| OLD | NEW |
| 1 /* | 1 /* |
| 2 * Copyright 2015 Google Inc. | 2 * Copyright 2015 Google Inc. |
| 3 * | 3 * |
| 4 * Use of this source code is governed by a BSD-style license that can be | 4 * Use of this source code is governed by a BSD-style license that can be |
| 5 * found in the LICENSE file. | 5 * found in the LICENSE file. |
| 6 */ | 6 */ |
| 7 | 7 |
| 8 #include "GrAAConvexTessellator.h" | 8 #include "GrAAConvexTessellator.h" |
| 9 #include "SkCanvas.h" | 9 #include "SkCanvas.h" |
| 10 #include "SkPath.h" | 10 #include "SkPath.h" |
| (...skipping 11 matching lines...) Expand all Loading... |
| 22 static const SkScalar kCloseSqd = SkScalarMul(kClose, kClose); | 22 static const SkScalar kCloseSqd = SkScalarMul(kClose, kClose); |
| 23 | 23 |
| 24 // tesselation tolerance values, in device space pixels | 24 // tesselation tolerance values, in device space pixels |
| 25 static const SkScalar kQuadTolerance = 0.2f; | 25 static const SkScalar kQuadTolerance = 0.2f; |
| 26 static const SkScalar kCubicTolerance = 0.2f; | 26 static const SkScalar kCubicTolerance = 0.2f; |
| 27 static const SkScalar kConicTolerance = 0.5f; | 27 static const SkScalar kConicTolerance = 0.5f; |
| 28 | 28 |
| 29 // dot product below which we use a round cap between curve segments | 29 // dot product below which we use a round cap between curve segments |
| 30 static const SkScalar kRoundCapThreshold = 0.8f; | 30 static const SkScalar kRoundCapThreshold = 0.8f; |
| 31 | 31 |
| 32 // dot product above which we consider two adjacent curves to be part of the "sa
me" curve |
| 33 static const SkScalar kCurveConnectionThreshold = 0.95f; |
| 34 |
| 32 static SkScalar intersect(const SkPoint& p0, const SkPoint& n0, | 35 static SkScalar intersect(const SkPoint& p0, const SkPoint& n0, |
| 33 const SkPoint& p1, const SkPoint& n1) { | 36 const SkPoint& p1, const SkPoint& n1) { |
| 34 const SkPoint v = p1 - p0; | 37 const SkPoint v = p1 - p0; |
| 35 SkScalar perpDot = n0.fX * n1.fY - n0.fY * n1.fX; | 38 SkScalar perpDot = n0.fX * n1.fY - n0.fY * n1.fX; |
| 36 return (v.fX * n1.fY - v.fY * n1.fX) / perpDot; | 39 return (v.fX * n1.fY - v.fY * n1.fX) / perpDot; |
| 37 } | 40 } |
| 38 | 41 |
| 39 // This is a special case version of intersect where we have the vector | 42 // This is a special case version of intersect where we have the vector |
| 40 // perpendicular to the second line rather than the vector parallel to it. | 43 // perpendicular to the second line rather than the vector parallel to it. |
| 41 static SkScalar perp_intersect(const SkPoint& p0, const SkPoint& n0, | 44 static SkScalar perp_intersect(const SkPoint& p0, const SkPoint& n0, |
| (...skipping 11 matching lines...) Expand all Loading... |
| 53 static SkScalar abs_dist_from_line(const SkPoint& p0, const SkVector& v, const S
kPoint& test) { | 56 static SkScalar abs_dist_from_line(const SkPoint& p0, const SkVector& v, const S
kPoint& test) { |
| 54 SkPoint testV = test - p0; | 57 SkPoint testV = test - p0; |
