| Index: src/gpu/GrRedBlackTree.h
|
| diff --git a/src/gpu/GrRedBlackTree.h b/src/gpu/GrRedBlackTree.h
|
| index ba03be295036d99319a59872a34ddb60cf30af85..ddee195d3e2cf584d39d20952071e00c26807d8a 100644
|
| --- a/src/gpu/GrRedBlackTree.h
|
| +++ b/src/gpu/GrRedBlackTree.h
|
| @@ -196,12 +196,12 @@ public:
|
| }
|
| bool operator !=(const Iter& i) const { return !(*this == i); }
|
| Iter& operator ++() {
|
| - GrAssert(*this != fTree->end());
|
| + SkASSERT(*this != fTree->end());
|
| fN = SuccessorNode(fN);
|
| return *this;
|
| }
|
| Iter& operator --() {
|
| - GrAssert(*this != fTree->begin());
|
| + SkASSERT(*this != fTree->begin());
|
| if (NULL != fN) {
|
| fN = PredecessorNode(fN);
|
| } else {
|
| @@ -378,7 +378,7 @@ typename GrRedBlackTree<T,C>::Iter GrRedBlackTree<T,C>::insert(const T& t) {
|
| fRoot = x;
|
| x->fColor = kBlack_Color;
|
| x->fParent = NULL;
|
| - GrAssert(1 == fCount);
|
| + SkASSERT(1 == fCount);
|
| return Iter(returnNode, this);
|
| }
|
| p->fChildren[pc] = x;
|
| @@ -387,13 +387,13 @@ typename GrRedBlackTree<T,C>::Iter GrRedBlackTree<T,C>::insert(const T& t) {
|
|
|
| do {
|
| // assumptions at loop start.
|
| - GrAssert(NULL != x);
|
| - GrAssert(kRed_Color == x->fColor);
|
| + SkASSERT(NULL != x);
|
| + SkASSERT(kRed_Color == x->fColor);
|
| // can't have a grandparent but no parent.
|
| - GrAssert(!(NULL != gp && NULL == p));
|
| + SkASSERT(!(NULL != gp && NULL == p));
|
| // make sure pc and gpc are correct
|
| - GrAssert(NULL == p || p->fChildren[pc] == x);
|
| - GrAssert(NULL == gp || gp->fChildren[gpc] == p);
|
| + SkASSERT(NULL == p || p->fChildren[pc] == x);
|
| + SkASSERT(NULL == gp || gp->fChildren[gpc] == p);
|
|
|
| // if x's parent is black then we didn't violate any of the
|
| // red/black properties when we added x as red.
|
| @@ -401,9 +401,9 @@ typename GrRedBlackTree<T,C>::Iter GrRedBlackTree<T,C>::insert(const T& t) {
|
| return Iter(returnNode, this);
|
| }
|
| // gp must be valid because if p was the root then it is black
|
| - GrAssert(NULL != gp);
|
| + SkASSERT(NULL != gp);
|
| // gp must be black since it's child, p, is red.
|
| - GrAssert(kBlack_Color == gp->fColor);
|
| + SkASSERT(kBlack_Color == gp->fColor);
|
|
|
|
|
| // x and its parent are red, violating red-black property.
|
| @@ -419,7 +419,7 @@ typename GrRedBlackTree<T,C>::Iter GrRedBlackTree<T,C>::insert(const T& t) {
|
| p = x->fParent;
|
| if (NULL == p) {
|
| // x (prev gp) is the root, color it black and be done.
|
| - GrAssert(fRoot == x);
|
| + SkASSERT(fRoot == x);
|
| x->fColor = kBlack_Color;
|
| validate();
|
| return Iter(returnNode, this);
|
| @@ -436,10 +436,10 @@ typename GrRedBlackTree<T,C>::Iter GrRedBlackTree<T,C>::insert(const T& t) {
|
| } while (true);
|
| // Here p is red but u is black and we still have to resolve the fact
|
| // that x and p are both red.
