OLD | NEW |
---|---|
1 // Copyright 2012 the V8 project authors. All rights reserved. | 1 // Copyright 2012 the V8 project authors. All rights reserved. |
2 // Use of this source code is governed by a BSD-style license that can be | 2 // Use of this source code is governed by a BSD-style license that can be |
3 // found in the LICENSE file. | 3 // found in the LICENSE file. |
4 | 4 |
5 #include "src/zone.h" | 5 #include "src/zone.h" |
6 | 6 |
7 #include <cstring> | 7 #include <cstring> |
8 | 8 |
9 #include "src/v8.h" | 9 #include "src/v8.h" |
10 | 10 |
(...skipping 25 matching lines...) Expand all Loading... | |
36 } while (false) | 36 } while (false) |
37 | 37 |
38 const size_t kASanRedzoneBytes = 0; | 38 const size_t kASanRedzoneBytes = 0; |
39 | 39 |
40 #endif // V8_USE_ADDRESS_SANITIZER | 40 #endif // V8_USE_ADDRESS_SANITIZER |
41 | 41 |
42 } // namespace | 42 } // namespace |
43 | 43 |
44 | 44 |
45 // Segments represent chunks of memory: They have starting address | 45 // Segments represent chunks of memory: They have starting address |
46 // (encoded in the this pointer) and a size in bytes. Segments are | 46 // (encoded in the this pointer) and a VirtualMemory instance. Segments are |
47 // chained together forming a LIFO structure with the newest segment | 47 // chained together forming a LIFO structure with the newest segment |
48 // available as segment_head_. Segments are allocated using malloc() | 48 // available as segment_head_. Segments are allocated aligned via the |
49 // and de-allocated using free(). | 49 // VirtualMemory instance and released using it. |
50 | 50 |
51 class Segment { | 51 class Segment { |
52 public: | 52 public: |
53 void Initialize(Segment* next, size_t size) { | 53 void Initialize(Zone* zone, v8::base::VirtualMemory* virtual_memory) { |
54 next_ = next; | 54 DCHECK_EQ(reinterpret_cast<uintptr_t>(this) & Zone::kSegmentAlignmentMask, |
55 size_ = size; | 55 reinterpret_cast<uintptr_t>(this)); |
56 | |
57 next_ = nullptr; | |
58 zone_ = zone; | |
59 virtual_memory_.Reset(); | |
60 virtual_memory_.TakeControl(virtual_memory); | |
56 } | 61 } |
57 | 62 |
63 Zone* zone() const { return zone_; } | |
58 Segment* next() const { return next_; } | 64 Segment* next() const { return next_; } |
59 void clear_next() { next_ = nullptr; } | 65 void set_next(Segment* const value) { next_ = value; } |
60 | 66 |
61 size_t size() const { return size_; } | 67 size_t size() const { return virtual_memory_.size(); } |
62 size_t capacity() const { return size_ - sizeof(Segment); } | 68 |
69 size_t capacity() const { return size() - sizeof(Segment); } | |
63 | 70 |
64 Address start() const { return address(sizeof(Segment)); } | 71 Address start() const { return address(sizeof(Segment)); } |
65 Address end() const { return address(size_); } | 72 Address end() const { return address(size()); } |
73 | |
74 bool is_big_object_segment() const { | |
75 return size() > Zone::kMaximumSegmentSize; | |
76 } | |
77 | |
78 void Release() { | |
79 #ifdef ENABLE_HANDLE_ZAPPING | |
80 // We are going to zap the memory the segment is stored in, so we | |
81 // need to save the virtual memory information to be able to release | |
82 // it. | |
83 v8::base::VirtualMemory vm = v8::base::VirtualMemory(); | |
84 vm.TakeControl(&virtual_memory_); | |
85 // Un-poison first so the zapping doesn't trigger ASan complaints. | |
86 ASAN_UNPOISON_MEMORY_REGION(vm.address(), vm.size()); | |
87 // Zap the entire current segment (including the header). | |
88 memset(vm.address(), kZapDeadByte, vm.size()); | |
89 | |
90 vm.Release(); | |
91 #else | |
92 virtual_memory_.Release(); | |
93 #endif | |
94 } | |
95 | |
96 void Reset() { | |