| 55 SkScalar dist = testV.fX * v.fY - testV.fY * v.fX; | 58 SkScalar dist = testV.fX * v.fY - testV.fY * v.fX; |
| 56 return SkScalarAbs(dist); | 59 return SkScalarAbs(dist); |
| 57 } | 60 } |
| 58 | 61 |
| 59 int GrAAConvexTessellator::addPt(const SkPoint& pt, | 62 int GrAAConvexTessellator::addPt(const SkPoint& pt, |
| 60 SkScalar depth, | 63 SkScalar depth, |
| 61 SkScalar coverage, | 64 SkScalar coverage, |
| 62 bool movable, | 65 bool movable, |
| 63 bool isCurve) { | 66 CurveState curve) { |
| 64 this->validate(); | 67 this->validate(); |
| 65 | 68 |
| 66 int index = fPts.count(); | 69 int index = fPts.count(); |
| 67 *fPts.push() = pt; | 70 *fPts.push() = pt; |
| 68 *fCoverages.push() = coverage; | 71 *fCoverages.push() = coverage; |
| 69 *fMovable.push() = movable; | 72 *fMovable.push() = movable; |
| 70 *fIsCurve.push() = isCurve; | 73 *fCurveState.push() = curve; |
| 71 | 74 |
| 72 this->validate(); | 75 this->validate(); |
| 73 return index; | 76 return index; |
| 74 } | 77 } |
| 75 | 78 |
| 76 void GrAAConvexTessellator::popLastPt() { | 79 void GrAAConvexTessellator::popLastPt() { |
| 77 this->validate(); | 80 this->validate(); |
| 78 | 81 |
| 79 fPts.pop(); | 82 fPts.pop(); |
| 80 fCoverages.pop(); | 83 fCoverages.pop(); |
| (...skipping 58 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
| 139 if (!fBisectors[cur].normalize()) { | 142 if (!fBisectors[cur].normalize()) { |
| 140 SkASSERT(SkPoint::kLeft_Side == fSide || SkPoint::kRight_Side == fSi
de); | 143 SkASSERT(SkPoint::kLeft_Side == fSide || SkPoint::kRight_Side == fSi
de); |
| 141 fBisectors[cur].setOrthog(fNorms[cur], (SkPoint::Side)-fSide); | 144 fBisectors[cur].setOrthog(fNorms[cur], (SkPoint::Side)-fSide); |
| 142 SkVector other; | 145 SkVector other; |
| 143 other.setOrthog(fNorms[prev], fSide); | 146 other.setOrthog(fNorms[prev], fSide); |
| 144 fBisectors[cur] += other; | 147 fBisectors[cur] += other; |
| 145 SkAssertResult(fBisectors[cur].normalize()); | 148 SkAssertResult(fBisectors[cur].normalize()); |
| 146 } else { | 149 } else { |
| 147 fBisectors[cur].negate(); // make the bisector face in | 150 fBisectors[cur].negate(); // make the bisector face in |
| 148 } | 151 } |
| 152 if (fCurveState[prev] == kIndeterminate_CurveState) { |
| 153 if (fCurveState[cur] == kSharp_CurveState) { |
| 154 fCurveState[prev] = kSharp_CurveState; |
| 155 } else { |
| 156 if (SkScalarAbs(fNorms[cur].dot(fNorms[prev])) > kCurveConnectio
nThreshold) { |
| 157 fCurveState[prev] = kCurve_CurveState; |
| 158 fCurveState[cur] = kCurve_CurveState; |
| 159 } else { |
| 160 fCurveState[prev] = kSharp_CurveState; |
| 161 fCurveState[cur] = kSharp_CurveState; |
| 162 } |
| 163 } |
| 164 } |
| 149 | 165 |
| 150 SkASSERT(SkScalarNearlyEqual(1.0f, fBisectors[cur].length())); | 166 SkASSERT(SkScalarNearlyEqual(1.0f, fBisectors[cur].length())); |
| 151 } | 167 } |
| 152 } | 168 } |
| 153 | 169 |
| 154 // Create as many rings as we need to (up to a predefined limit) to reach the sp
ecified target | 170 // Create as many rings as we need to (up to a predefined limit) to reach the sp