|
| - GrAssert(NULL == gp->fChildren[1-gpc] || kBlack_Color == gp->fChildren[1-gpc]->fColor);
|
| - GrAssert(kRed_Color == x->fColor);
|
| - GrAssert(kRed_Color == p->fColor);
|
| - GrAssert(kBlack_Color == gp->fColor);
|
| + SkASSERT(NULL == gp->fChildren[1-gpc] || kBlack_Color == gp->fChildren[1-gpc]->fColor);
|
| + SkASSERT(kRed_Color == x->fColor);
|
| + SkASSERT(kRed_Color == p->fColor);
|
| + SkASSERT(kBlack_Color == gp->fColor);
|
|
|
| // make x be on the same side of p as p is of gp. If it isn't already
|
| // the case then rotate x up to p and swap their labels.
|
| @@ -462,7 +462,7 @@ typename GrRedBlackTree<T,C>::Iter GrRedBlackTree<T,C>::insert(const T& t) {
|
| // gp's child, u, that is not affected we know to be black. gp's new
|
| // child is p's previous child (x's pre-rotation sibling) which must be
|
| // black since p is red.
|
| - GrAssert(NULL == p->fChildren[1-pc] ||
|
| + SkASSERT(NULL == p->fChildren[1-pc] ||
|
| kBlack_Color == p->fChildren[1-pc]->fColor);
|
| // Since gp's two children are black it can become red if p is made
|
| // black. This leaves the black-height of both of p's new subtrees
|
| @@ -491,7 +491,7 @@ void GrRedBlackTree<T,C>::rotateRight(Node* n) {
|
| */
|
| Node* d = n->fParent;
|
| Node* s = n->fChildren[kLeft_Child];
|
| - GrAssert(NULL != s);
|
| + SkASSERT(NULL != s);
|
| Node* b = s->fChildren[kRight_Child];
|
|
|
| if (NULL != d) {
|
| @@ -499,7 +499,7 @@ void GrRedBlackTree<T,C>::rotateRight(Node* n) {
|
| kRight_Child;
|
| d->fChildren[c] = s;
|
| } else {
|
| - GrAssert(fRoot == n);
|
| + SkASSERT(fRoot == n);
|
| fRoot = s;
|
| }
|
| s->fParent = d;
|
| @@ -523,7 +523,7 @@ void GrRedBlackTree<T,C>::rotateLeft(Node* n) {
|
|
|
| Node* d = n->fParent;
|
| Node* s = n->fChildren[kRight_Child];
|
| - GrAssert(NULL != s);
|
| + SkASSERT(NULL != s);
|
| Node* b = s->fChildren[kLeft_Child];
|
|
|
| if (NULL != d) {
|
| @@ -531,7 +531,7 @@ void GrRedBlackTree<T,C>::rotateLeft(Node* n) {
|
| kLeft_Child;
|
| d->fChildren[c] = s;
|
| } else {
|
| - GrAssert(fRoot == n);
|
| + SkASSERT(fRoot == n);
|
| fRoot = s;
|
| }
|
| s->fParent = d;
|
| @@ -552,7 +552,7 @@ void GrRedBlackTree<T,C>::rotateLeft(Node* n) {
|
|
|
| template <typename T, typename C>
|
| typename GrRedBlackTree<T,C>::Node* GrRedBlackTree<T,C>::SuccessorNode(Node* x) {
|
| - GrAssert(NULL != x);
|
| + SkASSERT(NULL != x);
|
| if (NULL != x->fChildren[kRight_Child]) {
|
| x = x->fChildren[kRight_Child];
|
| while (NULL != x->fChildren[kLeft_Child]) {
|
| @@ -568,7 +568,7 @@ typename GrRedBlackTree<T,C>::Node* GrRedBlackTree<T,C>::SuccessorNode(Node* x)
|
|
|
| template <typename T, typename C>
|
| typename GrRedBlackTree<T,C>::Node* GrRedBlackTree<T,C>::PredecessorNode(Node* x) {
|
| - GrAssert(NULL != x);
|
| + SkASSERT(NULL != x);
|
| if (NULL != x->fChildren[kLeft_Child]) {
|
| x = x->fChildren[kLeft_Child];
|
| while (NULL != x->fChildren[kRight_Child]) {
|
| @@ -584,7 +584,7 @@ typename GrRedBlackTree<T,C>::Node* GrRedBlackTree<T,C>::PredecessorNode(Node* x
|
|
|
| template <typename T, typename C>
|
| void GrRedBlackTree<T,C>::deleteAtNode(Node* x) {
|
| - GrAssert(NULL != x);
|
| + SkASSERT(NULL != x);
|
| validate();
|
| --fCount;
|
|
|
| @@ -594,15 +594,15 @@ void GrRedBlackTree<T,C>::deleteAtNode(Node* x) {
|
|
|
| if (hasLeft && hasRight) {
|
| // first and last can't have two children.
