Index: src/gpu/GrRedBlackTree.h |
diff --git a/src/gpu/GrRedBlackTree.h b/src/gpu/GrRedBlackTree.h |
index ba03be295036d99319a59872a34ddb60cf30af85..ddee195d3e2cf584d39d20952071e00c26807d8a 100644 |
--- a/src/gpu/GrRedBlackTree.h |
+++ b/src/gpu/GrRedBlackTree.h |
@@ -196,12 +196,12 @@ public: |
} |
bool operator !=(const Iter& i) const { return !(*this == i); } |
Iter& operator ++() { |
- GrAssert(*this != fTree->end()); |
+ SkASSERT(*this != fTree->end()); |
fN = SuccessorNode(fN); |
return *this; |
} |
Iter& operator --() { |
- GrAssert(*this != fTree->begin()); |
+ SkASSERT(*this != fTree->begin()); |
if (NULL != fN) { |
fN = PredecessorNode(fN); |
} else { |
@@ -378,7 +378,7 @@ typename GrRedBlackTree<T,C>::Iter GrRedBlackTree<T,C>::insert(const T& t) { |
fRoot = x; |
x->fColor = kBlack_Color; |
x->fParent = NULL; |
- GrAssert(1 == fCount); |
+ SkASSERT(1 == fCount); |
return Iter(returnNode, this); |
} |
p->fChildren[pc] = x; |
@@ -387,13 +387,13 @@ typename GrRedBlackTree<T,C>::Iter GrRedBlackTree<T,C>::insert(const T& t) { |
do { |
// assumptions at loop start. |
- GrAssert(NULL != x); |
- GrAssert(kRed_Color == x->fColor); |
+ SkASSERT(NULL != x); |
+ SkASSERT(kRed_Color == x->fColor); |
// can't have a grandparent but no parent. |
- GrAssert(!(NULL != gp && NULL == p)); |
+ SkASSERT(!(NULL != gp && NULL == p)); |
// make sure pc and gpc are correct |
- GrAssert(NULL == p || p->fChildren[pc] == x); |
- GrAssert(NULL == gp || gp->fChildren[gpc] == p); |
+ SkASSERT(NULL == p || p->fChildren[pc] == x); |
+ SkASSERT(NULL == gp || gp->fChildren[gpc] == p); |
// if x's parent is black then we didn't violate any of the |
// red/black properties when we added x as red. |
@@ -401,9 +401,9 @@ typename GrRedBlackTree<T,C>::Iter GrRedBlackTree<T,C>::insert(const T& t) { |
return Iter(returnNode, this); |
} |
// gp must be valid because if p was the root then it is black |
- GrAssert(NULL != gp); |
+ SkASSERT(NULL != gp); |
// gp must be black since it's child, p, is red. |
- GrAssert(kBlack_Color == gp->fColor); |
+ SkASSERT(kBlack_Color == gp->fColor); |
// x and its parent are red, violating red-black property. |
@@ -419,7 +419,7 @@ typename GrRedBlackTree<T,C>::Iter GrRedBlackTree<T,C>::insert(const T& t) { |
p = x->fParent; |
if (NULL == p) { |
// x (prev gp) is the root, color it black and be done. |
- GrAssert(fRoot == x); |
+ SkASSERT(fRoot == x); |
x->fColor = kBlack_Color; |
validate(); |
return Iter(returnNode, this); |
@@ -436,10 +436,10 @@ typename GrRedBlackTree<T,C>::Iter GrRedBlackTree<T,C>::insert(const T& t) { |
} while (true); |
// Here p is red but u is black and we still have to resolve the fact |
// that x and p are both red. |
- GrAssert(NULL == gp->fChildren[1-gpc] || kBlack_Color == gp->fChildren[1-gpc]->fColor); |
- GrAssert(kRed_Color == x->fColor); |
- GrAssert(kRed_Color == p->fColor); |
- GrAssert(kBlack_Color == gp->fColor); |
+ SkASSERT(NULL == gp->fChildren[1-gpc] || kBlack_Color == gp->fChildren[1-gpc]->fColor); |
+ SkASSERT(kRed_Color == x->fColor); |
+ SkASSERT(kRed_Color == p->fColor); |
+ SkASSERT(kBlack_Color == gp->fColor); |
// make x be on the same side of p as p is of gp. If it isn't already |