ecified target |
| 155 // depth. If we are in fill mode, the final ring will automatically be fanned. | 171 // depth. If we are in fill mode, the final ring will automatically be fanned. |
| 156 bool GrAAConvexTessellator::createInsetRings(Ring& previousRing, SkScalar initia
lDepth, | 172 bool GrAAConvexTessellator::createInsetRings(Ring& previousRing, SkScalar initia
lDepth, |
| 157 SkScalar initialCoverage, SkScalar
targetDepth, | 173 SkScalar initialCoverage, SkScalar
targetDepth, |
| 158 SkScalar targetCoverage, Ring** fin
alRing) { | 174 SkScalar targetCoverage, Ring** fin
alRing) { |
| (...skipping 138 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
| 297 | 313 |
| 298 // TODO: is there a faster way to extract the points from the path? Perhaps | 314 // TODO: is there a faster way to extract the points from the path? Perhaps |
| 299 // get all the points via a new entry point, transform them all in bulk | 315 // get all the points via a new entry point, transform them all in bulk |
| 300 // and then walk them to find duplicates? | 316 // and then walk them to find duplicates? |
| 301 SkPath::Iter iter(path, true); | 317 SkPath::Iter iter(path, true); |
| 302 SkPoint pts[4]; | 318 SkPoint pts[4]; |
| 303 SkPath::Verb verb; | 319 SkPath::Verb verb; |
| 304 while ((verb = iter.next(pts)) != SkPath::kDone_Verb) { | 320 while ((verb = iter.next(pts)) != SkPath::kDone_Verb) { |
| 305 switch (verb) { | 321 switch (verb) { |
| 306 case SkPath::kLine_Verb: | 322 case SkPath::kLine_Verb: |
| 307 this->lineTo(m, pts[1], false); | 323 this->lineTo(m, pts[1], kSharp_CurveState); |
| 308 break; | 324 break; |
| 309 case SkPath::kQuad_Verb: | 325 case SkPath::kQuad_Verb: |
| 310 this->quadTo(m, pts); | 326 this->quadTo(m, pts); |
| 311 break; | 327 break; |
| 312 case SkPath::kCubic_Verb: | 328 case SkPath::kCubic_Verb: |
| 313 this->cubicTo(m, pts); | 329 this->cubicTo(m, pts); |
| 314 break; | 330 break; |
| 315 case SkPath::kConic_Verb: | 331 case SkPath::kConic_Verb: |
| 316 this->conicTo(m, pts, iter.conicWeight()); | 332 this->conicTo(m, pts, iter.conicWeight()); |
| 317 break; | 333 break; |
| (...skipping 136 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
| 454 SkPoint perp1 = normal1; | 470 SkPoint perp1 = normal1; |
| 455 perp1.scale(outset); | 471 perp1.scale(outset); |
| 456 perp1 += this->point(originalIdx); | 472 perp1 += this->point(originalIdx); |
| 457 | 473 |
| 458 // The perpendicular point for the next edge. | 474 // The perpendicular point for the next edge. |
| 459 SkPoint normal2 = previousRing.norm(cur); | 475 SkPoint normal2 = previousRing.norm(cur); |
| 460 SkPoint perp2 = normal2; | 476 SkPoint perp2 = normal2; |
| 461 perp2.scale(outset); | 477 perp2.scale(outset); |
| 462 perp2 += fPts[originalIdx]; | 478 perp2 += fPts[originalIdx]; |
| 463 | 479 |
| 464 bool isCurve = fIsCurve[originalIdx]; | 480 CurveState curve = fCurveState[originalIdx]; |
| 465 | 481 |
