Index: src/utils/SkCurveMeasure.cpp |
diff --git a/src/utils/SkCurveMeasure.cpp b/src/utils/SkCurveMeasure.cpp |
index 823f56adcff9388f8e7f82980afee91bfa1c2e5d..fc2aa84faa119558d5dce1c30f6bdd826c3eb890 100644 |
--- a/src/utils/SkCurveMeasure.cpp |
+++ b/src/utils/SkCurveMeasure.cpp |
@@ -6,66 +6,10 @@ |
*/ |
#include "SkCurveMeasure.h" |
-#include "SkGeometry.h" |
// for abs |
#include <cmath> |
-#define UNIMPLEMENTED SkDEBUGF(("%s:%d unimplemented\n", __FILE__, __LINE__)) |
- |
-/// Used inside SkCurveMeasure::getTime's Newton's iteration |
-static inline SkPoint evaluate(const SkPoint pts[4], SkSegType segType, |
- SkScalar t) { |
- SkPoint pos; |
- switch (segType) { |
- case kQuad_SegType: |
- pos = SkEvalQuadAt(pts, t); |
- break; |
- case kLine_SegType: |
- pos = SkPoint::Make(SkScalarInterp(pts[0].x(), pts[1].x(), t), |
- SkScalarInterp(pts[0].y(), pts[1].y(), t)); |
- break; |
- case kCubic_SegType: |
- SkEvalCubicAt(pts, t, &pos, nullptr, nullptr); |
- break; |
- case kConic_SegType: { |
- SkConic conic(pts, pts[3].x()); |
- conic.evalAt(t, &pos); |
- } |
- break; |
- default: |
- UNIMPLEMENTED; |
- } |
- |
- return pos; |
-} |
- |
-/// Used inside SkCurveMeasure::getTime's Newton's iteration |
-static inline SkVector evaluateDerivative(const SkPoint pts[4], |
- SkSegType segType, SkScalar t) { |
- SkVector tan; |
- switch (segType) { |
- case kQuad_SegType: |
- tan = SkEvalQuadTangentAt(pts, t); |
- break; |
- case kLine_SegType: |
- tan = pts[1] - pts[0]; |
- break; |
- case kCubic_SegType: |
- SkEvalCubicAt(pts, t, nullptr, &tan, nullptr); |
- break; |
- case kConic_SegType: { |
- SkConic conic(pts, pts[3].x()); |
- conic.evalAt(t, nullptr, &tan); |
- } |
- break; |
- default: |
- UNIMPLEMENTED; |
- } |
- |
- return tan; |
-} |
-/// Used in ArcLengthIntegrator::computeLength |
static inline Sk8f evaluateDerivativeLength(const Sk8f& ts, |
const Sk8f (&xCoeff)[3], |
const Sk8f (&yCoeff)[3], |
@@ -78,18 +22,17 @@ |
y = yCoeff[0]*ts + yCoeff[1]; |
break; |
case kLine_SegType: |
- // length of line derivative is constant |
- // and we precompute it in the constructor |
- return xCoeff[0]; |
+ SkDebugf("Unimplemented"); |
+ break; |
case kCubic_SegType: |
x = (xCoeff[0]*ts + xCoeff[1])*ts + xCoeff[2]; |
y = (yCoeff[0]*ts + yCoeff[1])*ts + yCoeff[2]; |
break; |
case kConic_SegType: |
- UNIMPLEMENTED; |
+ SkDebugf("Unimplemented"); |
break; |
default: |
- UNIMPLEMENTED; |
+ SkDebugf("Unimplemented"); |
} |
x = x * x; |
@@ -97,7 +40,6 @@ |
return (x + y).sqrt(); |
} |
- |
ArcLengthIntegrator::ArcLengthIntegrator(const SkPoint* pts, SkSegType segType) |
: fSegType(segType) { |
switch (fSegType) { |
@@ -117,13 +59,8 @@ |
yCoeff[1] = Sk8f(2.0f*(By - Ay)); |
} |
break; |
- case kLine_SegType: { |
- // the length of the derivative of a line is constant |
- // we put in in both coeff arrays for consistency's sake |
- SkScalar length = (pts[1] - pts[0]).length(); |
- xCoeff[0] = Sk8f(length); |
- yCoeff[0] = Sk8f(length); |
- } |
+ case kLine_SegType: |
+ SkDEBUGF(("Unimplemented")); |
break; |
case kCubic_SegType: |
{ |
@@ -136,7 +73,6 @@ |
float Cy = pts[2].y(); |
float Dy = pts[3].y(); |
- // precompute coefficients for derivative |