// the case then rotate x up to p and swap their labels. |
@@ -462,7 +462,7 @@ typename GrRedBlackTree<T,C>::Iter GrRedBlackTree<T,C>::insert(const T& t) { |
// gp's child, u, that is not affected we know to be black. gp's new |
// child is p's previous child (x's pre-rotation sibling) which must be |
// black since p is red. |
- GrAssert(NULL == p->fChildren[1-pc] || |
+ SkASSERT(NULL == p->fChildren[1-pc] || |
kBlack_Color == p->fChildren[1-pc]->fColor); |
// Since gp's two children are black it can become red if p is made |
// black. This leaves the black-height of both of p's new subtrees |
@@ -491,7 +491,7 @@ void GrRedBlackTree<T,C>::rotateRight(Node* n) { |
*/ |
Node* d = n->fParent; |
Node* s = n->fChildren[kLeft_Child]; |
- GrAssert(NULL != s); |
+ SkASSERT(NULL != s); |
Node* b = s->fChildren[kRight_Child]; |
if (NULL != d) { |
@@ -499,7 +499,7 @@ void GrRedBlackTree<T,C>::rotateRight(Node* n) { |
kRight_Child; |
d->fChildren[c] = s; |
} else { |
- GrAssert(fRoot == n); |
+ SkASSERT(fRoot == n); |
fRoot = s; |
} |
s->fParent = d; |
@@ -523,7 +523,7 @@ void GrRedBlackTree<T,C>::rotateLeft(Node* n) { |
Node* d = n->fParent; |
Node* s = n->fChildren[kRight_Child]; |
- GrAssert(NULL != s); |
+ SkASSERT(NULL != s); |
Node* b = s->fChildren[kLeft_Child]; |
if (NULL != d) { |
@@ -531,7 +531,7 @@ void GrRedBlackTree<T,C>::rotateLeft(Node* n) { |
kLeft_Child; |
d->fChildren[c] = s; |
} else { |
- GrAssert(fRoot == n); |
+ SkASSERT(fRoot == n); |
fRoot = s; |
} |
s->fParent = d; |
@@ -552,7 +552,7 @@ void GrRedBlackTree<T,C>::rotateLeft(Node* n) { |
template <typename T, typename C> |
typename GrRedBlackTree<T,C>::Node* GrRedBlackTree<T,C>::SuccessorNode(Node* x) { |
- GrAssert(NULL != x); |
+ SkASSERT(NULL != x); |
if (NULL != x->fChildren[kRight_Child]) { |
x = x->fChildren[kRight_Child]; |
while (NULL != x->fChildren[kLeft_Child]) { |
@@ -568,7 +568,7 @@ typename GrRedBlackTree<T,C>::Node* GrRedBlackTree<T,C>::SuccessorNode(Node* x) |
template <typename T, typename C> |
typename GrRedBlackTree<T,C>::Node* GrRedBlackTree<T,C>::PredecessorNode(Node* x) { |
- GrAssert(NULL != x); |
+ SkASSERT(NULL != x); |
if (NULL != x->fChildren[kLeft_Child]) { |
x = x->fChildren[kLeft_Child]; |
while (NULL != x->fChildren[kRight_Child]) { |
@@ -584,7 +584,7 @@ typename GrRedBlackTree<T,C>::Node* GrRedBlackTree<T,C>::PredecessorNode(Node* x |
template <typename T, typename C> |
void GrRedBlackTree<T,C>::deleteAtNode(Node* x) { |
- GrAssert(NULL != x); |
+ SkASSERT(NULL != x); |
validate(); |
--fCount; |
@@ -594,15 +594,15 @@ void GrRedBlackTree<T,C>::deleteAtNode(Node* x) { |
if (hasLeft && hasRight) { |
// first and last can't have two children. |
- GrAssert(fFirst != x); |
- GrAssert(fLast != x); |
+ SkASSERT(fFirst != x); |
+ SkASSERT(fLast != x); |
// if x is an interior node then we find it's successor |
// and swap them. |
Node* s = x->fChildren[kRight_Child]; |
while (NULL != s->fChildren[kLeft_Child]) { |
s = s->fChildren[kLeft_Child]; |
} |
- GrAssert(NULL != s); |
+ SkASSERT(NULL != s); |
// this might be expensive relative to swapping node ptrs around. |
// depends on T. |