| 466 // We know it isn't a duplicate of the prior point (since it and this | 482 // We know it isn't a duplicate of the prior point (since it and this |
| 467 // one are just perpendicular offsets from the non-merged polygon points
) | 483 // one are just perpendicular offsets from the non-merged polygon points
) |
| 468 int perp1Idx = this->addPt(perp1, -outset, coverage, false, isCurve); | 484 int perp1Idx = this->addPt(perp1, -outset, coverage, false, curve); |
| 469 nextRing->addIdx(perp1Idx, originalIdx); | 485 nextRing->addIdx(perp1Idx, originalIdx); |
| 470 | 486 |
| 471 int perp2Idx; | 487 int perp2Idx; |
| 472 // For very shallow angles all the corner points could fuse. | 488 // For very shallow angles all the corner points could fuse. |
| 473 if (duplicate_pt(perp2, this->point(perp1Idx))) { | 489 if (duplicate_pt(perp2, this->point(perp1Idx))) { |
| 474 perp2Idx = perp1Idx; | 490 perp2Idx = perp1Idx; |
| 475 } else { | 491 } else { |
| 476 perp2Idx = this->addPt(perp2, -outset, coverage, false, isCurve); | 492 perp2Idx = this->addPt(perp2, -outset, coverage, false, curve); |
| 477 } | 493 } |
| 478 | 494 |
| 479 if (perp2Idx != perp1Idx) { | 495 if (perp2Idx != perp1Idx) { |
| 480 if (isCurve) { | 496 if (curve == kCurve_CurveState) { |
| 481 // bevel or round depending upon curvature | 497 // bevel or round depending upon curvature |
| 482 SkScalar dotProd = normal1.dot(normal2); | 498 SkScalar dotProd = normal1.dot(normal2); |
| 483 if (dotProd < kRoundCapThreshold) { | 499 if (dotProd < kRoundCapThreshold) { |
| 484 // Currently we "round" by creating a single extra point, wh
ich produces | 500 // Currently we "round" by creating a single extra point, wh
ich produces |
| 485 // good results for common cases. For thick strokes with hig
h curvature, we will | 501 // good results for common cases. For thick strokes with hig
h curvature, we will |
| 486 // need to add more points; for the time being we simply fal
l back to software | 502 // need to add more points; for the time being we simply fal
l back to software |
| 487 // rendering for thick strokes. | 503 // rendering for thick strokes. |
| 488 SkPoint miter = previousRing.bisector(cur); | 504 SkPoint miter = previousRing.bisector(cur); |
| 489 miter.setLength(-outset); | 505 miter.setLength(-outset); |
| 490 miter += fPts[originalIdx]; | 506 miter += fPts[originalIdx]; |
| 491 | 507 |
| 492 // For very shallow angles all the corner points could fuse | 508 // For very shallow angles all the corner points could fuse |
| 493 if (!duplicate_pt(miter, this->point(perp1Idx))) { | 509 if (!duplicate_pt(miter, this->point(perp1Idx))) { |
| 494 int miterIdx; | 510 int miterIdx; |
| 495 miterIdx = this->addPt(miter, -outset, coverage, false,
false); | 511 miterIdx = this->addPt(miter, -outset, coverage, false,
kSharp_CurveState); |
| 496 nextRing->addIdx(miterIdx, originalIdx); | 512 nextRing->addIdx(miterIdx, originalIdx); |
| 497 // The two triangles for the corner | 513 // The two triangles for the corner |
| 498 this->addTri(originalIdx, perp1Idx, miterIdx); | 514 this->addTri(originalIdx, perp1Idx, miterIdx); |
