Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(114)

Side by Side Diff: src/zone.cc

Issue 2299753002: Made zone segments aligned in memory and included a pointer to the zone in the header. Larger objec…
Patch Set: Added alignment code in Zone::NewSegment Created 4 years, 3 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View unified diff | Download patch
« no previous file with comments | « src/zone.h ('k') | no next file » | no next file with comments »
Toggle Intra-line Diffs ('i') | Expand Comments ('e') | Collapse Comments ('c') | Show Comments Hide Comments ('s')
OLDNEW
1 // Copyright 2012 the V8 project authors. All rights reserved. 1 // Copyright 2012 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be 2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file. 3 // found in the LICENSE file.
4 4
5 #include "src/zone.h" 5 #include "src/zone.h"
6 6
7 #include <cstring> 7 #include <cstring>
8 8
9 #include "src/v8.h" 9 #include "src/v8.h"
10 10
(...skipping 25 matching lines...) Expand all
36 } while (false) 36 } while (false)
37 37
38 const size_t kASanRedzoneBytes = 0; 38 const size_t kASanRedzoneBytes = 0;
39 39
40 #endif // V8_USE_ADDRESS_SANITIZER 40 #endif // V8_USE_ADDRESS_SANITIZER
41 41
42 } // namespace 42 } // namespace
43 43
44 44
45 // Segments represent chunks of memory: They have starting address 45 // Segments represent chunks of memory: They have starting address
46 // (encoded in the this pointer) and a size in bytes. Segments are 46 // (encoded in the this pointer) and a VirtualMemory instance. Segments are
47 // chained together forming a LIFO structure with the newest segment 47 // chained together forming a LIFO structure with the newest segment
48 // available as segment_head_. Segments are allocated using malloc() 48 // available as segment_head_. Segments are allocated aligned via the
49 // and de-allocated using free(). 49 // VirtualMemory instance and released using it.
50 50
51 class Segment { 51 class Segment {
52 public: 52 public:
53 void Initialize(Segment* next, size_t size) { 53 void Initialize(Zone* zone, v8::base::VirtualMemory* virtual_memory) {
54 next_ = next; 54 DCHECK_EQ(reinterpret_cast<uintptr_t>(this) & Zone::kSegmentAlignmentMask,
55 size_ = size; 55 reinterpret_cast<uintptr_t>(this));
56
57 next_ = nullptr;
58 zone_ = zone;
59 virtual_memory_.Reset();
60 virtual_memory_.TakeControl(virtual_memory);
56 } 61 }
57 62
63 Zone* zone() const { return zone_; }
58 Segment* next() const { return next_; } 64 Segment* next() const { return next_; }
59 void clear_next() { next_ = nullptr; } 65 void set_next(Segment* const value) { next_ = value; }
60 66
61 size_t size() const { return size_; } 67 size_t size() const { return virtual_memory_.size(); }
62 size_t capacity() const { return size_ - sizeof(Segment); } 68
69 size_t capacity() const { return size() - sizeof(Segment); }
63 70
64 Address start() const { return address(sizeof(Segment)); } 71 Address start() const { return address(sizeof(Segment)); }
65 Address end() const { return address(size_); } 72 Address end() const { return address(size()); }
73
74 bool is_big_object_segment() const {
75 return size() > Zone::kMaximumSegmentSize;
76 }
77
78 void Release() {
79 #ifdef ENABLE_HANDLE_ZAPPING
80 // We are going to zap the memory the segment is stored in, so we
81 // need to save the virtual memory information to be able to release
82 // it.
83 v8::base::VirtualMemory vm = v8::base::VirtualMemory();
84 vm.TakeControl(&virtual_memory_);
85 // Un-poison first so the zapping doesn't trigger ASan complaints.
86 ASAN_UNPOISON_MEMORY_REGION(vm.address(), vm.size());
87 // Zap the entire current segment (including the header).