x->fItem = s->fItem; |
@@ -611,23 +611,23 @@ void GrRedBlackTree<T,C>::deleteAtNode(Node* x) { |
} else if (NULL == x->fParent) { |
// if x was the root we just replace it with its child and make |
// the new root (if the tree is not empty) black. |
- GrAssert(fRoot == x); |
+ SkASSERT(fRoot == x); |
fRoot = x->fChildren[c]; |
if (NULL != fRoot) { |
fRoot->fParent = NULL; |
fRoot->fColor = kBlack_Color; |
if (x == fLast) { |
- GrAssert(c == kLeft_Child); |
+ SkASSERT(c == kLeft_Child); |
fLast = fRoot; |
} else if (x == fFirst) { |
- GrAssert(c == kRight_Child); |
+ SkASSERT(c == kRight_Child); |
fFirst = fRoot; |
} |
} else { |
- GrAssert(fFirst == fLast && x == fFirst); |
+ SkASSERT(fFirst == fLast && x == fFirst); |
fFirst = NULL; |
fLast = NULL; |
- GrAssert(0 == fCount); |
+ SkASSERT(0 == fCount); |
} |
delete x; |
validate(); |
@@ -641,10 +641,10 @@ void GrRedBlackTree<T,C>::deleteAtNode(Node* x) { |
if (NULL == x->fChildren[c]) { |
if (fLast == x) { |
fLast = p; |
- GrAssert(p == PredecessorNode(x)); |
+ SkASSERT(p == PredecessorNode(x)); |
} else if (fFirst == x) { |
fFirst = p; |
- GrAssert(p == SuccessorNode(x)); |
+ SkASSERT(p == SuccessorNode(x)); |
} |
// x has two implicit black children. |
Color xcolor = x->fColor; |
@@ -663,8 +663,8 @@ void GrRedBlackTree<T,C>::deleteAtNode(Node* x) { |
//s cannot be an implicit black node because the original |
// black-height at x was >= 2 and s's black-height must equal the |
// initial black height of x. |
- GrAssert(NULL != s); |
- GrAssert(p == s->fParent); |
+ SkASSERT(NULL != s); |
+ SkASSERT(p == s->fParent); |
// assigned in loop |
Node* sl; |
@@ -680,9 +680,9 @@ void GrRedBlackTree<T,C>::deleteAtNode(Node* x) { |
// be real nodes. |
// The x side of p has a black-height that is one less than the |
// s side. It must be rebalanced. |
- GrAssert(NULL != s); |
- GrAssert(p == s->fParent); |
- GrAssert(NULL == x || x->fParent == p); |
+ SkASSERT(NULL != s); |
+ SkASSERT(p == s->fParent); |
+ SkASSERT(NULL == x || x->fParent == p); |
//sl and sr are s's children, which may be implicit. |
sl = s->fChildren[kLeft_Child]; |
@@ -692,11 +692,11 @@ void GrRedBlackTree<T,C>::deleteAtNode(Node* x) { |
// that x's new sibling is black |
if (kRed_Color == s->fColor) { |
// if s is red then it's parent must be black. |
- GrAssert(kBlack_Color == p->fColor); |
+ SkASSERT(kBlack_Color == p->fColor); |
// s's children must also be black since s is red. They can't |
// be implicit since s is red and it's black-height is >= 2. |
- GrAssert(NULL != sl && kBlack_Color == sl->fColor); |
- GrAssert(NULL != sr && kBlack_Color == sr->fColor); |
+ SkASSERT(NULL != sl && kBlack_Color == sl->fColor); |
+ SkASSERT(NULL != sr && kBlack_Color == sr->fColor); |
p->fColor = kRed_Color; |
s->fColor = kBlack_Color; |
if (kLeft_Child == pc) { |
@@ -710,10 +710,10 @@ void GrRedBlackTree<T,C>::deleteAtNode(Node* x) { |
sr = s->fChildren[kRight_Child]; |
} |
// x and s are now both black. |
- GrAssert(kBlack_Color == s->fColor); |
- GrAssert(NULL == x || kBlack_Color == x->fColor); |
- GrAssert(p == s->fParent); |
- GrAssert(NULL == x || p == x->fParent); |
+ SkASSERT(kBlack_Color == s->fColor); |
