OLD | NEW |
1 /* | 1 /* |
2 * Copyright 2016 Google Inc. | 2 * Copyright 2016 Google Inc. |
3 * | 3 * |
4 * Use of this source code is governed by a BSD-style license that can be | 4 * Use of this source code is governed by a BSD-style license that can be |
5 * found in the LICENSE file. | 5 * found in the LICENSE file. |
6 */ | 6 */ |
7 | 7 |
8 #include "SkHalf.h" | 8 #include "SkHalf.h" |
9 #include "SkPM4fPriv.h" | 9 #include "SkPM4fPriv.h" |
10 #include "SkUtils.h" | 10 #include "SkUtils.h" |
11 #include "SkXfermode.h" | 11 #include "SkXfermode.h" |
12 | 12 |
13 static Sk4f lerp_by_coverage(const Sk4f& src, const Sk4f& dst, uint8_t srcCovera
ge) { | 13 static Sk4f lerp_by_coverage(const Sk4f& src, const Sk4f& dst, uint8_t srcCovera
ge) { |
14 return dst + (src - dst) * Sk4f(srcCoverage * (1/255.0f)); | 14 return dst + (src - dst) * Sk4f(srcCoverage * (1/255.0f)); |
15 } | 15 } |
16 | 16 |
17 ////////////////////////////////////////////////////////////////////////////////
/////////////////// | 17 ////////////////////////////////////////////////////////////////////////////////
/////////////////// |
18 | 18 |
19 static void xfer_1(const SkXfermode* xfer, uint64_t dst[], const SkPM4f* src, in
t count, | 19 static void xfer_1(const SkXfermode* xfer, uint64_t dst[], const SkPM4f* src, in
t count, |
20 const SkAlpha aa[]) { | 20 const SkAlpha aa[]) { |
21 SkXfermodeProc4f proc = xfer->getProc4f(); | 21 SkXfermodeProc4f proc = xfer->getProc4f(); |
22 SkPM4f d; | 22 SkPM4f d; |
23 if (aa) { | 23 if (aa) { |
24 for (int i = 0; i < count; ++i) { | 24 for (int i = 0; i < count; ++i) { |
25 Sk4f d4 = SkHalfToFloat_finite(dst[i]); | 25 Sk4f d4 = SkHalfToFloat_finite_ftz(dst[i]); |
26 d4.store(d.fVec); | 26 d4.store(d.fVec); |
27 Sk4f r4 = Sk4f::Load(proc(*src, d).fVec); | 27 Sk4f r4 = Sk4f::Load(proc(*src, d).fVec); |
28 SkFloatToHalf_finite(lerp_by_coverage(r4, d4, aa[i])).store(&dst[i])
; | 28 SkFloatToHalf_finite_ftz(lerp_by_coverage(r4, d4, aa[i])).store(&dst
[i]); |
29 } | 29 } |
30 } else { | 30 } else { |
31 for (int i = 0; i < count; ++i) { | 31 for (int i = 0; i < count; ++i) { |
32 SkHalfToFloat_finite(dst[i]).store(d.fVec); | 32 SkHalfToFloat_finite_ftz(dst[i]).store(d.fVec); |
33 Sk4f r4 = Sk4f::Load(proc(*src, d).fVec); | 33 Sk4f r4 = Sk4f::Load(proc(*src, d).fVec); |
34 SkFloatToHalf_finite(r4).store(&dst[i]); | 34 SkFloatToHalf_finite_ftz(r4).store(&dst[i]); |
35 } | 35 } |
36 } | 36 } |
37 } | 37 } |
38 | 38 |
39 static void xfer_n(const SkXfermode* xfer, uint64_t dst[], const SkPM4f src[], i
nt count, | 39 static void xfer_n(const SkXfermode* xfer, uint64_t dst[], const SkPM4f src[], i
nt count, |
40 const SkAlpha aa[]) { | 40 const SkAlpha aa[]) { |
41 SkXfermodeProc4f proc = xfer->getProc4f(); | 41 SkXfermodeProc4f proc = xfer->getProc4f(); |
42 SkPM4f d; | 42 SkPM4f d; |
43 if (aa) { | 43 if (aa) { |
44 for (int i = 0; i < count; ++i) { | 44 for (int i = 0; i < count; ++i) { |