88 memset(vm.address(), kZapDeadByte, vm.size());
89
90 vm.Release();
91 #else
92 virtual_memory_.Release();
93 #endif
94 }
95
96 void Reset() {
97 // Un-poison so neither the zapping not the reusing does trigger ASan
98 // complaints.
99 ASAN_UNPOISON_MEMORY_REGION(virtual_memory_.address(),
100 virtual_memory_.size());
101 #ifdef ENABLE_HANDLE_ZAPPING
102 // Zap the entire current segment (including the header).
103 memset(reinterpret_cast<void*>(start()), kZapDeadByte, capacity());
104 #endif
105 next_ = nullptr;
106 }
66 107
67 private: 108 private:
109 #ifdef ENABLE_HANDLE_ZAPPING
110 // Constant byte value used for zapping dead memory in debug mode.
111 static const unsigned char kZapDeadByte = 0xcd;
112 #endif
113
68 // Computes the address of the nth byte in this segment. 114 // Computes the address of the nth byte in this segment.
69 Address address(size_t n) const { return Address(this) + n; } 115 Address address(size_t n) const { return Address(this) + n; }
70 116
117 Zone* zone_;
71 Segment* next_; 118 Segment* next_;
72 size_t size_; 119 v8::base::VirtualMemory virtual_memory_;
120
121 DISALLOW_COPY_AND_ASSIGN(Segment);
73 }; 122 };
74 123
75 Zone::Zone(base::AccountingAllocator* allocator) 124 Zone::Zone(base::AccountingAllocator* allocator)
76 : allocation_size_(0), 125 : allocation_size_(0),
77 segment_bytes_allocated_(0), 126 segment_bytes_allocated_(0),
78 position_(0), 127 position_(0),
79 limit_(0), 128 limit_(0),
80 allocator_(allocator), 129 allocator_(allocator),
81 segment_head_(nullptr) {} 130 segment_head_(nullptr) {}
82 131
83 Zone::~Zone() { 132 Zone::~Zone() {
84 DeleteAll(); 133 DeleteAll();
85 DeleteKeptSegment(); 134 DeleteKeptSegment();
86 135
87 DCHECK(segment_bytes_allocated_ == 0); 136 DCHECK(segment_bytes_allocated_ == 0);
88 } 137 }
89 138
139 Segment* Zone::GetZoneSegmentFromPointer(const void* ptr) {
140 return reinterpret_cast<Segment*>(reinterpret_cast<uintptr_t>(ptr) &
141 kSegmentAlignmentMask);
142 }
143
144 Zone* Zone::GetZoneFromPointer(const void* ptr) {
145 return GetZoneSegmentFromPointer(ptr)->zone();
146 }
90 147
91 void* Zone::New(size_t size) { 148 void* Zone::New(size_t size) {
92 // Round up the requested size to fit the alignment. 149 // Round up the requested size to fit the alignment.
93 size = RoundUp(size, kAlignment); 150 size = RoundUp(size, kAlignment);
94 151
95 // If the allocation size is divisible by 8 then we return an 8-byte aligned 152 // If the allocation size is divisible by 8 then we return an 8-byte aligned
96 // address. 153 // address.
97 if (kPointerSize == 4 && kAlignment == 4) { 154 if (kPointerSize == 4 && kAlignment == 4) {
98 position_ += ((~size) & 4) & (reinterpret_cast<intptr_t>(position_) & 4); 155 position_ += ((~size) & 4) & (reinterpret_cast<intptr_t>(position_) & 4);
99 } else { 156 } else {
100 DCHECK(kAlignment >= kPointerSize); 157 DCHECK(kAlignment >= kPointerSize);
101 } 158 }
102 159
103 // Check if the requested size is available without expanding. 160 // Check if the requested size is available without expanding.
104 Address result = position_; 161 Address result = position_;
105 162
163 // In case the requested size is zero, we still want to return a pointer
164 // to a valid segment, so the zone is obtainable from it.