|
| - GrAssert(fFirst != x);
|
| - GrAssert(fLast != x);
|
| + SkASSERT(fFirst != x);
|
| + SkASSERT(fLast != x);
|
| // if x is an interior node then we find it's successor
|
| // and swap them.
|
| Node* s = x->fChildren[kRight_Child];
|
| while (NULL != s->fChildren[kLeft_Child]) {
|
| s = s->fChildren[kLeft_Child];
|
| }
|
| - GrAssert(NULL != s);
|
| + SkASSERT(NULL != s);
|
| // this might be expensive relative to swapping node ptrs around.
|
| // depends on T.
|
| x->fItem = s->fItem;
|
| @@ -611,23 +611,23 @@ void GrRedBlackTree<T,C>::deleteAtNode(Node* x) {
|
| } else if (NULL == x->fParent) {
|
| // if x was the root we just replace it with its child and make
|
| // the new root (if the tree is not empty) black.
|
| - GrAssert(fRoot == x);
|
| + SkASSERT(fRoot == x);
|
| fRoot = x->fChildren[c];
|
| if (NULL != fRoot) {
|
| fRoot->fParent = NULL;
|
| fRoot->fColor = kBlack_Color;
|
| if (x == fLast) {
|
| - GrAssert(c == kLeft_Child);
|
| + SkASSERT(c == kLeft_Child);
|
| fLast = fRoot;
|
| } else if (x == fFirst) {
|
| - GrAssert(c == kRight_Child);
|
| + SkASSERT(c == kRight_Child);
|
| fFirst = fRoot;
|
| }
|
| } else {
|
| - GrAssert(fFirst == fLast && x == fFirst);
|
| + SkASSERT(fFirst == fLast && x == fFirst);
|
| fFirst = NULL;
|
| fLast = NULL;
|
| - GrAssert(0 == fCount);
|
| + SkASSERT(0 == fCount);
|
| }
|
| delete x;
|
| validate();
|
| @@ -641,10 +641,10 @@ void GrRedBlackTree<T,C>::deleteAtNode(Node* x) {
|
| if (NULL == x->fChildren[c]) {
|
| if (fLast == x) {
|
| fLast = p;
|
| - GrAssert(p == PredecessorNode(x));
|
| + SkASSERT(p == PredecessorNode(x));
|
| } else if (fFirst == x) {
|
| fFirst = p;
|
| - GrAssert(p == SuccessorNode(x));
|
| + SkASSERT(p == SuccessorNode(x));
|
| }
|
| // x has two implicit black children.
|
| Color xcolor = x->fColor;
|
| @@ -663,8 +663,8 @@ void GrRedBlackTree<T,C>::deleteAtNode(Node* x) {
|
| //s cannot be an implicit black node because the original
|
| // black-height at x was >= 2 and s's black-height must equal the
|
| // initial black height of x.
|
| - GrAssert(NULL != s);
|
| - GrAssert(p == s->fParent);
|
| + SkASSERT(NULL != s);
|
| + SkASSERT(p == s->fParent);
|
|
|
| // assigned in loop
|
| Node* sl;
|
| @@ -680,9 +680,9 @@ void GrRedBlackTree<T,C>::deleteAtNode(Node* x) {
|
| // be real nodes.
|
| // The x side of p has a black-height that is one less than the
|
| // s side. It must be rebalanced.