| 499 this->addTri(originalIdx, miterIdx, perp2Idx); | 515 this->addTri(originalIdx, miterIdx, perp2Idx); |
| 500 } | 516 } |
| 501 } else { | 517 } else { |
| 502 this->addTri(originalIdx, perp1Idx, perp2Idx); | 518 this->addTri(originalIdx, perp1Idx, perp2Idx); |
| 503 } | 519 } |
| 504 } else { | 520 } else { |
| 505 switch (fJoin) { | 521 switch (fJoin) { |
| 506 case SkPaint::Join::kMiter_Join: { | 522 case SkPaint::Join::kMiter_Join: { |
| 507 // The bisector outset point | 523 // The bisector outset point |
| 508 SkPoint miter = previousRing.bisector(cur); | 524 SkPoint miter = previousRing.bisector(cur); |
| 509 SkScalar dotProd = normal1.dot(normal2); | 525 SkScalar dotProd = normal1.dot(normal2); |
| 510 SkScalar sinHalfAngleSq = SkScalarHalf(SK_Scalar1 + dotP
rod); | 526 SkScalar sinHalfAngleSq = SkScalarHalf(SK_Scalar1 + dotP
rod); |
| 511 SkScalar lengthSq = outsetSq / sinHalfAngleSq; | 527 SkScalar lengthSq = outsetSq / sinHalfAngleSq; |
| 512 if (lengthSq > miterLimitSq) { | 528 if (lengthSq > miterLimitSq) { |
| 513 // just bevel it | 529 // just bevel it |
| 514 this->addTri(originalIdx, perp1Idx, perp2Idx); | 530 this->addTri(originalIdx, perp1Idx, perp2Idx); |
| 515 break; | 531 break; |
| 516 } | 532 } |
| 517 miter.setLength(-SkScalarSqrt(lengthSq)); | 533 miter.setLength(-SkScalarSqrt(lengthSq)); |
| 518 miter += fPts[originalIdx]; | 534 miter += fPts[originalIdx]; |
| 519 | 535 |
| 520 // For very shallow angles all the corner points could f
use | 536 // For very shallow angles all the corner points could f
use |
| 521 if (!duplicate_pt(miter, this->point(perp1Idx))) { | 537 if (!duplicate_pt(miter, this->point(perp1Idx))) { |
| 522 int miterIdx; | 538 int miterIdx; |
| 523 miterIdx = this->addPt(miter, -outset, coverage, fal
se, false); | 539 miterIdx = this->addPt(miter, -outset, coverage, fal
se, |
| 540 kSharp_CurveState); |
| 524 nextRing->addIdx(miterIdx, originalIdx); | 541 nextRing->addIdx(miterIdx, originalIdx); |
| 525 // The two triangles for the corner | 542 // The two triangles for the corner |
| 526 this->addTri(originalIdx, perp1Idx, miterIdx); | 543 this->addTri(originalIdx, perp1Idx, miterIdx); |
| 527 this->addTri(originalIdx, miterIdx, perp2Idx); | 544 this->addTri(originalIdx, miterIdx, perp2Idx); |
| 528 } | 545 } |
| 529 break; | 546 break; |
| 530 } | 547 } |
| 531 case SkPaint::Join::kBevel_Join: | 548 case SkPaint::Join::kBevel_Join: |
| 532 this->addTri(originalIdx, perp1Idx, perp2Idx); | 549 this->addTri(originalIdx, perp1Idx, perp2Idx); |
| 533 break; | 550 break; |
| (...skipping 163 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
| 697 | 714 |
| 698 // Fold the new ring's points into the global pool | 715 // Fold the new ring's points into the global pool |
| 699 for (int i = 0; i < fCandidateVerts.numPts(); ++i) { | 716 for (int i = 0; i < fCandidateVerts.numPts(); ++i) { |
| 700 int newIdx; | 717 int newIdx; |