165 if (size == 0) {
166 // there has to be a normal segment to reference
167 if (segment_head_ == nullptr || segment_head_->is_big_object_segment()) {
168 // We create a segment of minimal size.
169 result = NewNormalSegment(kAlignment);
170 }
171
172 DCHECK(!GetZoneSegmentFromPointer(result)->is_big_object_segment());
173 DCHECK_EQ(GetZoneFromPointer(result), this);
174 return reinterpret_cast<void*>(result);
175 }
176
177 // Large objects are a special case and get their own segment to live in.
178 if (CalculateSegmentSize(size) > kMaximumSegmentSize) {
179 result = NewLargeObjectSegment(size);
180 DCHECK(GetZoneSegmentFromPointer(result)->is_big_object_segment());
181 return reinterpret_cast<void*>(result);
182 }
183
106 const size_t size_with_redzone = size + kASanRedzoneBytes; 184 const size_t size_with_redzone = size + kASanRedzoneBytes;
107 const uintptr_t limit = reinterpret_cast<uintptr_t>(limit_); 185 const uintptr_t limit = reinterpret_cast<uintptr_t>(limit_);
108 const uintptr_t position = reinterpret_cast<uintptr_t>(position_); 186 const uintptr_t position = reinterpret_cast<uintptr_t>(position_);
109 // position_ > limit_ can be true after the alignment correction above. 187 // position_ > limit_ can be true after the alignment correction above.
110 if (limit < position || size_with_redzone > limit - position) { 188 if (limit < position || size_with_redzone > limit - position) {
111 result = NewExpand(size_with_redzone); 189 result = NewNormalSegment(size_with_redzone);
112 } else { 190 } else {
113 position_ += size_with_redzone; 191 position_ += size_with_redzone;
114 } 192 }
115 193
116 Address redzone_position = result + size; 194 Address redzone_position = result + size;
117 DCHECK(redzone_position + kASanRedzoneBytes == position_); 195 DCHECK_EQ(redzone_position + kASanRedzoneBytes, position_);
118 ASAN_POISON_MEMORY_REGION(redzone_position, kASanRedzoneBytes); 196 ASAN_POISON_MEMORY_REGION(redzone_position, kASanRedzoneBytes);
119 197
120 // Check that the result has the proper alignment and return it. 198 // Check that the result has the proper alignment and return it.
121 DCHECK(IsAddressAligned(result, kAlignment, 0)); 199 DCHECK(IsAddressAligned(result, kAlignment, 0));
200 DCHECK(!GetZoneSegmentFromPointer(result)->is_big_object_segment());
201 DCHECK_EQ(GetZoneFromPointer(result), this);
122 allocation_size_ += size; 202 allocation_size_ += size;
123 return reinterpret_cast<void*>(result); 203 return reinterpret_cast<void*>(result);
124 } 204 }
125 205
126 206
127 void Zone::DeleteAll() { 207 void Zone::DeleteAll() {
128 #ifdef DEBUG
129 // Constant byte value used for zapping dead memory in debug mode.
130 static const unsigned char kZapDeadByte = 0xcd;
131 #endif
132
133 // Find a segment with a suitable size to keep around. 208 // Find a segment with a suitable size to keep around.
134 Segment* keep = nullptr; 209 Segment* keep = nullptr;
135 // Traverse the chained list of segments, zapping (in debug mode) 210 // Traverse the chained list of segments, zapping (in debug mode)
136 // and freeing every segment except the one we wish to keep. 211 // and freeing every segment except the one we wish to keep.
137 for (Segment* current = segment_head_; current;) { 212 for (Segment* current = segment_head_; current;) {
138 Segment* next = current->next(); 213 Segment* next = current->next();
139 if (!keep && current->size() <= kMaximumKeptSegmentSize) { 214 if (!keep && current->size() <= kMaximumKeptSegmentSize) {
140 // Unlink the segment we wish to keep from the list. 215 // Unlink the segment we wish to keep from the list.