xCoeff[0] = Sk8f(3.0f*(-Ax + 3.0f*(Bx - Cx) + Dx)); |
xCoeff[1] = Sk8f(3.0f*(2.0f*(Ax - 2.0f*Bx + Cx))); |
xCoeff[2] = Sk8f(3.0f*(-Ax + Bx)); |
@@ -147,10 +83,10 @@ |
} |
break; |
case kConic_SegType: |
- UNIMPLEMENTED; |
+ SkDEBUGF(("Unimplemented")); |
break; |
default: |
- UNIMPLEMENTED; |
+ SkDEBUGF(("Unimplemented")); |
} |
} |
@@ -181,8 +117,7 @@ |
} |
break; |
case SkSegType::kLine_SegType: |
- fPts[0] = pts[0]; |
- fPts[1] = pts[1]; |
+ SkDebugf("Unimplemented"); |
break; |
case SkSegType::kCubic_SegType: |
for (size_t i = 0; i < 4; i++) { |
@@ -190,12 +125,10 @@ |
} |
break; |
case SkSegType::kConic_SegType: |
- for (size_t i = 0; i < 4; i++) { |
- fPts[i] = pts[i]; |
- } |
+ SkDebugf("Unimplemented"); |
break; |
default: |
- UNIMPLEMENTED; |
+ SkDEBUGF(("Unimplemented")); |
break; |
} |
fIntegrator = ArcLengthIntegrator(fPts, fSegType); |
@@ -266,8 +199,9 @@ |
prevT = currentT; |
if (iterations < kNewtonIters) { |
+ // TODO(hstern) switch here on curve type. |
// This is just newton's formula. |
- SkScalar dt = evaluateDerivative(fPts, fSegType, currentT).length(); |
+ SkScalar dt = evaluateQuadDerivative(currentT).length(); |
newT = currentT - (lengthDiff / dt); |
// If newT is out of bounds, bisect inside newton. |
@@ -284,7 +218,7 @@ |
newT = (minT + maxT) * 0.5f; |
} else { |
SkDEBUGF(("%.7f %.7f didn't get close enough after bisection.\n", |
- currentT, currentLength)); |
+ currentT, currentLength)); |
break; |
} |
currentT = newT; |
@@ -301,16 +235,52 @@ |
} |
void SkCurveMeasure::getPosTanTime(SkScalar targetLength, SkPoint* pos, |
- SkVector* tan, SkScalar* time) { |
+ SkVector* tan, SkScalar* time) { |
SkScalar t = getTime(targetLength); |
if (time) { |
*time = t; |
} |
if (pos) { |
- *pos = evaluate(fPts, fSegType, t); |
+ // TODO(hstern) switch here on curve type. |
+ *pos = evaluateQuad(t); |
} |
if (tan) { |
- *tan = evaluateDerivative(fPts, fSegType, t); |
- } |
-} |
+ // TODO(hstern) switch here on curve type. |
+ *tan = evaluateQuadDerivative(t); |
+ } |
+} |
+ |
+// this is why I feel that the ArcLengthIntegrator should be combined |
+// with some sort of evaluator that caches the constants computed from the |
+// control points. this is basically the same code in ArcLengthIntegrator |
+SkPoint SkCurveMeasure::evaluateQuad(SkScalar t) { |
+ SkScalar ti = 1.0f - t; |
+ |
+ SkScalar Ax = fPts[0].x(); |
+ SkScalar Bx = fPts[1].x(); |
+ SkScalar Cx = fPts[2].x(); |
+ SkScalar Ay = fPts[0].y(); |
+ SkScalar By = fPts[1].y(); |
+ SkScalar Cy = fPts[2].y(); |
+ |
+ SkScalar x = Ax*ti*ti + 2.0f*Bx*t*ti + Cx*t*t; |
+ SkScalar y = Ay*ti*ti + 2.0f*By*t*ti + Cy*t*t; |
+ return SkPoint::Make(x, y); |
+} |
+ |
+SkVector SkCurveMeasure::evaluateQuadDerivative(SkScalar t) { |
+ SkScalar Ax = fPts[0].x(); |
+ SkScalar Bx = fPts[1].x(); |
+ SkScalar Cx = fPts[2].x(); |
+ SkScalar Ay = fPts[0].y(); |
+ SkScalar By = fPts[1].y(); |
+ SkScalar Cy = fPts[2].y(); |
+ |
+ SkScalar A2BCx = 2.0f*(Ax - 2*Bx + Cx); |
+ SkScalar A2BCy = 2.0f*(Ay - 2*By + Cy); |
+ SkScalar ABx = 2.0f*(Bx - Ax); |
+ SkScalar ABy = 2.0f*(By - Ay); |
+ |
+ return SkPoint::Make(A2BCx*t + ABx, A2BCy*t + ABy); |
+} |