45 Sk4f d4 = SkHalfToFloat_finite(dst[i]); | 45 Sk4f d4 = SkHalfToFloat_finite_ftz(dst[i]); |
46 d4.store(d.fVec); | 46 d4.store(d.fVec); |
47 Sk4f r4 = Sk4f::Load(proc(src[i], d).fVec); | 47 Sk4f r4 = Sk4f::Load(proc(src[i], d).fVec); |
48 SkFloatToHalf_finite(lerp_by_coverage(r4, d4, aa[i])).store(&dst[i])
; | 48 SkFloatToHalf_finite_ftz(lerp_by_coverage(r4, d4, aa[i])).store(&dst
[i]); |
49 } | 49 } |
50 } else { | 50 } else { |
51 for (int i = 0; i < count; ++i) { | 51 for (int i = 0; i < count; ++i) { |
52 SkHalfToFloat_finite(dst[i]).store(d.fVec); | 52 SkHalfToFloat_finite_ftz(dst[i]).store(d.fVec); |
53 Sk4f r4 = Sk4f::Load(proc(src[i], d).fVec); | 53 Sk4f r4 = Sk4f::Load(proc(src[i], d).fVec); |
54 SkFloatToHalf_finite(r4).store(&dst[i]); | 54 SkFloatToHalf_finite_ftz(r4).store(&dst[i]); |
55 } | 55 } |
56 } | 56 } |
57 } | 57 } |
58 | 58 |
59 const SkXfermode::F16Proc gProcs_General[] = { xfer_n, xfer_n, xfer_1, xfer_1 }; | 59 const SkXfermode::F16Proc gProcs_General[] = { xfer_n, xfer_n, xfer_1, xfer_1 }; |
60 | 60 |
61 ////////////////////////////////////////////////////////////////////////////////
/////////////////// | 61 ////////////////////////////////////////////////////////////////////////////////
/////////////////// |
62 | 62 |
63 static void clear(const SkXfermode*, uint64_t dst[], const SkPM4f*, int count, c
onst SkAlpha aa[]) { | 63 static void clear(const SkXfermode*, uint64_t dst[], const SkPM4f*, int count, c
onst SkAlpha aa[]) { |
64 if (aa) { | 64 if (aa) { |
65 for (int i = 0; i < count; ++i) { | 65 for (int i = 0; i < count; ++i) { |
66 if (aa[i]) { | 66 if (aa[i]) { |
67 const Sk4f d4 = SkHalfToFloat_finite(dst[i]); | 67 const Sk4f d4 = SkHalfToFloat_finite_ftz(dst[i]); |
68 SkFloatToHalf_finite(d4 * Sk4f((255 - aa[i]) * 1.0f/255)).store(
&dst[i]); | 68 SkFloatToHalf_finite_ftz(d4 * Sk4f((255 - aa[i]) * 1.0f/255)).st
ore(&dst[i]); |
69 } | 69 } |
70 } | 70 } |
71 } else { | 71 } else { |
72 sk_memset64(dst, 0, count); | 72 sk_memset64(dst, 0, count); |
73 } | 73 } |
74 } | 74 } |
75 | 75 |
76 const SkXfermode::F16Proc gProcs_Clear[] = { clear, clear, clear, clear }; | 76 const SkXfermode::F16Proc gProcs_Clear[] = { clear, clear, clear, clear }; |
77 | 77 |
78 ////////////////////////////////////////////////////////////////////////////////
/////////////////// | 78 ////////////////////////////////////////////////////////////////////////////////
/////////////////// |
79 | 79 |
80 static void src_1(const SkXfermode*, uint64_t dst[], const SkPM4f* src, int coun
t, | 80 static void src_1(const SkXfermode*, uint64_t dst[], const SkPM4f* src, int coun
t, |
81 const SkAlpha aa[]) { | 81 const SkAlpha aa[]) { |
82 const Sk4f s4 = Sk4f::Load(src->fVec); | 82 const Sk4f s4 = Sk4f::Load(src->fVec); |
83 if (aa) { | 83 if (aa) { |
84 for (int i = 0; i < count; ++i) { | 84 for (int i = 0; i < count; ++i) { |
85 const Sk4f d4 = SkHalfToFloat_finite(dst[i]); | 85 const Sk4f d4 = SkHalfToFloat_finite_ftz(dst[i]); |
