| Index: src/utils/SkCurveMeasure.cpp
|
| diff --git a/src/utils/SkCurveMeasure.cpp b/src/utils/SkCurveMeasure.cpp
|
| index 823f56adcff9388f8e7f82980afee91bfa1c2e5d..fc2aa84faa119558d5dce1c30f6bdd826c3eb890 100644
|
| --- a/src/utils/SkCurveMeasure.cpp
|
| +++ b/src/utils/SkCurveMeasure.cpp
|
| @@ -6,66 +6,10 @@
|
| */
|
|
|
| #include "SkCurveMeasure.h"
|
| -#include "SkGeometry.h"
|
|
|
| // for abs
|
| #include <cmath>
|
|
|
| -#define UNIMPLEMENTED SkDEBUGF(("%s:%d unimplemented\n", __FILE__, __LINE__))
|
| -
|
| -/// Used inside SkCurveMeasure::getTime's Newton's iteration
|
| -static inline SkPoint evaluate(const SkPoint pts[4], SkSegType segType,
|
| - SkScalar t) {
|
| - SkPoint pos;
|
| - switch (segType) {
|
| - case kQuad_SegType:
|
| - pos = SkEvalQuadAt(pts, t);
|
| - break;
|
| - case kLine_SegType:
|
| - pos = SkPoint::Make(SkScalarInterp(pts[0].x(), pts[1].x(), t),
|
| - SkScalarInterp(pts[0].y(), pts[1].y(), t));
|
| - break;
|
| - case kCubic_SegType:
|
| - SkEvalCubicAt(pts, t, &pos, nullptr, nullptr);
|
| - break;
|
| - case kConic_SegType: {
|
| - SkConic conic(pts, pts[3].x());
|
| - conic.evalAt(t, &pos);
|
| - }
|
| - break;
|
| - default:
|
| - UNIMPLEMENTED;
|
| - }
|
| -
|
| - return pos;
|
| -}
|
| -
|
| -/// Used inside SkCurveMeasure::getTime's Newton's iteration
|
| -static inline SkVector evaluateDerivative(const SkPoint pts[4],
|
| - SkSegType segType, SkScalar t) {
|
| - SkVector tan;
|
| - switch (segType) {
|
| - case kQuad_SegType:
|
| - tan = SkEvalQuadTangentAt(pts, t);
|
| - break;
|
| - case kLine_SegType:
|
| - tan = pts[1] - pts[0];
|
| - break;
|
| - case kCubic_SegType:
|
| - SkEvalCubicAt(pts, t, nullptr, &tan, nullptr);
|
| - break;
|
| - case kConic_SegType: {
|
| - SkConic conic(pts, pts[3].x());
|
| - conic.evalAt(t, nullptr, &tan);
|
| - }
|
| - break;
|
| - default:
|
| - UNIMPLEMENTED;
|
| - }
|
| -
|
| - return tan;
|
| -}
|
| -/// Used in ArcLengthIntegrator::computeLength
|
| static inline Sk8f evaluateDerivativeLength(const Sk8f& ts,
|
| const Sk8f (&xCoeff)[3],
|
| const Sk8f (&yCoeff)[3],
|
| @@ -78,18 +22,17 @@
|
| y = yCoeff[0]*ts + yCoeff[1];
|
| break;
|
| case kLine_SegType:
|
| - // length of line derivative is constant
|
| - // and we precompute it in the constructor
|
| - return xCoeff[0];
|
| + SkDebugf("Unimplemented");
|
| + break;
|
| case kCubic_SegType:
|
| x = (xCoeff[0]*ts + xCoeff[1])*ts + xCoeff[2];
|
| y = (yCoeff[0]*ts + yCoeff[1])*ts + yCoeff[2];
|
| break;
|
| case kConic_SegType:
|
| - UNIMPLEMENTED;
|
| + SkDebugf("Unimplemented");
|
| break;
|
| default:
|
| - UNIMPLEMENTED;
|
| + SkDebugf("Unimplemented");
|
| }
|
|
|
| x = x * x;
|
| @@ -97,7 +40,6 @@
|
|
|
| return (x + y).sqrt();
|
| }
|
| -
|
| ArcLengthIntegrator::ArcLengthIntegrator(const SkPoint* pts, SkSegType segType)
|
| : fSegType(segType) {
|
| switch (fSegType) {
|
| @@ -117,13 +59,8 @@
|
| yCoeff[1] = Sk8f(2.0f*(By - Ay));
|
| }
|
| break;
|
| - case kLine_SegType: {
|
| - // the length of the derivative of a line is constant
|
| - // we put in in both coeff arrays for consistency's sake
|
| - SkScalar length = (pts[1] - pts[0]).length();
|
| - xCoeff[0] = Sk8f(length);
|
| - yCoeff[0] = Sk8f(length);
|
| - }
|
| + case kLine_SegType:
|
| + SkDEBUGF(("Unimplemented"));
|
| break;
|
| case kCubic_SegType:
|
| {
|
| @@ -136,7 +73,6 @@
|
| float Cy = pts[2].y();
|
| float Dy = pts[3].y();
|
|
|