+ SkASSERT(NULL == x || kBlack_Color == x->fColor); |
+ SkASSERT(p == s->fParent); |
+ SkASSERT(NULL == x || p == x->fParent); |
// when x is deleted its subtree will have reduced black-height. |
slRed = (NULL != sl && kRed_Color == sl->fColor); |
@@ -733,7 +733,7 @@ void GrRedBlackTree<T,C>::deleteAtNode(Node* x) { |
x = p; |
p = x->fParent; |
if (NULL == p) { |
- GrAssert(fRoot == x); |
+ SkASSERT(fRoot == x); |
validate(); |
return; |
} else { |
@@ -742,8 +742,8 @@ void GrRedBlackTree<T,C>::deleteAtNode(Node* x) { |
} |
s = p->fChildren[1-pc]; |
- GrAssert(NULL != s); |
- GrAssert(p == s->fParent); |
+ SkASSERT(NULL != s); |
+ SkASSERT(p == s->fParent); |
continue; |
} else if (kRed_Color == p->fColor) { |
// we can make p black and s red. This balance out p's |
@@ -760,7 +760,7 @@ void GrRedBlackTree<T,C>::deleteAtNode(Node* x) { |
// if we made it here one or both of sl and sr is red. |
// s and x are black. We make sure that a red child is on |
// the same side of s as s is of p. |
- GrAssert(slRed || srRed); |
+ SkASSERT(slRed || srRed); |
if (kLeft_Child == pc && !srRed) { |
s->fColor = kRed_Color; |
sl->fColor = kBlack_Color; |
@@ -787,11 +787,11 @@ void GrRedBlackTree<T,C>::deleteAtNode(Node* x) { |
s->fColor = p->fColor; |
p->fColor = kBlack_Color; |
if (kLeft_Child == pc) { |
- GrAssert(NULL != sr && kRed_Color == sr->fColor); |
+ SkASSERT(NULL != sr && kRed_Color == sr->fColor); |
sr->fColor = kBlack_Color; |
rotateLeft(p); |
} else { |
- GrAssert(NULL != sl && kRed_Color == sl->fColor); |
+ SkASSERT(NULL != sl && kRed_Color == sl->fColor); |
sl->fColor = kBlack_Color; |
rotateRight(p); |
} |
@@ -802,28 +802,28 @@ void GrRedBlackTree<T,C>::deleteAtNode(Node* x) { |
// child and c1 be its non-implicit child. c1 must be black because |
// red nodes always have two black children. Then the two subtrees |
// of x rooted at c0 and c1 will have different black-heights. |
- GrAssert(kBlack_Color == x->fColor); |
+ SkASSERT(kBlack_Color == x->fColor); |
// So we know x is black and has one implicit black child, c0. c1 |
// must be red, otherwise the subtree at c1 will have a different |
// black-height than the subtree rooted at c0. |
- GrAssert(kRed_Color == x->fChildren[c]->fColor); |
+ SkASSERT(kRed_Color == x->fChildren[c]->fColor); |
// replace x with c1, making c1 black, preserves all red-black tree |
// props. |
Node* c1 = x->fChildren[c]; |
if (x == fFirst) { |
- GrAssert(c == kRight_Child); |
+ SkASSERT(c == kRight_Child); |
fFirst = c1; |
while (NULL != fFirst->fChildren[kLeft_Child]) { |
fFirst = fFirst->fChildren[kLeft_Child]; |
} |
- GrAssert(fFirst == SuccessorNode(x)); |
+ SkASSERT(fFirst == SuccessorNode(x)); |
} else if (x == fLast) { |
- GrAssert(c == kLeft_Child); |
+ SkASSERT(c == kLeft_Child); |
fLast = c1; |
while (NULL != fLast->fChildren[kRight_Child]) { |
fLast = fLast->fChildren[kRight_Child]; |
} |
- GrAssert(fLast == PredecessorNode(x)); |
+ SkASSERT(fLast == PredecessorNode(x)); |
} |
c1->fParent = p; |
p->fChildren[pc] = c1; |
@@ -847,43 +847,43 @@ void GrRedBlackTree<T,C>::RecursiveDelete(Node* x) { |
template <typename T, typename C> |
void GrRedBlackTree<T,C>::validate() const { |