86 SkFloatToHalf_finite(lerp_by_coverage(s4, d4, aa[i])).store(&dst[i])
; | 86 SkFloatToHalf_finite_ftz(lerp_by_coverage(s4, d4, aa[i])).store(&dst
[i]); |
87 } | 87 } |
88 } else { | 88 } else { |
89 uint64_t s4h; | 89 uint64_t s4h; |
90 SkFloatToHalf_finite(s4).store(&s4h); | 90 SkFloatToHalf_finite_ftz(s4).store(&s4h); |
91 sk_memset64(dst, s4h, count); | 91 sk_memset64(dst, s4h, count); |
92 } | 92 } |
93 } | 93 } |
94 | 94 |
95 static void src_n(const SkXfermode*, uint64_t dst[], const SkPM4f src[], int cou
nt, | 95 static void src_n(const SkXfermode*, uint64_t dst[], const SkPM4f src[], int cou
nt, |
96 const SkAlpha aa[]) { | 96 const SkAlpha aa[]) { |
97 if (aa) { | 97 if (aa) { |
98 for (int i = 0; i < count; ++i) { | 98 for (int i = 0; i < count; ++i) { |
99 const Sk4f s4 = Sk4f::Load(src[i].fVec); | 99 const Sk4f s4 = Sk4f::Load(src[i].fVec); |
100 const Sk4f d4 = SkHalfToFloat_finite(dst[i]); | 100 const Sk4f d4 = SkHalfToFloat_finite_ftz(dst[i]); |
101 SkFloatToHalf_finite(lerp_by_coverage(s4, d4, aa[i])).store(&dst[i])
; | 101 SkFloatToHalf_finite_ftz(lerp_by_coverage(s4, d4, aa[i])).store(&dst
[i]); |
102 } | 102 } |
103 } else { | 103 } else { |
104 for (int i = 0; i < count; ++i) { | 104 for (int i = 0; i < count; ++i) { |
105 const Sk4f s4 = Sk4f::Load(src[i].fVec); | 105 const Sk4f s4 = Sk4f::Load(src[i].fVec); |
106 SkFloatToHalf_finite(s4).store(&dst[i]); | 106 SkFloatToHalf_finite_ftz(s4).store(&dst[i]); |
107 } | 107 } |
108 } | 108 } |
109 } | 109 } |
110 | 110 |
111 const SkXfermode::F16Proc gProcs_Src[] = { src_n, src_n, src_1, src_1 }; | 111 const SkXfermode::F16Proc gProcs_Src[] = { src_n, src_n, src_1, src_1 }; |
112 | 112 |
113 ////////////////////////////////////////////////////////////////////////////////
/////////////////// | 113 ////////////////////////////////////////////////////////////////////////////////
/////////////////// |
114 | 114 |
115 static void dst(const SkXfermode*, uint64_t*, const SkPM4f*, int count, const Sk
Alpha[]) {} | 115 static void dst(const SkXfermode*, uint64_t*, const SkPM4f*, int count, const Sk
Alpha[]) {} |
116 | 116 |
117 const SkXfermode::F16Proc gProcs_Dst[] = { dst, dst, dst, dst }; | 117 const SkXfermode::F16Proc gProcs_Dst[] = { dst, dst, dst, dst }; |
118 | 118 |
119 ////////////////////////////////////////////////////////////////////////////////
/////////////////// | 119 ////////////////////////////////////////////////////////////////////////////////
/////////////////// |
120 | 120 |
121 static void srcover_1(const SkXfermode*, uint64_t dst[], const SkPM4f* src, int
count, | 121 static void srcover_1(const SkXfermode*, uint64_t dst[], const SkPM4f* src, int
count, |
122 const SkAlpha aa[]) { | 122 const SkAlpha aa[]) { |
123 const Sk4f s4 = Sk4f::Load(src->fVec); | 123 const Sk4f s4 = Sk4f::Load(src->fVec); |
124 const Sk4f dst_scale = Sk4f(1 - get_alpha(s4)); | 124 const Sk4f dst_scale = Sk4f(1 - get_alpha(s4)); |