|
| - GrAssert(NULL != s);
|
| - GrAssert(p == s->fParent);
|
| - GrAssert(NULL == x || x->fParent == p);
|
| + SkASSERT(NULL != s);
|
| + SkASSERT(p == s->fParent);
|
| + SkASSERT(NULL == x || x->fParent == p);
|
|
|
| //sl and sr are s's children, which may be implicit.
|
| sl = s->fChildren[kLeft_Child];
|
| @@ -692,11 +692,11 @@ void GrRedBlackTree<T,C>::deleteAtNode(Node* x) {
|
| // that x's new sibling is black
|
| if (kRed_Color == s->fColor) {
|
| // if s is red then it's parent must be black.
|
| - GrAssert(kBlack_Color == p->fColor);
|
| + SkASSERT(kBlack_Color == p->fColor);
|
| // s's children must also be black since s is red. They can't
|
| // be implicit since s is red and it's black-height is >= 2.
|
| - GrAssert(NULL != sl && kBlack_Color == sl->fColor);
|
| - GrAssert(NULL != sr && kBlack_Color == sr->fColor);
|
| + SkASSERT(NULL != sl && kBlack_Color == sl->fColor);
|
| + SkASSERT(NULL != sr && kBlack_Color == sr->fColor);
|
| p->fColor = kRed_Color;
|
| s->fColor = kBlack_Color;
|
| if (kLeft_Child == pc) {
|
| @@ -710,10 +710,10 @@ void GrRedBlackTree<T,C>::deleteAtNode(Node* x) {
|
| sr = s->fChildren[kRight_Child];
|
| }
|
| // x and s are now both black.
|
| - GrAssert(kBlack_Color == s->fColor);
|
| - GrAssert(NULL == x || kBlack_Color == x->fColor);
|
| - GrAssert(p == s->fParent);
|
| - GrAssert(NULL == x || p == x->fParent);
|
| + SkASSERT(kBlack_Color == s->fColor);
|
| + SkASSERT(NULL == x || kBlack_Color == x->fColor);
|
| + SkASSERT(p == s->fParent);
|
| + SkASSERT(NULL == x || p == x->fParent);
|
|
|
| // when x is deleted its subtree will have reduced black-height.
|
| slRed = (NULL != sl && kRed_Color == sl->fColor);
|
| @@ -733,7 +733,7 @@ void GrRedBlackTree<T,C>::deleteAtNode(Node* x) {
|
| x = p;
|
| p = x->fParent;
|
| if (NULL == p) {
|
| - GrAssert(fRoot == x);
|
| + SkASSERT(fRoot == x);
|
| validate();
|
| return;
|
| } else {
|
| @@ -742,8 +742,8 @@ void GrRedBlackTree<T,C>::deleteAtNode(Node* x) {
|
|
|
| }
|
| s = p->fChildren[1-pc];
|
| - GrAssert(NULL != s);
|
| - GrAssert(p == s->fParent);
|
| + SkASSERT(NULL != s);
|
| + SkASSERT(p == s->fParent);
|
| continue;
|
| } else if (kRed_Color == p->fColor) {
|
| // we can make p black and s red. This balance out p's
|
| @@ -760,7 +760,7 @@ void GrRedBlackTree<T,C>::deleteAtNode(Node* x) {
|
| // if we made it here one or both of sl and sr is red.
|
| // s and x are black. We make sure that a red child is on
|
| // the same side of s as s is of p.
|
| - GrAssert(slRed || srRed);
|
| + SkASSERT(slRed || srRed);
|
| if (kLeft_Child == pc && !srRed) {
|
| s->fColor = kRed_Color;
|
| sl->fColor = kBlack_Color;
|
| @@ -787,11 +787,11 @@ void GrRedBlackTree<T,C>::deleteAtNode(Node* x) {
|
| s->fColor = p->fColor;
|
| p->fColor = kBlack_Color;
|
| if (kLeft_Child == pc) {
|
| - GrAssert(NULL != sr && kRed_Color == sr->fColor);
|
| + SkASSERT(NULL != sr && kRed_Color == sr->fColor);
|
| sr->fColor = kBlack_Color;
|
| rotateLeft(p);
|
| } else {
|
| - GrAssert(NULL != sl && kRed_Color == sl->fColor);
|
| + SkASSERT(NULL != sl && kRed_Color == sl->fColor);
|
| sl->fColor = kBlack_Color;
|
| rotateRight(p);
|
| }
|
| @@ -802,28 +802,28 @@ void GrRedBlackTree<T,C>::deleteAtNode(Node* x) {
|
| // child and c1 be its non-implicit child. c1 must be black because
|
| // red nodes always have two black children. Then the two subtrees
|
| // of x rooted at c0 and c1 will have different black-heights.