if (fCount) { |
- GrAssert(NULL == fRoot->fParent); |
- GrAssert(NULL != fFirst); |
- GrAssert(NULL != fLast); |
+ SkASSERT(NULL == fRoot->fParent); |
+ SkASSERT(NULL != fFirst); |
+ SkASSERT(NULL != fLast); |
- GrAssert(kBlack_Color == fRoot->fColor); |
+ SkASSERT(kBlack_Color == fRoot->fColor); |
if (1 == fCount) { |
- GrAssert(fFirst == fRoot); |
- GrAssert(fLast == fRoot); |
- GrAssert(0 == fRoot->fChildren[kLeft_Child]); |
- GrAssert(0 == fRoot->fChildren[kRight_Child]); |
+ SkASSERT(fFirst == fRoot); |
+ SkASSERT(fLast == fRoot); |
+ SkASSERT(0 == fRoot->fChildren[kLeft_Child]); |
+ SkASSERT(0 == fRoot->fChildren[kRight_Child]); |
} |
} else { |
- GrAssert(NULL == fRoot); |
- GrAssert(NULL == fFirst); |
- GrAssert(NULL == fLast); |
+ SkASSERT(NULL == fRoot); |
+ SkASSERT(NULL == fFirst); |
+ SkASSERT(NULL == fLast); |
} |
#if DEEP_VALIDATE |
int bh; |
int count = checkNode(fRoot, &bh); |
- GrAssert(count == fCount); |
+ SkASSERT(count == fCount); |
#endif |
} |
template <typename T, typename C> |
int GrRedBlackTree<T,C>::checkNode(Node* n, int* bh) const { |
if (NULL != n) { |
- GrAssert(validateChildRelations(n, false)); |
+ SkASSERT(validateChildRelations(n, false)); |
if (kBlack_Color == n->fColor) { |
*bh += 1; |
} |
- GrAssert(!fComp(n->fItem, fFirst->fItem)); |
- GrAssert(!fComp(fLast->fItem, n->fItem)); |
+ SkASSERT(!fComp(n->fItem, fFirst->fItem)); |
+ SkASSERT(!fComp(fLast->fItem, n->fItem)); |
int leftBh = *bh; |
int rightBh = *bh; |
int cl = checkNode(n->fChildren[kLeft_Child], &leftBh); |
int cr = checkNode(n->fChildren[kRight_Child], &rightBh); |
- GrAssert(leftBh == rightBh); |
+ SkASSERT(leftBh == rightBh); |
*bh = leftBh; |
return 1 + cl + cr; |
} |
@@ -957,7 +957,7 @@ void GrRedBlackTree<T,C>::UnitTest() { |
for (int i = 0; i < 10000; ++i) { |
int x = r.nextU()%100; |
SkDEBUGCODE(Iter xi = ) tree.insert(x); |
- GrAssert(*xi == x); |
+ SkASSERT(*xi == x); |
++count[x]; |
} |
@@ -965,11 +965,11 @@ void GrRedBlackTree<T,C>::UnitTest() { |
++count[0]; |
tree.insert(99); |
++count[99]; |
- GrAssert(*tree.begin() == 0); |
- GrAssert(*tree.last() == 99); |
- GrAssert(--(++tree.begin()) == tree.begin()); |
- GrAssert(--tree.end() == tree.last()); |
- GrAssert(tree.count() == 10002); |
+ SkASSERT(*tree.begin() == 0); |
+ SkASSERT(*tree.last() == 99); |
+ SkASSERT(--(++tree.begin()) == tree.begin()); |
+ SkASSERT(--tree.end() == tree.last()); |
+ SkASSERT(tree.count() == 10002); |
int c = 0; |
// check that we iterate through the correct number of |
@@ -978,9 +978,9 @@ void GrRedBlackTree<T,C>::UnitTest() { |
Iter b = a; |
++b; |
++c; |
- GrAssert(b == tree.end() || *a <= *b); |
+ SkASSERT(b == tree.end() || *a <= *b); |
} |
- GrAssert(c == tree.count()); |
+ SkASSERT(c == tree.count()); |
// check that the tree reports the correct number of each int |
// and that we can iterate through them correctly both forward |
@@ -988,14 +988,14 @@ void GrRedBlackTree<T,C>::UnitTest() { |
for (int i = 0; i < 100; ++i) { |
int c; |
c = tree.countOf(i); |
- GrAssert(c == count[i]); |
+ SkASSERT(c == count[i]); |
c = 0; |
Iter iter = tree.findFirst(i); |
while (iter != tree.end() && *iter == i) { |
