer(result), this); |
| 212 return result; | 291 return result; |
| 213 } | 292 } |
| 214 | 293 |
| 215 | 294 Address Zone::NewNormalSegment(size_t size) { |
| 216 // Deletes the given segment. Does not touch the segment chain. | |
| 217 void Zone::DeleteSegment(Segment* segment, size_t size) { | |
| 218 segment_bytes_allocated_ -= size; | |
| 219 allocator_->Free(segment, size); | |
| 220 } | |
| 221 | |
| 222 | |
| 223 Address Zone::NewExpand(size_t size) { | |
| 224 // Make sure the requested size is already properly aligned and that | 295 // Make sure the requested size is already properly aligned and that |
| 225 // there isn't enough room in the Zone to satisfy the request. | 296 // there isn't enough room in the Zone to satisfy the request. |
| 226 DCHECK_EQ(size, RoundDown(size, kAlignment)); | 297 DCHECK_EQ(size, RoundDown(size, kAlignment)); |
| 227 DCHECK(limit_ < position_ || | 298 DCHECK(limit_ < position_ || |
| 228 reinterpret_cast<uintptr_t>(limit_) - | 299 reinterpret_cast<uintptr_t>(limit_) - |
| 229 reinterpret_cast<uintptr_t>(position_) < | 300 reinterpret_cast<uintptr_t>(position_) < |
| 230 size); | 301 size); |
| 231 | 302 |
| 232 // Compute the new segment size. We use a 'high water mark' | 303 // Only normal segments here |
| 233 // strategy, where we increase the segment size every time we expand | 304 DCHECK_LE(size, kMaximumSegmentSize + 0); |
| 234 // except that we employ a maximum segment size when we delete. This | 305 |
| 235 // is to avoid excessive malloc() and free() overhead. | 306 size_t new_size = CalculateSegmentSize(size); |
| 236 Segment* head = segment_head_; | 307 const size_t old_size = |
| 237 const size_t old_size = (head == nullptr) ? 0 : head->size(); | 308 (segment_head_ == nullptr) ? 0 : segment_head_->size(); |
| 238 static const size_t kSegmentOverhead = sizeof(Segment) + kAlignment; | 309 new_size = Max(new_size, old_size << 1); |
| 239 const size_t new_size_no_overhead = size + (old_size << 1); | 310 new_size = Min(new_size, kMaximumSegmentSize); |
| 240 size_t new_size = kSegmentOverhead + new_size_no_overhead; | 311 |
| 241 const size_t min_new_size = kSegmentOverhead + size; | 312 // Rounding up shall not mess with our limits |
| 242 // Guard against integer overflow. | 313 DCHECK_LE(new_size, kMaximumSegmentSize + 0); |
| 243 if (new_size_no_overhead < size || new_size < kSegmentOverhead) { | 314 |
| 244 V8::FatalProcessOutOfMemory("Zone"); | |
| 245 return nullptr; | |
| 246 } | |
| 247 if (new_size < kMinimumSegmentSize) { | |
| 248 new_size = kMinimumSegmentSize; | |
| 249 } else if (new_size > kMaximumSegmentSize) { | |
| 250 // Limit the size of new segments to avoid growing the segment size | |
| 251 // exponentially, thus putting pressure on contiguous virtual address space. | |
| 252 // All the while making sure to allocate a segment large enough to hold the | |
| 253 // requested size. | |
| 254 new_size = Max(min_new_size, kMaximumSegmentSize); | |
| 255 } | |
| 256 if (new_size > INT_MAX) { | |
| 257 V8::FatalProcessOutOfMemory("Zone"); | |
| 258 return nullptr; | |
| 259 } | |
| 260 Segment* segment = NewSegment(new_size); | 315 Segment* segment = NewSegment(new_size); |
| 261 if (segment == nullptr) { | 316 |
| 262 V8::FatalProcessOutOfMemory("Zone"); | 317 // Put in front of the segment list |
| 263 return nullptr; | 318 segment->set_next(segment_head_); |
| 264 } | 319 segment_head_ = segment; |
| 320 |
| 321 // Normal segments must not be bigger than the alignment size |
| 322 DCHECK_LE(segment->size(), kSegmentAlignmentSize + 0); |
| 265 | 323 |
| 266 // Recompute 'top' and 'limit' based on the new segment. | 324 // Recompute 'top' and 'limit' based on the new segment. |
| 267 Address result = RoundUp(segment->start(), kAlignment); | 325 Address result = RoundUp(segment->start(), kAlignment); |
| 268 position_ = result + size; | 326 position_ = result + size; |
| 269 // Check for address overflow. | 327 // Check for address overflow. |
| 270 // (Should not happen since the segment is guaranteed to accomodate | 328 // (Should not happen since the segment is guaranteed to accomodate |
| 271 // size bytes + header and alignment padding) | 329 // size bytes + header and alignment padding) |
| 272 DCHECK(reinterpret_cast<uintptr_t>(position_) >= | 330 DCHECK_GE(reinterpret_cast<uintptr_t>(position_), |
| 273 reinterpret_cast<uintptr_t>(result)); | 331 reinterpret_cast<uintptr_t>(result)); |
| 332 DCHECK_EQ(GetZoneFromPointer(segment), this); |
| 333 DCHECK_EQ(GetZoneFromPointer(result), this); |
| 334 DCHECK_EQ(GetZoneFromPointer(segment->end() - 1), this); |
| 274 limit_ = segment->end(); | 335 limit_ = segment->end(); |
| 275 DCHECK(position_ <= limit_); | 336 DCHECK(position_ <= limit_); |
| 276 return result; | 337 return result; |
| 277 } | 338 } |
| 278 | 339 |
| 340 size_t Zone::CalculateSegmentSize(const size_t requested) { |
| 341 if (requested > INT_MAX) { |
| 342 V8::FatalProcessOutOfMemory("Zone"); |
| 343 } |
| 344 |
| 345 return RoundUp(requested + sizeof(Segment) + kAlignment, kMinimumSegmentSize); |
| 346 } |
| 347 |
| 279 } // namespace internal | 348 } // namespace internal |
| 280 } // namespace v8 | 349 } // namespace v8 |
| OLD | NEW |