|
| - GrAssert(kBlack_Color == x->fColor);
|
| + SkASSERT(kBlack_Color == x->fColor);
|
| // So we know x is black and has one implicit black child, c0. c1
|
| // must be red, otherwise the subtree at c1 will have a different
|
| // black-height than the subtree rooted at c0.
|
| - GrAssert(kRed_Color == x->fChildren[c]->fColor);
|
| + SkASSERT(kRed_Color == x->fChildren[c]->fColor);
|
| // replace x with c1, making c1 black, preserves all red-black tree
|
| // props.
|
| Node* c1 = x->fChildren[c];
|
| if (x == fFirst) {
|
| - GrAssert(c == kRight_Child);
|
| + SkASSERT(c == kRight_Child);
|
| fFirst = c1;
|
| while (NULL != fFirst->fChildren[kLeft_Child]) {
|
| fFirst = fFirst->fChildren[kLeft_Child];
|
| }
|
| - GrAssert(fFirst == SuccessorNode(x));
|
| + SkASSERT(fFirst == SuccessorNode(x));
|
| } else if (x == fLast) {
|
| - GrAssert(c == kLeft_Child);
|
| + SkASSERT(c == kLeft_Child);
|
| fLast = c1;
|
| while (NULL != fLast->fChildren[kRight_Child]) {
|
| fLast = fLast->fChildren[kRight_Child];
|
| }
|
| - GrAssert(fLast == PredecessorNode(x));
|
| + SkASSERT(fLast == PredecessorNode(x));
|
| }
|
| c1->fParent = p;
|
| p->fChildren[pc] = c1;
|
| @@ -847,43 +847,43 @@ void GrRedBlackTree<T,C>::RecursiveDelete(Node* x) {
|
| template <typename T, typename C>
|
| void GrRedBlackTree<T,C>::validate() const {
|
| if (fCount) {
|
| - GrAssert(NULL == fRoot->fParent);
|
| - GrAssert(NULL != fFirst);
|
| - GrAssert(NULL != fLast);
|
| + SkASSERT(NULL == fRoot->fParent);
|
| + SkASSERT(NULL != fFirst);
|
| + SkASSERT(NULL != fLast);
|
|
|
| - GrAssert(kBlack_Color == fRoot->fColor);
|
| + SkASSERT(kBlack_Color == fRoot->fColor);
|
| if (1 == fCount) {
|
| - GrAssert(fFirst == fRoot);
|
| - GrAssert(fLast == fRoot);
|
| - GrAssert(0 == fRoot->fChildren[kLeft_Child]);
|
| - GrAssert(0 == fRoot->fChildren[kRight_Child]);
|
| + SkASSERT(fFirst == fRoot);
|
| + SkASSERT(fLast == fRoot);
|
| + SkASSERT(0 == fRoot->fChildren[kLeft_Child]);
|
| + SkASSERT(0 == fRoot->fChildren[kRight_Child]);
|
| }
|
| } else {
|
| - GrAssert(NULL == fRoot);
|
| - GrAssert(NULL == fFirst);
|
| - GrAssert(NULL == fLast);
|
| + SkASSERT(NULL == fRoot);
|
| + SkASSERT(NULL == fFirst);
|
| + SkASSERT(NULL == fLast);
|
| }
|
| #if DEEP_VALIDATE
|
| int bh;
|
| int count = checkNode(fRoot, &bh);
|
| - GrAssert(count == fCount);
|
| + SkASSERT(count == fCount);
|
| #endif
|
| }
|
|
|
| template <typename T, typename C>
|
| int GrRedBlackTree<T,C>::checkNode(Node* n, int* bh) const {
|
| if (NULL != n) {
|
| - GrAssert(validateChildRelations(n, false));
|
