| Index: sandbox/win/src/sandbox_nt_util_unittest.cc
|
| diff --git a/sandbox/win/src/sandbox_nt_util_unittest.cc b/sandbox/win/src/sandbox_nt_util_unittest.cc
|
| index 0fbea6680247323a351574b8f9dfdb31f00c7685..b916e3d5ea247c181fb55d9cfa4405dfb3264759 100644
|
| --- a/sandbox/win/src/sandbox_nt_util_unittest.cc
|
| +++ b/sandbox/win/src/sandbox_nt_util_unittest.cc
|
| @@ -2,7 +2,9 @@
|
| // Use of this source code is governed by a BSD-style license that can be
|
| // found in the LICENSE file.
|
|
|
| +#include <memory>
|
| #include <windows.h>
|
| +#include <vector>
|
|
|
| #include "base/win/scoped_handle.h"
|
| #include "base/win/scoped_process_information.h"
|
| @@ -43,5 +45,151 @@ TEST(SandboxNtUtil, IsSameProcessDifferentProcess) {
|
| EXPECT_TRUE(TerminateProcess(process_info.process_handle(), 0));
|
| }
|
|
|
| +#if defined(_WIN64)
|
| +struct VirtualMemDeleter {
|
| + void operator()(char* p) { ::VirtualFree(p, 0, MEM_RELEASE); }
|
| +};
|
| +
|
| +typedef std::unique_ptr<char, VirtualMemDeleter> unique_ptr_vmem;
|
| +
|
| +void AllocateBlock(SIZE_T size,
|
| + SIZE_T free_size,
|
| + char** base_address,
|
| + std::vector<unique_ptr_vmem>* mem_range) {
|
| + unique_ptr_vmem ptr(static_cast<char*>(::VirtualAlloc(
|
| + *base_address, size - free_size, MEM_RESERVE, PAGE_READWRITE)));
|
| + ASSERT_NE(nullptr, ptr.get());
|
| + mem_range->push_back(std::move(ptr));
|
| + *base_address += size;
|
| +}
|
| +
|
| +#define KIB(x) ((x)*1024ULL)
|
| +#define MIB(x) (KIB(x) * 1024ULL)
|
| +#define GIB(x) (MIB(x) * 1024ULL)
|
| +// Construct a basic memory layout to do the test. We reserve first to get a
|
| +// base address then reallocate with the following pattern.
|
| +// |512MiB-64KiB Free|512MiB-128Kib Free|512MiB-256Kib Free|512MiB+512KiB Free|
|
| +// The purpose of this is leave a couple of free memory regions within a 2GiB
|
| +// block of reserved memory that we can test the searching allocator.
|
| +void AllocateTestRange(std::vector<unique_ptr_vmem>* mem_range) {
|
| + // Ensure we preallocate enough space in the vector to prevent unexpected
|
| + // allocations.
|
| + mem_range->reserve(5);
|
| + SIZE_T total_size =
|
| + MIB(512) + MIB(512) + MIB(512) + MIB(512) + KIB(512) + KIB(64);
|
| + unique_ptr_vmem ptr(static_cast<char*>(
|
| + ::VirtualAlloc(nullptr, total_size, MEM_RESERVE, PAGE_READWRITE)));
|
| + ASSERT_NE(nullptr, ptr.get());
|
| + char* base_address = ptr.get();
|
| + char* orig_base = base_address;
|
| + ptr.reset();
|
| + AllocateBlock(MIB(512), KIB(64), &base_address, mem_range);
|
| + AllocateBlock(MIB(512), KIB(128), &base_address, mem_range);
|
| + AllocateBlock(MIB(512), KIB(256), &base_address, mem_range);
|
| + AllocateBlock(MIB(512) + KIB(512), KIB(512), &base_address, mem_range);
|
| + // Allocate a memory block at end to act as an upper bound.
|
| + AllocateBlock(KIB(64), 0, &base_address, mem_range);
|
| + ASSERT_EQ(total_size, static_cast<SIZE_T>(base_address - orig_base));
|
| +}
|
| +
|
| +// Test we can allocate appropriate blocks.
|
| +void TestAlignedRange(char* base_address) {
|
| + unique_ptr_vmem ptr_256k(new (sandbox::NT_PAGE, base_address) char[KIB(256)]);
|
| + EXPECT_EQ(base_address + GIB(1) + MIB(512) - KIB(256), ptr_256k.get());
|
| + unique_ptr_vmem ptr_64k(new (sandbox::NT_PAGE, base_address) char[KIB(64)]);
|
| + EXPECT_EQ(base_address + MIB(512) - KIB(64), ptr_64k.get());
|
| + unique_ptr_vmem ptr_128k(new (sandbox::NT_PAGE, base_address) char[KIB(128)]);
|
| + EXPECT_EQ(base_address + GIB(1) - KIB(128), ptr_128k.get());
|
| + // We will have run out of space here so should also fail.
|
| + unique_ptr_vmem ptr_64k_noalloc(
|
| + new (sandbox::NT_PAGE, base_address) char[KIB(64)]);
|
| + EXPECT_EQ(nullptr, ptr_64k_noalloc.get());
|
| +}
|
| +
|
| +// Test the 512k block which exists at the end of the maximum allocation
|
| +// boundary.
|
| +void Test512kBlock(char* base_address) {
|
| + // This should fail as it'll just be out of range.