| 701 if (fCandidateVerts.needsToBeNew(i) || forceNew) { | 718 if (fCandidateVerts.needsToBeNew(i) || forceNew) { |
| 702 // if the originating index is still valid then this point wasn't | 719 // if the originating index is still valid then this point wasn't |
| 703 // fused (and is thus movable) | 720 // fused (and is thus movable) |
| 704 SkScalar coverage = compute_coverage(depth, initialDepth, initialCov
erage, | 721 SkScalar coverage = compute_coverage(depth, initialDepth, initialCov
erage, |
| 705 targetDepth, targetCoverage); | 722 targetDepth, targetCoverage); |
| 706 newIdx = this->addPt(fCandidateVerts.point(i), depth, coverage, | 723 newIdx = this->addPt(fCandidateVerts.point(i), depth, coverage, |
| 707 fCandidateVerts.originatingIdx(i) != -1, false)
; | 724 fCandidateVerts.originatingIdx(i) != -1, kSharp
_CurveState); |
| 708 } else { | 725 } else { |
| 709 SkASSERT(fCandidateVerts.originatingIdx(i) != -1); | 726 SkASSERT(fCandidateVerts.originatingIdx(i) != -1); |
| 710 this->updatePt(fCandidateVerts.originatingIdx(i), fCandidateVerts.po
int(i), depth, | 727 this->updatePt(fCandidateVerts.originatingIdx(i), fCandidateVerts.po
int(i), depth, |
| 711 targetCoverage); | 728 targetCoverage); |
| 712 newIdx = fCandidateVerts.originatingIdx(i); | 729 newIdx = fCandidateVerts.originatingIdx(i); |
| 713 } | 730 } |
| 714 | 731 |
| 715 nextRing->addIdx(newIdx, fCandidateVerts.origEdge(i)); | 732 nextRing->addIdx(newIdx, fCandidateVerts.origEdge(i)); |
| 716 } | 733 } |
| 717 | 734 |
| (...skipping 98 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
| 816 maxDot = 0; | 833 maxDot = 0; |
| 817 } | 834 } |
| 818 if (SkScalarNearlyEqual(minDot, 0.0f, 0.005f)) { | 835 if (SkScalarNearlyEqual(minDot, 0.0f, 0.005f)) { |
| 819 minDot = 0; | 836 minDot = 0; |
| 820 } | 837 } |
| 821 return (maxDot >= 0.0f) == (minDot >= 0.0f); | 838 return (maxDot >= 0.0f) == (minDot >= 0.0f); |
| 822 } | 839 } |
| 823 | 840 |
| 824 #endif | 841 #endif |
| 825 | 842 |
| 826 void GrAAConvexTessellator::lineTo(SkPoint p, bool isCurve) { | 843 void GrAAConvexTessellator::lineTo(SkPoint p, CurveState curve) { |
| 827 if (this->numPts() > 0 && duplicate_pt(p, this->lastPoint())) { | 844 if (this->numPts() > 0 && duplicate_pt(p, this->lastPoint())) { |
| 828 return; | 845 return; |
| 829 } | 846 } |
| 830 | 847 |
| 831 SkASSERT(fPts.count() <= 1 || fPts.count() == fNorms.count()+1); | 848 SkASSERT(fPts.count() <= 1 || fPts.count() == fNorms.count()+1); |
| 832 if (this->numPts() >= 2 && | 849 if (this->numPts() >= 2 && |
| 833 abs_dist_from_line(fPts.top(), fNorms.top(), p) < kClose) { | 850 abs_dist_from_line(fPts.top(), fNorms.top(), p) < kClose) { |
| 834 // The old last point is on the line from the second to last to the new
point | 851 // The old last point is on the line from the second to last to the new
point |
| 835 this->popLastPt(); | 852 this->popLastPt(); |
| 836 fNorms.pop(); | 853 fNorms.pop(); |
| 837 fIsCurve.pop(); | 854 fCurveState.pop(); |
| 838 // double-check that the new last point is not a duplicate of the new po