| + SkASSERT(validateChildRelations(n, false));
|
| if (kBlack_Color == n->fColor) {
|
| *bh += 1;
|
| }
|
| - GrAssert(!fComp(n->fItem, fFirst->fItem));
|
| - GrAssert(!fComp(fLast->fItem, n->fItem));
|
| + SkASSERT(!fComp(n->fItem, fFirst->fItem));
|
| + SkASSERT(!fComp(fLast->fItem, n->fItem));
|
| int leftBh = *bh;
|
| int rightBh = *bh;
|
| int cl = checkNode(n->fChildren[kLeft_Child], &leftBh);
|
| int cr = checkNode(n->fChildren[kRight_Child], &rightBh);
|
| - GrAssert(leftBh == rightBh);
|
| + SkASSERT(leftBh == rightBh);
|
| *bh = leftBh;
|
| return 1 + cl + cr;
|
| }
|
| @@ -957,7 +957,7 @@ void GrRedBlackTree<T,C>::UnitTest() {
|
| for (int i = 0; i < 10000; ++i) {
|
| int x = r.nextU()%100;
|
| SkDEBUGCODE(Iter xi = ) tree.insert(x);
|
| - GrAssert(*xi == x);
|
| + SkASSERT(*xi == x);
|
| ++count[x];
|
| }
|
|
|
| @@ -965,11 +965,11 @@ void GrRedBlackTree<T,C>::UnitTest() {
|
| ++count[0];
|
| tree.insert(99);
|
| ++count[99];
|
| - GrAssert(*tree.begin() == 0);
|
| - GrAssert(*tree.last() == 99);
|
| - GrAssert(--(++tree.begin()) == tree.begin());
|
| - GrAssert(--tree.end() == tree.last());
|
| - GrAssert(tree.count() == 10002);
|
| + SkASSERT(*tree.begin() == 0);
|
| + SkASSERT(*tree.last() == 99);
|
| + SkASSERT(--(++tree.begin()) == tree.begin());
|
| + SkASSERT(--tree.end() == tree.last());
|
| + SkASSERT(tree.count() == 10002);
|
|
|
| int c = 0;
|
| // check that we iterate through the correct number of
|
| @@ -978,9 +978,9 @@ void GrRedBlackTree<T,C>::UnitTest() {
|
| Iter b = a;
|
| ++b;
|
| ++c;
|
| - GrAssert(b == tree.end() || *a <= *b);
|
| + SkASSERT(b == tree.end() || *a <= *b);
|
| }
|
| - GrAssert(c == tree.count());
|
| + SkASSERT(c == tree.count());
|
|
|
| // check that the tree reports the correct number of each int
|
| // and that we can iterate through them correctly both forward
|
| @@ -988,14 +988,14 @@ void GrRedBlackTree<T,C>::UnitTest() {
|
| for (int i = 0; i < 100; ++i) {
|
| int c;
|
| c = tree.countOf(i);
|
| - GrAssert(c == count[i]);
|
| + SkASSERT(c == count[i]);
|
| c = 0;
|
| Iter iter = tree.findFirst(i);
|
| while (iter != tree.end() && *iter == i) {
|
| ++c;
|
| ++iter;
|
| }
|
| - GrAssert(count[i] == c);
|
| + SkASSERT(count[i] == c);
|
| c = 0;
|
| iter = tree.findLast(i);
|
| if (iter != tree.end()) {
|
| @@ -1012,7 +1012,7 @@ void GrRedBlackTree<T,C>::UnitTest() {
|
| }
|
| } while (true);
|
| }
|
| - GrAssert(c == count[i]);
|
| + SkASSERT(c == count[i]);
|
| }
|
| // remove all the ints between 25 and 74. Randomly chose to remove
|
| // the first, last, or any entry for each.