97 // Un-poison so neither the zapping not the reusing does trigger ASan | |
98 // complaints. | |
99 ASAN_UNPOISON_MEMORY_REGION(virtual_memory_.address(), | |
100 virtual_memory_.size()); | |
101 #ifdef ENABLE_HANDLE_ZAPPING | |
102 // Zap the entire current segment (including the header). | |
103 memset(reinterpret_cast<void*>(start()), kZapDeadByte, capacity()); | |
104 #endif | |
105 next_ = nullptr; | |
106 } | |
66 | 107 |
67 private: | 108 private: |
109 #ifdef ENABLE_HANDLE_ZAPPING | |
110 // Constant byte value used for zapping dead memory in debug mode. | |
111 static const unsigned char kZapDeadByte = 0xcd; | |
112 #endif | |
113 | |
68 // Computes the address of the nth byte in this segment. | 114 // Computes the address of the nth byte in this segment. |
69 Address address(size_t n) const { return Address(this) + n; } | 115 Address address(size_t n) const { return Address(this) + n; } |
70 | 116 |
117 Zone* zone_; | |
71 Segment* next_; | 118 Segment* next_; |
72 size_t size_; | 119 v8::base::VirtualMemory virtual_memory_; |
120 | |
121 DISALLOW_COPY_AND_ASSIGN(Segment); | |
73 }; | 122 }; |
74 | 123 |
75 Zone::Zone(base::AccountingAllocator* allocator) | 124 Zone::Zone(base::AccountingAllocator* allocator) |
76 : allocation_size_(0), | 125 : allocation_size_(0), |
77 segment_bytes_allocated_(0), | 126 segment_bytes_allocated_(0), |
78 position_(0), | 127 position_(0), |
79 limit_(0), | 128 limit_(0), |
80 allocator_(allocator), | 129 allocator_(allocator), |
81 segment_head_(nullptr) {} | 130 segment_head_(nullptr) {} |
82 | 131 |
83 Zone::~Zone() { | 132 Zone::~Zone() { |
84 DeleteAll(); | 133 DeleteAll(); |
85 DeleteKeptSegment(); | 134 DeleteKeptSegment(); |
86 | 135 |
87 DCHECK(segment_bytes_allocated_ == 0); | 136 DCHECK(segment_bytes_allocated_ == 0); |
88 } | 137 } |
89 | 138 |
139 Segment* Zone::GetZoneSegmentFromPointer(const void* ptr) { | |
140 return reinterpret_cast<Segment*>(reinterpret_cast<uintptr_t>(ptr) & | |
141 kSegmentAlignmentMask); | |
142 } | |
143 | |
144 Zone* Zone::GetZoneFromPointer(const void* ptr) { | |
145 return GetZoneSegmentFromPointer(ptr)->zone(); | |
146 } | |
90 | 147 |
91 void* Zone::New(size_t size) { | 148 void* Zone::New(size_t size) { |
92 // Round up the requested size to fit the alignment. | 149 // Round up the requested size to fit the alignment. |
93 size = RoundUp(size, kAlignment); | 150 size = RoundUp(size, kAlignment); |
94 | 151 |
95 // If the allocation size is divisible by 8 then we return an 8-byte aligned | 152 // If the allocation size is divisible by 8 then we return an 8-byte aligned |
96 // address. | 153 // address. |
97 if (kPointerSize == 4 && kAlignment == 4) { | 154 if (kPointerSize == 4 && kAlignment == 4) { |
98 position_ += ((~size) & 4) & (reinterpret_cast<intptr_t>(position_) & 4); | 155 position_ += ((~size) & 4) & (reinterpret_cast<intptr_t>(position_) & 4); |
99 } else { | 156 } else { |
100 DCHECK(kAlignment >= kPointerSize); | 157 DCHECK(kAlignment >= kPointerSize); |
101 } | 158 } |
102 | 159 |
103 // Check if the requested size is available without expanding. | 160 // Check if the requested size is available without expanding. |
104 Address result = position_; | 161 Address result = position_; |
105 | 162 |
163 // In case the requested size is zero, we still want to return a pointer | |
164 // to a valid segment, so the zone is obtainable from it. | |
165 if (size == 0) { | |
166 // there has to be a normal segment to reference | |
167 if (segment_head_ == nullptr || segment_head_->is_big_object_segment()) { | |
168 // We create a segment of minimal size. | |
169 result = NewNormalSegment(kAlignment); | |
170 } | |