int. In an ideal | 855 // double-check that the new last point is not a duplicate of the new po
int. In an ideal |
| 839 // world this wouldn't be necessary (since it's only possible for non-co
nvex paths), but | 856 // world this wouldn't be necessary (since it's only possible for non-co
nvex paths), but |
| 840 // floating point precision issues mean it can actually happen on paths
that were determined | 857 // floating point precision issues mean it can actually happen on paths
that were determined |
| 841 // to be convex. | 858 // to be convex. |
| 842 if (duplicate_pt(p, this->lastPoint())) { | 859 if (duplicate_pt(p, this->lastPoint())) { |
| 843 return; | 860 return; |
| 844 } | 861 } |
| 845 } | 862 } |
| 846 SkScalar initialRingCoverage = fStrokeWidth < 0.0f ? 0.5f : 1.0f; | 863 SkScalar initialRingCoverage = fStrokeWidth < 0.0f ? 0.5f : 1.0f; |
| 847 this->addPt(p, 0.0f, initialRingCoverage, false, isCurve); | 864 this->addPt(p, 0.0f, initialRingCoverage, false, curve); |
| 848 if (this->numPts() > 1) { | 865 if (this->numPts() > 1) { |
| 849 *fNorms.push() = fPts.top() - fPts[fPts.count()-2]; | 866 *fNorms.push() = fPts.top() - fPts[fPts.count()-2]; |
| 850 SkDEBUGCODE(SkScalar len =) SkPoint::Normalize(&fNorms.top()); | 867 SkDEBUGCODE(SkScalar len =) SkPoint::Normalize(&fNorms.top()); |
| 851 SkASSERT(len > 0.0f); | 868 SkASSERT(len > 0.0f); |
| 852 SkASSERT(SkScalarNearlyEqual(1.0f, fNorms.top().length())); | 869 SkASSERT(SkScalarNearlyEqual(1.0f, fNorms.top().length())); |
| 853 } | 870 } |
| 854 } | 871 } |
| 855 | 872 |
| 856 void GrAAConvexTessellator::lineTo(const SkMatrix& m, SkPoint p, bool isCurve) { | 873 void GrAAConvexTessellator::lineTo(const SkMatrix& m, SkPoint p, CurveState curv
e) { |
| 857 m.mapPoints(&p, 1); | 874 m.mapPoints(&p, 1); |
| 858 this->lineTo(p, isCurve); | 875 this->lineTo(p, curve); |
| 859 } | 876 } |
| 860 | 877 |
| 861 void GrAAConvexTessellator::quadTo(SkPoint pts[3]) { | 878 void GrAAConvexTessellator::quadTo(SkPoint pts[3]) { |
| 862 int maxCount = GrPathUtils::quadraticPointCount(pts, kQuadTolerance); | 879 int maxCount = GrPathUtils::quadraticPointCount(pts, kQuadTolerance); |
| 863 fPointBuffer.setReserve(maxCount); | 880 fPointBuffer.setReserve(maxCount); |
| 864 SkPoint* target = fPointBuffer.begin(); | 881 SkPoint* target = fPointBuffer.begin(); |
| 865 int count = GrPathUtils::generateQuadraticPoints(pts[0], pts[1], pts[2], | 882 int count = GrPathUtils::generateQuadraticPoints(pts[0], pts[1], pts[2], |
| 866 kQuadTolerance, &target, maxCount); | 883 kQuadTolerance, &target, maxCount); |
| 867 fPointBuffer.setCount(count); | 884 fPointBuffer.setCount(count); |
| 868 for (int i = 0; i < count; i++) { | 885 for (int i = 0; i < count - 1; i++) { |
| 869 lineTo(fPointBuffer[i], true); | 886 lineTo(fPointBuffer[i], kCurve_CurveState); |
| 870 } | 887 } |
| 888 lineTo(fPointBuffer[count - 1], kIndeterminate_CurveState); |
| 871 } | 889 } |
| 872 | 890 |