141 keep = current; 216 keep = current;
142 keep->clear_next(); 217 keep->Reset();
143 } else { 218 } else {
144 size_t size = current->size(); 219 segment_bytes_allocated_ -= current->size();
145 #ifdef DEBUG 220 allocator_->ChangeCurrentMemoryUsage(
146 // Un-poison first so the zapping doesn't trigger ASan complaints. 221 -static_cast<int64_t>(current->size()));
147 ASAN_UNPOISON_MEMORY_REGION(current, size); 222 current->Release();
148 // Zap the entire current segment (including the header).
149 memset(current, kZapDeadByte, size);
150 #endif
151 DeleteSegment(current, size);
152 } 223 }
153 current = next; 224 current = next;
154 } 225 }
155 226
156 // If we have found a segment we want to keep, we must recompute the 227 // If we have found a segment we want to keep, we must recompute the
157 // variables 'position' and 'limit' to prepare for future allocate 228 // variables 'position' and 'limit' to prepare for future allocate
158 // attempts. Otherwise, we must clear the position and limit to 229 // attempts. Otherwise, we must clear the position and limit to
159 // force a new segment to be allocated on demand. 230 // force a new segment to be allocated on demand.
160 if (keep) { 231 if (keep) {
161 Address start = keep->start(); 232 Address start = keep->start();
162 position_ = RoundUp(start, kAlignment); 233 position_ = RoundUp(start, kAlignment);
163 limit_ = keep->end(); 234 limit_ = keep->end();
164 // Un-poison so we can re-use the segment later.
165 ASAN_UNPOISON_MEMORY_REGION(start, keep->capacity());
166 #ifdef DEBUG
167 // Zap the contents of the kept segment (but not the header).
168 memset(start, kZapDeadByte, keep->capacity());
169 #endif
170 } else { 235 } else {
171 position_ = limit_ = 0; 236 position_ = limit_ = 0;
172 } 237 }
173 238
174 allocation_size_ = 0; 239 allocation_size_ = 0;
175 // Update the head segment to be the kept segment (if any). 240 // Update the head segment to be the kept segment (if any).
176 segment_head_ = keep; 241 segment_head_ = keep;
177 } 242 }
178 243
179 244
180 void Zone::DeleteKeptSegment() { 245 void Zone::DeleteKeptSegment() {
181 #ifdef DEBUG
182 // Constant byte value used for zapping dead memory in debug mode.
183 static const unsigned char kZapDeadByte = 0xcd;
184 #endif
185
186 DCHECK(segment_head_ == nullptr || segment_head_->next() == nullptr); 246 DCHECK(segment_head_ == nullptr || segment_head_->next() == nullptr);
187 if (segment_head_ != nullptr) { 247 if (segment_head_ != nullptr) {
188 size_t size = segment_head_->size(); 248 segment_bytes_allocated_ -= segment_head_->size();
189 #ifdef DEBUG 249 allocator_->ChangeCurrentMemoryUsage(
190 // Un-poison first so the zapping doesn't trigger ASan complaints. 250 -static_cast<int64_t>(segment_head_->size()));
191 ASAN_UNPOISON_MEMORY_REGION(segment_head_, size); 251 segment_head_->Release();
192 // Zap the entire kept segment (including the header).
193 memset(segment_head_, kZapDeadByte, size);
194 #endif
195 DeleteSegment(segment_head_, size);
196 segment_head_ = nullptr; 252 segment_head_ = nullptr;
197 } 253 }
198 254
199 DCHECK(segment_bytes_allocated_ == 0); 255 DCHECK(segment_bytes_allocated_ == 0);
200 } 256 }
201 257
202 258
203 // Creates a new segment, sets it size, and pushes it to the front
204 // of the segment chain. Returns the new segment.