171 | |
172 DCHECK(!GetZoneSegmentFromPointer(result)->is_big_object_segment()); | |
173 DCHECK_EQ(GetZoneFromPointer(result), this); | |
174 return reinterpret_cast<void*>(result); | |
175 } | |
176 | |
177 // Large objects are a special case and get their own segment to live in. | |
178 if (CalculateSegmentSize(size) > kMaximumSegmentSize) { | |
179 result = NewLargeObjectSegment(size); | |
180 DCHECK(GetZoneSegmentFromPointer(result)->is_big_object_segment()); | |
181 return reinterpret_cast<void*>(result); | |
182 } | |
183 | |
106 const size_t size_with_redzone = size + kASanRedzoneBytes; | 184 const size_t size_with_redzone = size + kASanRedzoneBytes; |
107 const uintptr_t limit = reinterpret_cast<uintptr_t>(limit_); | 185 const uintptr_t limit = reinterpret_cast<uintptr_t>(limit_); |
108 const uintptr_t position = reinterpret_cast<uintptr_t>(position_); | 186 const uintptr_t position = reinterpret_cast<uintptr_t>(position_); |
109 // position_ > limit_ can be true after the alignment correction above. | 187 // position_ > limit_ can be true after the alignment correction above. |
110 if (limit < position || size_with_redzone > limit - position) { | 188 if (limit < position || size_with_redzone > limit - position) { |
111 result = NewExpand(size_with_redzone); | 189 result = NewNormalSegment(size_with_redzone); |
112 } else { | 190 } else { |
113 position_ += size_with_redzone; | 191 position_ += size_with_redzone; |
114 } | 192 } |
115 | 193 |
116 Address redzone_position = result + size; | 194 Address redzone_position = result + size; |
117 DCHECK(redzone_position + kASanRedzoneBytes == position_); | 195 DCHECK_EQ(redzone_position + kASanRedzoneBytes, position_); |
118 ASAN_POISON_MEMORY_REGION(redzone_position, kASanRedzoneBytes); | 196 ASAN_POISON_MEMORY_REGION(redzone_position, kASanRedzoneBytes); |
119 | 197 |
120 // Check that the result has the proper alignment and return it. | 198 // Check that the result has the proper alignment and return it. |
121 DCHECK(IsAddressAligned(result, kAlignment, 0)); | 199 DCHECK(IsAddressAligned(result, kAlignment, 0)); |
200 DCHECK(!GetZoneSegmentFromPointer(result)->is_big_object_segment()); | |
201 DCHECK_EQ(GetZoneFromPointer(result), this); | |
122 allocation_size_ += size; | 202 allocation_size_ += size; |
123 return reinterpret_cast<void*>(result); | 203 return reinterpret_cast<void*>(result); |
124 } | 204 } |
125 | 205 |
126 | 206 |
127 void Zone::DeleteAll() { | 207 void Zone::DeleteAll() { |
128 #ifdef DEBUG | |
129 // Constant byte value used for zapping dead memory in debug mode. | |
130 static const unsigned char kZapDeadByte = 0xcd; | |
131 #endif | |
132 | |
133 // Find a segment with a suitable size to keep around. | 208 // Find a segment with a suitable size to keep around. |
134 Segment* keep = nullptr; | 209 Segment* keep = nullptr; |
135 // Traverse the chained list of segments, zapping (in debug mode) | 210 // Traverse the chained list of segments, zapping (in debug mode) |
136 // and freeing every segment except the one we wish to keep. | 211 // and freeing every segment except the one we wish to keep. |
137 for (Segment* current = segment_head_; current;) { | 212 for (Segment* current = segment_head_; current;) { |
138 Segment* next = current->next(); | 213 Segment* next = current->next(); |
139 if (!keep && current->size() <= kMaximumKeptSegmentSize) { | 214 if (!keep && current->size() <= kMaximumKeptSegmentSize) { |
140 // Unlink the segment we wish to keep from the list. | 215 // Unlink the segment we wish to keep from the list. |
141 keep = current; | 216 keep = current; |
142 keep->clear_next(); | 217 keep->Reset(); |
143 } else { | 218 } else { |