|
| @@ -1035,35 +1035,35 @@ void GrRedBlackTree<T,C>::UnitTest() {
|
| }
|
| tree.remove(iter);
|
| }
|
| - GrAssert(0 == count[i]);
|
| - GrAssert(tree.findFirst(i) == tree.end());
|
| - GrAssert(tree.findLast(i) == tree.end());
|
| - GrAssert(tree.find(i) == tree.end());
|
| + SkASSERT(0 == count[i]);
|
| + SkASSERT(tree.findFirst(i) == tree.end());
|
| + SkASSERT(tree.findLast(i) == tree.end());
|
| + SkASSERT(tree.find(i) == tree.end());
|
| }
|
| // remove all of the 0 entries. (tests removing begin())
|
| - GrAssert(*tree.begin() == 0);
|
| - GrAssert(*(--tree.end()) == 99);
|
| + SkASSERT(*tree.begin() == 0);
|
| + SkASSERT(*(--tree.end()) == 99);
|
| while (0 != tree.countOf(0)) {
|
| --count[0];
|
| tree.remove(tree.find(0));
|
| }
|
| - GrAssert(0 == count[0]);
|
| - GrAssert(tree.findFirst(0) == tree.end());
|
| - GrAssert(tree.findLast(0) == tree.end());
|
| - GrAssert(tree.find(0) == tree.end());
|
| - GrAssert(0 < *tree.begin());
|
| + SkASSERT(0 == count[0]);
|
| + SkASSERT(tree.findFirst(0) == tree.end());
|
| + SkASSERT(tree.findLast(0) == tree.end());
|
| + SkASSERT(tree.find(0) == tree.end());
|
| + SkASSERT(0 < *tree.begin());
|
|
|
| // remove all the 99 entries (tests removing last()).
|
| while (0 != tree.countOf(99)) {
|
| --count[99];
|
| tree.remove(tree.find(99));
|
| }
|
| - GrAssert(0 == count[99]);
|
| - GrAssert(tree.findFirst(99) == tree.end());
|
| - GrAssert(tree.findLast(99) == tree.end());
|
| - GrAssert(tree.find(99) == tree.end());
|
| - GrAssert(99 > *(--tree.end()));
|
| - GrAssert(tree.last() == --tree.end());
|
| + SkASSERT(0 == count[99]);
|
| + SkASSERT(tree.findFirst(99) == tree.end());
|
| + SkASSERT(tree.findLast(99) == tree.end());
|
| + SkASSERT(tree.find(99) == tree.end());
|
| + SkASSERT(99 > *(--tree.end()));
|
| + SkASSERT(tree.last() == --tree.end());
|
|
|
| // Make sure iteration still goes through correct number of entries
|
| // and is still sorted correctly.
|
| @@ -1072,21 +1072,21 @@ void GrRedBlackTree<T,C>::UnitTest() {
|
| Iter b = a;
|
| ++b;
|
| ++c;
|
| - GrAssert(b == tree.end() || *a <= *b);
|
| + SkASSERT(b == tree.end() || *a <= *b);
|
| }
|
| - GrAssert(c == tree.count());
|
| + SkASSERT(c == tree.count());
|
|
|
| // repeat check that correct number of each entry is in the tree
|
| // and iterates correctly both forward and backward.
|
| for (int i = 0; i < 100; ++i) {
|
| - GrAssert(tree.countOf(i) == count[i]);
|
| + SkASSERT(tree.countOf(i) == count[i]);
|
| int c = 0;
|
| Iter iter = tree.findFirst(i);
|
| while (iter != tree.end() && *iter == i) {
|
| ++c;
|
| ++iter;
|
| }
|
| - GrAssert(count[i] == c);
|
| + SkASSERT(count[i] == c);
|
| c = 0;
|
| iter = tree.findLast(i);
|
| if (iter != tree.end()) {
|
| @@ -1103,7 +1103,7 @@ void GrRedBlackTree<T,C>::UnitTest() {
|
| }
|
| } while (true);
|
| }
|
| - GrAssert(count[i] == c);
|
| + SkASSERT(count[i] == c);
|
| }
|
|
|
| // remove all entries
|
|
|