125 for (int i = 0; i < count; ++i) { | 125 for (int i = 0; i < count; ++i) { |
126 const Sk4f d4 = SkHalfToFloat_finite(dst[i]); | 126 const Sk4f d4 = SkHalfToFloat_finite_ftz(dst[i]); |
127 const Sk4f r4 = s4 + d4 * dst_scale; | 127 const Sk4f r4 = s4 + d4 * dst_scale; |
128 if (aa) { | 128 if (aa) { |
129 SkFloatToHalf_finite(lerp_by_coverage(r4, d4, aa[i])).store(&dst[i])
; | 129 SkFloatToHalf_finite_ftz(lerp_by_coverage(r4, d4, aa[i])).store(&dst
[i]); |
130 } else { | 130 } else { |
131 SkFloatToHalf_finite(r4).store(&dst[i]); | 131 SkFloatToHalf_finite_ftz(r4).store(&dst[i]); |
132 } | 132 } |
133 } | 133 } |
134 } | 134 } |
135 | 135 |
136 static void srcover_n(const SkXfermode*, uint64_t dst[], const SkPM4f src[], int
count, | 136 static void srcover_n(const SkXfermode*, uint64_t dst[], const SkPM4f src[], int
count, |
137 const SkAlpha aa[]) { | 137 const SkAlpha aa[]) { |
138 for (int i = 0; i < count; ++i) { | 138 for (int i = 0; i < count; ++i) { |
139 Sk4f s = Sk4f::Load(src+i), | 139 Sk4f s = Sk4f::Load(src+i), |
140 d = SkHalfToFloat_finite(dst[i]), | 140 d = SkHalfToFloat_finite_ftz(dst[i]), |
141 r = s + d*(1.0f - SkNx_shuffle<3,3,3,3>(s)); | 141 r = s + d*(1.0f - SkNx_shuffle<3,3,3,3>(s)); |
142 if (aa) { | 142 if (aa) { |
143 r = lerp_by_coverage(r, d, aa[i]); | 143 r = lerp_by_coverage(r, d, aa[i]); |
144 } | 144 } |
145 SkFloatToHalf_finite(r).store(&dst[i]); | 145 SkFloatToHalf_finite_ftz(r).store(&dst[i]); |
146 } | 146 } |
147 } | 147 } |
148 | 148 |
149 const SkXfermode::F16Proc gProcs_SrcOver[] = { srcover_n, src_n, srcover_1, src_
1 }; | 149 const SkXfermode::F16Proc gProcs_SrcOver[] = { srcover_n, src_n, srcover_1, src_
1 }; |
150 | 150 |
151 ////////////////////////////////////////////////////////////////////////////////
/////////////////// | 151 ////////////////////////////////////////////////////////////////////////////////
/////////////////// |
152 | 152 |
153 static SkXfermode::F16Proc find_proc(SkXfermode::Mode mode, uint32_t flags) { | 153 static SkXfermode::F16Proc find_proc(SkXfermode::Mode mode, uint32_t flags) { |
154 SkASSERT(0 == (flags & ~3)); | 154 SkASSERT(0 == (flags & ~3)); |
155 flags &= 3; | 155 flags &= 3; |
(...skipping 13 matching lines...) Expand all Loading... |
169 SkASSERT(0 == (flags & ~3)); | 169 SkASSERT(0 == (flags & ~3)); |
170 flags &= 3; | 170 flags &= 3; |
171 | 171 |
172 Mode mode; | 172 Mode mode; |
173 return this->asMode(&mode) ? find_proc(mode, flags) : gProcs_General[flags]; | 173 return this->asMode(&mode) ? find_proc(mode, flags) : gProcs_General[flags]; |
174 } | 174 } |
175 | 175 |
176 SkXfermode::F16Proc SkXfermode::GetF16Proc(SkXfermode* xfer, uint32_t flags) { | 176 SkXfermode::F16Proc SkXfermode::GetF16Proc(SkXfermode* xfer, uint32_t flags) { |
177 return xfer ? xfer->onGetF16Proc(flags) : find_proc(SkXfermode::kSrcOver_Mod
e, flags); | 177 return xfer ? xfer->onGetF16Proc(flags) : find_proc(SkXfermode::kSrcOver_Mod
e, flags); |
178 } | 178 } |
OLD | NEW |