144 size_t size = current->size(); | 219 segment_bytes_allocated_ -= current->size(); |
145 #ifdef DEBUG | 220 allocator_->ChangeCurrentMemoryUsage( |
146 // Un-poison first so the zapping doesn't trigger ASan complaints. | 221 -static_cast<int64_t>(current->size())); |
147 ASAN_UNPOISON_MEMORY_REGION(current, size); | 222 current->Release(); |
148 // Zap the entire current segment (including the header). | |
149 memset(current, kZapDeadByte, size); | |
150 #endif | |
151 DeleteSegment(current, size); | |
152 } | 223 } |
153 current = next; | 224 current = next; |
154 } | 225 } |
155 | 226 |
156 // If we have found a segment we want to keep, we must recompute the | 227 // If we have found a segment we want to keep, we must recompute the |
157 // variables 'position' and 'limit' to prepare for future allocate | 228 // variables 'position' and 'limit' to prepare for future allocate |
158 // attempts. Otherwise, we must clear the position and limit to | 229 // attempts. Otherwise, we must clear the position and limit to |
159 // force a new segment to be allocated on demand. | 230 // force a new segment to be allocated on demand. |
160 if (keep) { | 231 if (keep) { |
161 Address start = keep->start(); | 232 Address start = keep->start(); |
162 position_ = RoundUp(start, kAlignment); | 233 position_ = RoundUp(start, kAlignment); |
163 limit_ = keep->end(); | 234 limit_ = keep->end(); |
164 // Un-poison so we can re-use the segment later. | |
165 ASAN_UNPOISON_MEMORY_REGION(start, keep->capacity()); | |
166 #ifdef DEBUG | |
167 // Zap the contents of the kept segment (but not the header). | |
168 memset(start, kZapDeadByte, keep->capacity()); | |
169 #endif | |
170 } else { | 235 } else { |
171 position_ = limit_ = 0; | 236 position_ = limit_ = 0; |
172 } | 237 } |
173 | 238 |
174 allocation_size_ = 0; | 239 allocation_size_ = 0; |
175 // Update the head segment to be the kept segment (if any). | 240 // Update the head segment to be the kept segment (if any). |
176 segment_head_ = keep; | 241 segment_head_ = keep; |
177 } | 242 } |
178 | 243 |
179 | 244 |
180 void Zone::DeleteKeptSegment() { | 245 void Zone::DeleteKeptSegment() { |
181 #ifdef DEBUG | |
182 // Constant byte value used for zapping dead memory in debug mode. | |
183 static const unsigned char kZapDeadByte = 0xcd; | |
184 #endif | |
185 | |
186 DCHECK(segment_head_ == nullptr || segment_head_->next() == nullptr); | 246 DCHECK(segment_head_ == nullptr || segment_head_->next() == nullptr); |
187 if (segment_head_ != nullptr) { | 247 if (segment_head_ != nullptr) { |
188 size_t size = segment_head_->size(); | 248 segment_bytes_allocated_ -= segment_head_->size(); |
189 #ifdef DEBUG | 249 allocator_->ChangeCurrentMemoryUsage( |
190 // Un-poison first so the zapping doesn't trigger ASan complaints. | 250 -static_cast<int64_t>(segment_head_->size())); |
191 ASAN_UNPOISON_MEMORY_REGION(segment_head_, size); | 251 segment_head_->Release(); |
192 // Zap the entire kept segment (including the header). | |
193 memset(segment_head_, kZapDeadByte, size); | |
194 #endif | |
195 DeleteSegment(segment_head_, size); | |
196 segment_head_ = nullptr; | 252 segment_head_ = nullptr; |
197 } | 253 } |
198 | 254 |
199 DCHECK(segment_bytes_allocated_ == 0); | 255 DCHECK(segment_bytes_allocated_ == 0); |
200 } | 256 } |
201 | 257 |
202 | 258 |
203 // Creates a new segment, sets it size, and pushes it to the front | |
204 // of the segment chain. Returns the new segment. | |
205 Segment* Zone::NewSegment(size_t size) { | 259 Segment* Zone::NewSegment(size_t size) { |
206 Segment* result = reinterpret_cast<Segment*>(allocator_->Allocate(size)); | 260 v8::base::VirtualMemory vm(size, kSegmentAlignmentSize); |