++c; |
++iter; |
} |
- GrAssert(count[i] == c); |
+ SkASSERT(count[i] == c); |
c = 0; |
iter = tree.findLast(i); |
if (iter != tree.end()) { |
@@ -1012,7 +1012,7 @@ void GrRedBlackTree<T,C>::UnitTest() { |
} |
} while (true); |
} |
- GrAssert(c == count[i]); |
+ SkASSERT(c == count[i]); |
} |
// remove all the ints between 25 and 74. Randomly chose to remove |
// the first, last, or any entry for each. |
@@ -1035,35 +1035,35 @@ void GrRedBlackTree<T,C>::UnitTest() { |
} |
tree.remove(iter); |
} |
- GrAssert(0 == count[i]); |
- GrAssert(tree.findFirst(i) == tree.end()); |
- GrAssert(tree.findLast(i) == tree.end()); |
- GrAssert(tree.find(i) == tree.end()); |
+ SkASSERT(0 == count[i]); |
+ SkASSERT(tree.findFirst(i) == tree.end()); |
+ SkASSERT(tree.findLast(i) == tree.end()); |
+ SkASSERT(tree.find(i) == tree.end()); |
} |
// remove all of the 0 entries. (tests removing begin()) |
- GrAssert(*tree.begin() == 0); |
- GrAssert(*(--tree.end()) == 99); |
+ SkASSERT(*tree.begin() == 0); |
+ SkASSERT(*(--tree.end()) == 99); |
while (0 != tree.countOf(0)) { |
--count[0]; |
tree.remove(tree.find(0)); |
} |
- GrAssert(0 == count[0]); |
- GrAssert(tree.findFirst(0) == tree.end()); |
- GrAssert(tree.findLast(0) == tree.end()); |
- GrAssert(tree.find(0) == tree.end()); |
- GrAssert(0 < *tree.begin()); |
+ SkASSERT(0 == count[0]); |
+ SkASSERT(tree.findFirst(0) == tree.end()); |
+ SkASSERT(tree.findLast(0) == tree.end()); |
+ SkASSERT(tree.find(0) == tree.end()); |
+ SkASSERT(0 < *tree.begin()); |
// remove all the 99 entries (tests removing last()). |
while (0 != tree.countOf(99)) { |
--count[99]; |
tree.remove(tree.find(99)); |
} |
- GrAssert(0 == count[99]); |
- GrAssert(tree.findFirst(99) == tree.end()); |
- GrAssert(tree.findLast(99) == tree.end()); |
- GrAssert(tree.find(99) == tree.end()); |
- GrAssert(99 > *(--tree.end())); |
- GrAssert(tree.last() == --tree.end()); |
+ SkASSERT(0 == count[99]); |
+ SkASSERT(tree.findFirst(99) == tree.end()); |
+ SkASSERT(tree.findLast(99) == tree.end()); |
+ SkASSERT(tree.find(99) == tree.end()); |
+ SkASSERT(99 > *(--tree.end())); |
+ SkASSERT(tree.last() == --tree.end()); |
// Make sure iteration still goes through correct number of entries |
// and is still sorted correctly. |
@@ -1072,21 +1072,21 @@ void GrRedBlackTree<T,C>::UnitTest() { |
Iter b = a; |
++b; |
++c; |
- GrAssert(b == tree.end() || *a <= *b); |
+ SkASSERT(b == tree.end() || *a <= *b); |
} |
- GrAssert(c == tree.count()); |
+ SkASSERT(c == tree.count()); |
// repeat check that correct number of each entry is in the tree |
// and iterates correctly both forward and backward. |
for (int i = 0; i < 100; ++i) { |
- GrAssert(tree.countOf(i) == count[i]); |
+ SkASSERT(tree.countOf(i) == count[i]); |
int c = 0; |
Iter iter = tree.findFirst(i); |
while (iter != tree.end() && *iter == i) { |
++c; |
++iter; |
} |
- GrAssert(count[i] == c); |
+ SkASSERT(count[i] == c); |
c = 0; |
iter = tree.findLast(i); |
if (iter != tree.end()) { |
@@ -1103,7 +1103,7 @@ void GrRedBlackTree<T,C>::UnitTest() { |
} |
} while (true); |
} |
- GrAssert(count[i] == c); |
+ SkASSERT(count[i] == c); |
} |
// remove all entries |