|
| + unique_ptr_vmem ptr_512k_noalloc(
|
| + new (sandbox::NT_PAGE, base_address) char[KIB(512)]);
|
| + EXPECT_EQ(nullptr, ptr_512k_noalloc.get());
|
| + // Check that moving base address we can allocate the 512k block.
|
| + unique_ptr_vmem ptr_512k(
|
| + new (sandbox::NT_PAGE, base_address + GIB(1)) char[KIB(512)]);
|
| + EXPECT_EQ(base_address + GIB(2), ptr_512k.get());
|
| + // Free pointer first.
|
| + ptr_512k.reset();
|
| + ptr_512k.reset(new (sandbox::NT_PAGE, base_address + GIB(2)) char[KIB(512)]);
|
| + EXPECT_EQ(base_address + GIB(2), ptr_512k.get());
|
| +}
|
| +
|
| +// Test we can allocate appropriate blocks even when starting at an unaligned
|
| +// address.
|
| +void TestUnalignedRange(char* base_address) {
|
| + char* unaligned_base = base_address + 123456;
|
| + unique_ptr_vmem ptr_256k(
|
| + new (sandbox::NT_PAGE, unaligned_base) char[KIB(256)]);
|
| + EXPECT_EQ(base_address + GIB(1) + MIB(512) - KIB(256), ptr_256k.get());
|
| + unique_ptr_vmem ptr_64k(new (sandbox::NT_PAGE, unaligned_base) char[KIB(64)]);
|
| + EXPECT_EQ(base_address + MIB(512) - KIB(64), ptr_64k.get());
|
| + unique_ptr_vmem ptr_128k(
|
| + new (sandbox::NT_PAGE, unaligned_base) char[KIB(128)]);
|
| + EXPECT_EQ(base_address + GIB(1) - KIB(128), ptr_128k.get());
|
| +}
|
| +
|
| +// Test maximum number of available allocations within the predefined pattern.
|
| +void TestMaxAllocations(char* base_address) {
|
| + // There's only 7 64k blocks in the first 2g which we can fill.
|
| + unique_ptr_vmem ptr_1(new (sandbox::NT_PAGE, base_address) char[1]);
|
| + EXPECT_NE(nullptr, ptr_1.get());
|
| + unique_ptr_vmem ptr_2(new (sandbox::NT_PAGE, base_address) char[1]);
|
| + EXPECT_NE(nullptr, ptr_2.get());
|
| + unique_ptr_vmem ptr_3(new (sandbox::NT_PAGE, base_address) char[1]);
|
| + EXPECT_NE(nullptr, ptr_3.get());
|
| + unique_ptr_vmem ptr_4(new (sandbox::NT_PAGE, base_address) char[1]);
|
| + EXPECT_NE(nullptr, ptr_4.get());
|
| + unique_ptr_vmem ptr_5(new (sandbox::NT_PAGE, base_address) char[1]);
|
| + EXPECT_NE(nullptr, ptr_5.get());
|
| + unique_ptr_vmem ptr_6(new (sandbox::NT_PAGE, base_address) char[1]);
|
| + EXPECT_NE(nullptr, ptr_6.get());
|
| + unique_ptr_vmem ptr_7(new (sandbox::NT_PAGE, base_address) char[1]);
|
| + EXPECT_NE(nullptr, ptr_7.get());
|
| + unique_ptr_vmem ptr_8(new (sandbox::NT_PAGE, base_address) char[1]);
|
| + EXPECT_EQ(nullptr, ptr_8.get());
|
| +}
|
| +
|
| +// Test extreme allocations we know should fail.
|
| +void TestExtremes() {
|
| + unique_ptr_vmem ptr_null(new (sandbox::NT_PAGE, nullptr) char[1]);
|
| + EXPECT_EQ(nullptr, ptr_null.get());
|
| + unique_ptr_vmem ptr_too_large(
|
| + new (sandbox::NT_PAGE, reinterpret_cast<void*>(0x1000000)) char[GIB(4)]);
|
| + EXPECT_EQ(nullptr, ptr_too_large.get());
|
| + unique_ptr_vmem ptr_overflow(
|
| + new (sandbox::NT_PAGE, reinterpret_cast<void*>(SIZE_MAX)) char[1]);
|
| + EXPECT_EQ(nullptr, ptr_overflow.get());
|
| + unique_ptr_vmem ptr_invalid(new (
|
| + sandbox::NT_PAGE, reinterpret_cast<void*>(SIZE_MAX - 0x1000000)) char[1]);
|
| + EXPECT_EQ(nullptr, ptr_invalid.get());
|
| +}
|
| +
|
| +// Test nearest allocator, only do this for 64 bit. We test through the exposed
|
| +// new operator as we can't call the AllocateNearTo function directly.
|
| +TEST(SandboxNtUtil, NearestAllocator) {
|
| + InitGlobalNt();
|
| + std::vector<unique_ptr_vmem> mem_range;
|
| + AllocateTestRange(&mem_range);
|
| + ASSERT_LT(0U, mem_range.size());
|
| + char* base_address = static_cast<char*>(mem_range[0].get());
|
| +
|
| + TestAlignedRange(base_address);
|
| + Test512kBlock(base_address);
|
| + TestUnalignedRange(base_address);
|
| + TestMaxAllocations(base_address);
|
| + TestExtremes();
|
| +}
|
| +
|
| +#endif // defined(_WIN64)
|
| +
|
| } // namespace
|
| } // namespace sandbox
|
|
|