205 Segment* Zone::NewSegment(size_t size) { 259 Segment* Zone::NewSegment(size_t size) {
206 Segment* result = reinterpret_cast<Segment*>(allocator_->Allocate(size)); 260 v8::base::VirtualMemory vm(size, kSegmentAlignmentSize);
207 segment_bytes_allocated_ += size; 261
208 if (result != nullptr) { 262 if (!vm.IsReserved()) {
209 result->Initialize(segment_head_, size); 263 V8::FatalProcessOutOfMemory("Zone");
210 segment_head_ = result; 264 return nullptr;
211 } 265 }
266
267 auto start =
Jakob Kummerow 2016/09/05 14:46:27 nit: don't use auto, make the type explicit
268 reinterpret_cast<uintptr_t>(vm.address()) & kSegmentAlignmentMask;
269
270 if (start != reinterpret_cast<uintptr_t>(vm.address())) {
Jakob Kummerow 2016/09/05 15:15:55 Actually, can this happen? My reading of base::Vir
heimbuef 2016/09/05 15:48:27 Long story short: On Windows, it's not possible to
271 // Address is not aligned.
272 start += kSegmentAlignmentSize;
273 }
274
275 // Check whether the virtual memory is big enough to fit our aligned chunk.
276 DCHECK_LE(start + size,
277 reinterpret_cast<uintptr_t>(vm.address()) + vm.size());
278
279 if (!v8::base::VirtualMemory::CommitRegion(reinterpret_cast<void*>(start),
280 size, false)) {
281 V8::FatalProcessOutOfMemory("Zone");
282 return nullptr;
283 }
284
285 Segment* result = reinterpret_cast<Segment*>(vm.address());
Jakob Kummerow 2016/09/05 14:46:27 I think this is line is no longer correct.
heimbuef 2016/09/05 15:48:27 Done.
286
287 result->Initialize(this, &vm);
288
289 segment_bytes_allocated_ += result->size();
290 allocator_->ChangeCurrentMemoryUsage(result->size());
291
212 return result; 292 return result;
213 } 293 }
214 294
295 Address Zone::NewLargeObjectSegment(size_t size) {
296 size_t new_size = CalculateSegmentSize(size);
297 Segment* segment = NewSegment(new_size);
215 298
216 // Deletes the given segment. Does not touch the segment chain. 299 if (segment_head_ == nullptr) {
217 void Zone::DeleteSegment(Segment* segment, size_t size) { 300 // This is the only case in which a large object segment becomes head of
218 segment_bytes_allocated_ -= size; 301 // the segment list.
219 allocator_->Free(segment, size); 302 segment_head_ = segment;
303 } else {
304 // Large object segments should be inserted second into the list when
305 // possible.
306 segment->set_next(segment_head_->next());
307 segment_head_->set_next(segment);
308 }
309
310 Address result = RoundUp(segment->start(), kAlignment);
311 DCHECK_EQ(GetZoneFromPointer(segment), this);
312 DCHECK_EQ(GetZoneFromPointer(result), this);
313 return result;
220 } 314 }
221 315
222 316 Address Zone::NewNormalSegment(size_t size) {
223 Address Zone::NewExpand(size_t size) {
224 // Make sure the requested size is already properly aligned and that 317 // Make sure the requested size is already properly aligned and that
225 // there isn't enough room in the Zone to satisfy the request. 318 // there isn't enough room in the Zone to satisfy the request.