207 segment_bytes_allocated_ += size; | 261 |
208 if (result != nullptr) { | 262 if (!vm.IsReserved()) { |
209 result->Initialize(segment_head_, size); | 263 V8::FatalProcessOutOfMemory("Zone"); |
210 segment_head_ = result; | 264 return nullptr; |
211 } | 265 } |
266 | |
267 auto start = | |
Jakob Kummerow
2016/09/05 14:46:27
nit: don't use auto, make the type explicit
| |
268 reinterpret_cast<uintptr_t>(vm.address()) & kSegmentAlignmentMask; | |
269 | |
270 if (start != reinterpret_cast<uintptr_t>(vm.address())) { | |
Jakob Kummerow
2016/09/05 15:15:55
Actually, can this happen? My reading of base::Vir
heimbuef
2016/09/05 15:48:27
Long story short: On Windows, it's not possible to
| |
271 // Address is not aligned. | |
272 start += kSegmentAlignmentSize; | |
273 } | |
274 | |
275 // Check whether the virtual memory is big enough to fit our aligned chunk. | |
276 DCHECK_LE(start + size, | |
277 reinterpret_cast<uintptr_t>(vm.address()) + vm.size()); | |
278 | |
279 if (!v8::base::VirtualMemory::CommitRegion(reinterpret_cast<void*>(start), | |
280 size, false)) { | |
281 V8::FatalProcessOutOfMemory("Zone"); | |
282 return nullptr; | |
283 } | |
284 | |
285 Segment* result = reinterpret_cast<Segment*>(vm.address()); | |
Jakob Kummerow
2016/09/05 14:46:27
I think this is line is no longer correct.
heimbuef
2016/09/05 15:48:27
Done.
| |
286 | |
287 result->Initialize(this, &vm); | |
288 | |
289 segment_bytes_allocated_ += result->size(); | |
290 allocator_->ChangeCurrentMemoryUsage(result->size()); | |
291 | |
212 return result; | 292 return result; |
213 } | 293 } |
214 | 294 |
295 Address Zone::NewLargeObjectSegment(size_t size) { | |
296 size_t new_size = CalculateSegmentSize(size); | |
297 Segment* segment = NewSegment(new_size); | |
215 | 298 |
216 // Deletes the given segment. Does not touch the segment chain. | 299 if (segment_head_ == nullptr) { |
217 void Zone::DeleteSegment(Segment* segment, size_t size) { | 300 // This is the only case in which a large object segment becomes head of |
218 segment_bytes_allocated_ -= size; | 301 // the segment list. |
219 allocator_->Free(segment, size); | 302 segment_head_ = segment; |
303 } else { | |
304 // Large object segments should be inserted second into the list when | |
305 // possible. | |
306 segment->set_next(segment_head_->next()); | |
307 segment_head_->set_next(segment); | |
308 } | |
309 | |
310 Address result = RoundUp(segment->start(), kAlignment); | |
311 DCHECK_EQ(GetZoneFromPointer(segment), this); | |
312 DCHECK_EQ(GetZoneFromPointer(result), this); | |
313 return result; | |
220 } | 314 } |
221 | 315 |
222 | 316 Address Zone::NewNormalSegment(size_t size) { |
223 Address Zone::NewExpand(size_t size) { | |
224 // Make sure the requested size is already properly aligned and that | 317 // Make sure the requested size is already properly aligned and that |
225 // there isn't enough room in the Zone to satisfy the request. | 318 // there isn't enough room in the Zone to satisfy the request. |
226 DCHECK_EQ(size, RoundDown(size, kAlignment)); | 319 DCHECK_EQ(size, RoundDown(size, kAlignment)); |
227 DCHECK(limit_ < position_ || | 320 DCHECK(limit_ < position_ || |
228 reinterpret_cast<uintptr_t>(limit_) - | 321 reinterpret_cast<uintptr_t>(limit_) - |
229 reinterpret_cast<uintptr_t>(position_) < | 322 reinterpret_cast<uintptr_t>(position_) < |
230 size); | 323 size); |
231 | 324 |
232 // Compute the new segment size. We use a 'high water mark' | 325 DCHECK_LE(size, kMaximumSegmentSize + 0); |
233 // strategy, where we increase the segment size every time we expand | 326 |