| - // precompute coefficients for derivative
|
| xCoeff[0] = Sk8f(3.0f*(-Ax + 3.0f*(Bx - Cx) + Dx));
|
| xCoeff[1] = Sk8f(3.0f*(2.0f*(Ax - 2.0f*Bx + Cx)));
|
| xCoeff[2] = Sk8f(3.0f*(-Ax + Bx));
|
| @@ -147,10 +83,10 @@
|
| }
|
| break;
|
| case kConic_SegType:
|
| - UNIMPLEMENTED;
|
| + SkDEBUGF(("Unimplemented"));
|
| break;
|
| default:
|
| - UNIMPLEMENTED;
|
| + SkDEBUGF(("Unimplemented"));
|
| }
|
| }
|
|
|
| @@ -181,8 +117,7 @@
|
| }
|
| break;
|
| case SkSegType::kLine_SegType:
|
| - fPts[0] = pts[0];
|
| - fPts[1] = pts[1];
|
| + SkDebugf("Unimplemented");
|
| break;
|
| case SkSegType::kCubic_SegType:
|
| for (size_t i = 0; i < 4; i++) {
|
| @@ -190,12 +125,10 @@
|
| }
|
| break;
|
| case SkSegType::kConic_SegType:
|
| - for (size_t i = 0; i < 4; i++) {
|
| - fPts[i] = pts[i];
|
| - }
|
| + SkDebugf("Unimplemented");
|
| break;
|
| default:
|
| - UNIMPLEMENTED;
|
| + SkDEBUGF(("Unimplemented"));
|
| break;
|
| }
|
| fIntegrator = ArcLengthIntegrator(fPts, fSegType);
|
| @@ -266,8 +199,9 @@
|
|
|
| prevT = currentT;
|
| if (iterations < kNewtonIters) {
|
| + // TODO(hstern) switch here on curve type.
|
| // This is just newton's formula.
|
| - SkScalar dt = evaluateDerivative(fPts, fSegType, currentT).length();
|
| + SkScalar dt = evaluateQuadDerivative(currentT).length();
|
| newT = currentT - (lengthDiff / dt);
|
|
|
| // If newT is out of bounds, bisect inside newton.
|
| @@ -284,7 +218,7 @@
|
| newT = (minT + maxT) * 0.5f;
|
| } else {
|
| SkDEBUGF(("%.7f %.7f didn't get close enough after bisection.\n",
|
| - currentT, currentLength));
|
| + currentT, currentLength));
|
| break;
|
| }
|
| currentT = newT;
|
| @@ -301,16 +235,52 @@
|
| }
|
|
|
| void SkCurveMeasure::getPosTanTime(SkScalar targetLength, SkPoint* pos,
|
| - SkVector* tan, SkScalar* time) {
|
| + SkVector* tan, SkScalar* time) {
|
| SkScalar t = getTime(targetLength);
|
|
|
| if (time) {
|
| *time = t;
|
| }
|
| if (pos) {
|
| - *pos = evaluate(fPts, fSegType, t);
|
| + // TODO(hstern) switch here on curve type.
|
| + *pos = evaluateQuad(t);
|
| }
|
| if (tan) {
|
| - *tan = evaluateDerivative(fPts, fSegType, t);
|
| - }
|
| -}
|
| + // TODO(hstern) switch here on curve type.
|
| + *tan = evaluateQuadDerivative(t);
|
| + }
|
| +}
|
| +
|
| +// this is why I feel that the ArcLengthIntegrator should be combined
|
| +// with some sort of evaluator that caches the constants computed from the
|
| +// control points. this is basically the same code in ArcLengthIntegrator
|
| +SkPoint SkCurveMeasure::evaluateQuad(SkScalar t) {
|
| + SkScalar ti = 1.0f - t;
|
| +
|
| + SkScalar Ax = fPts[0].x();
|
| + SkScalar Bx = fPts[1].x();
|
| + SkScalar Cx = fPts[2].x();
|
| + SkScalar Ay = fPts[0].y();
|
| + SkScalar By = fPts[1].y();
|
| + SkScalar Cy = fPts[2].y();
|
| +
|
| + SkScalar x = Ax*ti*ti + 2.0f*Bx*t*ti + Cx*t*t;
|
| + SkScalar y = Ay*ti*ti + 2.0f*By*t*ti + Cy*t*t;
|
| + return SkPoint::Make(x, y);
|
| +}
|
| +
|
| +SkVector SkCurveMeasure::evaluateQuadDerivative(SkScalar t) {
|
| + SkScalar Ax = fPts[0].x();
|
| + SkScalar Bx = fPts[1].x();
|
| + SkScalar Cx = fPts[2].x();
|
| + SkScalar Ay = fPts[0].y();
|
| + SkScalar By = fPts[1].y();
|
| + SkScalar Cy = fPts[2].y();
|
| +
|
| + SkScalar A2BCx = 2.0f*(Ax - 2*Bx + Cx);
|
| + SkScalar A2BCy = 2.0f*(Ay - 2*By + Cy);
|
| + SkScalar ABx = 2.0f*(Bx - Ax);
|
| + SkScalar ABy = 2.0f*(By - Ay);
|
| +
|
| + return SkPoint::Make(A2BCx*t + ABx, A2BCy*t + ABy);
|
| +}
|
|
|