| 873 void GrAAConvexTessellator::quadTo(const SkMatrix& m, SkPoint pts[3]) { | 891 void GrAAConvexTessellator::quadTo(const SkMatrix& m, SkPoint pts[3]) { |
| 874 SkPoint transformed[3]; | 892 SkPoint transformed[3]; |
| 875 transformed[0] = pts[0]; | 893 transformed[0] = pts[0]; |
| 876 transformed[1] = pts[1]; | 894 transformed[1] = pts[1]; |
| 877 transformed[2] = pts[2]; | 895 transformed[2] = pts[2]; |
| 878 m.mapPoints(transformed, 3); | 896 m.mapPoints(transformed, 3); |
| 879 quadTo(transformed); | 897 quadTo(transformed); |
| 880 } | 898 } |
| 881 | 899 |
| 882 void GrAAConvexTessellator::cubicTo(const SkMatrix& m, SkPoint pts[4]) { | 900 void GrAAConvexTessellator::cubicTo(const SkMatrix& m, SkPoint pts[4]) { |
| 883 m.mapPoints(pts, 4); | 901 m.mapPoints(pts, 4); |
| 884 int maxCount = GrPathUtils::cubicPointCount(pts, kCubicTolerance); | 902 int maxCount = GrPathUtils::cubicPointCount(pts, kCubicTolerance); |
| 885 fPointBuffer.setReserve(maxCount); | 903 fPointBuffer.setReserve(maxCount); |
| 886 SkPoint* target = fPointBuffer.begin(); | 904 SkPoint* target = fPointBuffer.begin(); |
| 887 int count = GrPathUtils::generateCubicPoints(pts[0], pts[1], pts[2], pts[3], | 905 int count = GrPathUtils::generateCubicPoints(pts[0], pts[1], pts[2], pts[3], |
| 888 kCubicTolerance, &target, maxCount); | 906 kCubicTolerance, &target, maxCount); |
| 889 fPointBuffer.setCount(count); | 907 fPointBuffer.setCount(count); |
| 890 for (int i = 0; i < count; i++) { | 908 for (int i = 0; i < count - 1; i++) { |
| 891 lineTo(fPointBuffer[i], true); | 909 lineTo(fPointBuffer[i], kCurve_CurveState); |
| 892 } | 910 } |
| 911 lineTo(fPointBuffer[count - 1], kIndeterminate_CurveState); |
| 893 } | 912 } |
| 894 | 913 |
| 895 // include down here to avoid compilation errors caused by "-" overload in SkGeo
metry.h | 914 // include down here to avoid compilation errors caused by "-" overload in SkGeo
metry.h |
| 896 #include "SkGeometry.h" | 915 #include "SkGeometry.h" |
| 897 | 916 |
| 898 void GrAAConvexTessellator::conicTo(const SkMatrix& m, SkPoint pts[3], SkScalar
w) { | 917 void GrAAConvexTessellator::conicTo(const SkMatrix& m, SkPoint pts[3], SkScalar
w) { |
| 899 m.mapPoints(pts, 3); | 918 m.mapPoints(pts, 3); |
| 900 SkAutoConicToQuads quadder; | 919 SkAutoConicToQuads quadder; |
| 901 const SkPoint* quads = quadder.computeQuads(pts, w, kConicTolerance); | 920 const SkPoint* quads = quadder.computeQuads(pts, w, kConicTolerance); |
| 902 SkPoint lastPoint = *(quads++); | 921 SkPoint lastPoint = *(quads++); |
| (...skipping 121 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
| 1024 | 1043 |
| 1025 SkString num; | 1044 SkString num; |
| 1026 num.printf("%d", i); | 1045 num.printf("%d", i); |
| 1027 canvas->drawText(num.c_str(), num.size(), | 1046 canvas->drawText(num.c_str(), num.size(), |
| 1028 this->point(i).fX, this->point(i).fY+(kPointRadius/2.0f
), | 1047 this->point(i).fX, this->point(i).fY+(kPointRadius/2.0f
), |
| 1029 paint); | 1048 paint); |
| 1030 } | 1049 } |
| 1031 } | 1050 } |
| 1032 | 1051 |
| 1033 #endif | 1052 #endif |
| OLD | NEW |