226 DCHECK_EQ(size, RoundDown(size, kAlignment)); 319 DCHECK_EQ(size, RoundDown(size, kAlignment));
227 DCHECK(limit_ < position_ || 320 DCHECK(limit_ < position_ ||
228 reinterpret_cast<uintptr_t>(limit_) - 321 reinterpret_cast<uintptr_t>(limit_) -
229 reinterpret_cast<uintptr_t>(position_) < 322 reinterpret_cast<uintptr_t>(position_) <
230 size); 323 size);
231 324
232 // Compute the new segment size. We use a 'high water mark' 325 DCHECK_LE(size, kMaximumSegmentSize + 0);
233 // strategy, where we increase the segment size every time we expand 326
234 // except that we employ a maximum segment size when we delete. This 327 size_t new_size = CalculateSegmentSize(size);
235 // is to avoid excessive malloc() and free() overhead. 328 const size_t old_size =
236 Segment* head = segment_head_; 329 (segment_head_ == nullptr) ? 0 : segment_head_->size();
237 const size_t old_size = (head == nullptr) ? 0 : head->size(); 330 new_size = Max(new_size, old_size << 1);
238 static const size_t kSegmentOverhead = sizeof(Segment) + kAlignment; 331 new_size = Min(new_size, kMaximumSegmentSize);
239 const size_t new_size_no_overhead = size + (old_size << 1); 332
240 size_t new_size = kSegmentOverhead + new_size_no_overhead; 333 DCHECK_LE(new_size, kMaximumSegmentSize + 0);
241 const size_t min_new_size = kSegmentOverhead + size; 334
242 // Guard against integer overflow.
243 if (new_size_no_overhead < size || new_size < kSegmentOverhead) {
244 V8::FatalProcessOutOfMemory("Zone");
245 return nullptr;
246 }
247 if (new_size < kMinimumSegmentSize) {
248 new_size = kMinimumSegmentSize;
249 } else if (new_size > kMaximumSegmentSize) {
250 // Limit the size of new segments to avoid growing the segment size
251 // exponentially, thus putting pressure on contiguous virtual address space.
252 // All the while making sure to allocate a segment large enough to hold the
253 // requested size.
254 new_size = Max(min_new_size, kMaximumSegmentSize);
255 }
256 if (new_size > INT_MAX) {
257 V8::FatalProcessOutOfMemory("Zone");
258 return nullptr;
259 }
260 Segment* segment = NewSegment(new_size); 335 Segment* segment = NewSegment(new_size);
261 if (segment == nullptr) { 336
262 V8::FatalProcessOutOfMemory("Zone"); 337 // Put segment in front of the segment list.
263 return nullptr; 338 segment->set_next(segment_head_);
264 } 339 segment_head_ = segment;
340
341 // Normal segments must not be bigger than the alignment size.
342 DCHECK_LE(segment->size(), kSegmentAlignmentSize + 0);
265 343
266 // Recompute 'top' and 'limit' based on the new segment. 344 // Recompute 'top' and 'limit' based on the new segment.
267 Address result = RoundUp(segment->start(), kAlignment); 345 Address result = RoundUp(segment->start(), kAlignment);
268 position_ = result + size; 346 position_ = result + size;
269 // Check for address overflow. 347 // Check for address overflow.
270 // (Should not happen since the segment is guaranteed to accomodate 348 // (Should not happen since the segment is guaranteed to accomodate
271 // size bytes + header and alignment padding) 349 // size bytes + header and alignment padding)
272 DCHECK(reinterpret_cast<uintptr_t>(position_) >= 350 DCHECK_GE(reinterpret_cast<uintptr_t>(position_),
273 reinterpret_cast<uintptr_t>(result)); 351 reinterpret_cast<uintptr_t>(result));
352 DCHECK_EQ(GetZoneFromPointer(segment), this);
353 DCHECK_EQ(GetZoneFromPointer(result), this);
354 DCHECK_EQ(GetZoneFromPointer(segment->end() - 1), this);
274 limit_ = segment->end(); 355 limit_ = segment->end();
275 DCHECK(position_ <= limit_); 356 DCHECK(position_ <= limit_);
276 return result; 357 return result;
277 } 358 }
278 359
360 size_t Zone::CalculateSegmentSize(const size_t requested) {
361 if (UINTPTR_MAX - (sizeof(Segment) + kAlignment) < requested) {
362 V8::FatalProcessOutOfMemory("Zone");
363 }
364
365 return RoundUp(requested + sizeof(Segment) + kAlignment, kMinimumSegmentSize);
366 }
367
279 } // namespace internal 368 } // namespace internal
280 } // namespace v8 369 } // namespace v8
OLDNEW
« no previous file with comments | « src/zone.h ('k') | no next file » | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698