234 // except that we employ a maximum segment size when we delete. This | 327 size_t new_size = CalculateSegmentSize(size); |
235 // is to avoid excessive malloc() and free() overhead. | 328 const size_t old_size = |
236 Segment* head = segment_head_; | 329 (segment_head_ == nullptr) ? 0 : segment_head_->size(); |
237 const size_t old_size = (head == nullptr) ? 0 : head->size(); | 330 new_size = Max(new_size, old_size << 1); |
238 static const size_t kSegmentOverhead = sizeof(Segment) + kAlignment; | 331 new_size = Min(new_size, kMaximumSegmentSize); |
239 const size_t new_size_no_overhead = size + (old_size << 1); | 332 |
240 size_t new_size = kSegmentOverhead + new_size_no_overhead; | 333 DCHECK_LE(new_size, kMaximumSegmentSize + 0); |
241 const size_t min_new_size = kSegmentOverhead + size; | 334 |
242 // Guard against integer overflow. | |
243 if (new_size_no_overhead < size || new_size < kSegmentOverhead) { | |
244 V8::FatalProcessOutOfMemory("Zone"); | |
245 return nullptr; | |
246 } | |
247 if (new_size < kMinimumSegmentSize) { | |
248 new_size = kMinimumSegmentSize; | |
249 } else if (new_size > kMaximumSegmentSize) { | |
250 // Limit the size of new segments to avoid growing the segment size | |
251 // exponentially, thus putting pressure on contiguous virtual address space. | |
252 // All the while making sure to allocate a segment large enough to hold the | |
253 // requested size. | |
254 new_size = Max(min_new_size, kMaximumSegmentSize); | |
255 } | |
256 if (new_size > INT_MAX) { | |
257 V8::FatalProcessOutOfMemory("Zone"); | |
258 return nullptr; | |
259 } | |
260 Segment* segment = NewSegment(new_size); | 335 Segment* segment = NewSegment(new_size); |
261 if (segment == nullptr) { | 336 |
262 V8::FatalProcessOutOfMemory("Zone"); | 337 // Put segment in front of the segment list. |
263 return nullptr; | 338 segment->set_next(segment_head_); |
264 } | 339 segment_head_ = segment; |
340 | |
341 // Normal segments must not be bigger than the alignment size. | |
342 DCHECK_LE(segment->size(), kSegmentAlignmentSize + 0); | |
265 | 343 |
266 // Recompute 'top' and 'limit' based on the new segment. | 344 // Recompute 'top' and 'limit' based on the new segment. |
267 Address result = RoundUp(segment->start(), kAlignment); | 345 Address result = RoundUp(segment->start(), kAlignment); |
268 position_ = result + size; | 346 position_ = result + size; |
269 // Check for address overflow. | 347 // Check for address overflow. |
270 // (Should not happen since the segment is guaranteed to accomodate | 348 // (Should not happen since the segment is guaranteed to accomodate |
271 // size bytes + header and alignment padding) | 349 // size bytes + header and alignment padding) |
272 DCHECK(reinterpret_cast<uintptr_t>(position_) >= | 350 DCHECK_GE(reinterpret_cast<uintptr_t>(position_), |
273 reinterpret_cast<uintptr_t>(result)); | 351 reinterpret_cast<uintptr_t>(result)); |
352 DCHECK_EQ(GetZoneFromPointer(segment), this); | |
353 DCHECK_EQ(GetZoneFromPointer(result), this); | |
354 DCHECK_EQ(GetZoneFromPointer(segment->end() - 1), this); | |
274 limit_ = segment->end(); | 355 limit_ = segment->end(); |
275 DCHECK(position_ <= limit_); | 356 DCHECK(position_ <= limit_); |
276 return result; | 357 return result; |
277 } | 358 } |
278 | 359 |
360 size_t Zone::CalculateSegmentSize(const size_t requested) { | |
361 if (UINTPTR_MAX - (sizeof(Segment) + kAlignment) < requested) { | |
362 V8::FatalProcessOutOfMemory("Zone"); | |
363 } | |
364 | |
365 return RoundUp(requested + sizeof(Segment) + kAlignment, kMinimumSegmentSize); | |
366 } | |
367 | |
279 } // namespace internal | 368 } // namespace internal |
280 } // namespace v8 | 369 } // namespace v8 |
OLD | NEW |