Index: src/utils/SkCurveMeasure.cpp |
diff --git a/src/utils/SkCurveMeasure.cpp b/src/utils/SkCurveMeasure.cpp |
index fc2aa84faa119558d5dce1c30f6bdd826c3eb890..823f56adcff9388f8e7f82980afee91bfa1c2e5d 100644 |
--- a/src/utils/SkCurveMeasure.cpp |
+++ b/src/utils/SkCurveMeasure.cpp |
@@ -6,10 +6,66 @@ |
*/ |
#include "SkCurveMeasure.h" |
+#include "SkGeometry.h" |
// for abs |
#include <cmath> |
+#define UNIMPLEMENTED SkDEBUGF(("%s:%d unimplemented\n", __FILE__, __LINE__)) |
+ |
+/// Used inside SkCurveMeasure::getTime's Newton's iteration |
+static inline SkPoint evaluate(const SkPoint pts[4], SkSegType segType, |
+ SkScalar t) { |
+ SkPoint pos; |
+ switch (segType) { |
+ case kQuad_SegType: |
+ pos = SkEvalQuadAt(pts, t); |
+ break; |
+ case kLine_SegType: |
+ pos = SkPoint::Make(SkScalarInterp(pts[0].x(), pts[1].x(), t), |
+ SkScalarInterp(pts[0].y(), pts[1].y(), t)); |
+ break; |
+ case kCubic_SegType: |
+ SkEvalCubicAt(pts, t, &pos, nullptr, nullptr); |
+ break; |
+ case kConic_SegType: { |
+ SkConic conic(pts, pts[3].x()); |
+ conic.evalAt(t, &pos); |
+ } |
+ break; |
+ default: |
+ UNIMPLEMENTED; |
+ } |
+ |
+ return pos; |
+} |
+ |
+/// Used inside SkCurveMeasure::getTime's Newton's iteration |
+static inline SkVector evaluateDerivative(const SkPoint pts[4], |
+ SkSegType segType, SkScalar t) { |
+ SkVector tan; |
+ switch (segType) { |
+ case kQuad_SegType: |
+ tan = SkEvalQuadTangentAt(pts, t); |
+ break; |
+ case kLine_SegType: |
+ tan = pts[1] - pts[0]; |
+ break; |
+ case kCubic_SegType: |
+ SkEvalCubicAt(pts, t, nullptr, &tan, nullptr); |
+ break; |
+ case kConic_SegType: { |
+ SkConic conic(pts, pts[3].x()); |
+ conic.evalAt(t, nullptr, &tan); |
+ } |
+ break; |
+ default: |
+ UNIMPLEMENTED; |
+ } |
+ |
+ return tan; |
+} |
+/// Used in ArcLengthIntegrator::computeLength |
static inline Sk8f evaluateDerivativeLength(const Sk8f& ts, |
const Sk8f (&xCoeff)[3], |
const Sk8f (&yCoeff)[3], |
@@ -22,17 +78,18 @@ static inline Sk8f evaluateDerivativeLength(const Sk8f& ts, |
y = yCoeff[0]*ts + yCoeff[1]; |
break; |
case kLine_SegType: |
- SkDebugf("Unimplemented"); |
- break; |
+ // length of line derivative is constant |
+ // and we precompute it in the constructor |
+ return xCoeff[0]; |
case kCubic_SegType: |
x = (xCoeff[0]*ts + xCoeff[1])*ts + xCoeff[2]; |
y = (yCoeff[0]*ts + yCoeff[1])*ts + yCoeff[2]; |
break; |
case kConic_SegType: |
- SkDebugf("Unimplemented"); |
+ UNIMPLEMENTED; |
break; |
default: |
- SkDebugf("Unimplemented"); |
+ UNIMPLEMENTED; |
} |
x = x * x; |
@@ -40,6 +97,7 @@ static inline Sk8f evaluateDerivativeLength(const Sk8f& ts, |
return (x + y).sqrt(); |
} |
+ |
ArcLengthIntegrator::ArcLengthIntegrator(const SkPoint* pts, SkSegType segType) |
: fSegType(segType) { |
switch (fSegType) { |
@@ -59,8 +117,13 @@ ArcLengthIntegrator::ArcLengthIntegrator(const SkPoint* pts, SkSegType segType) |
yCoeff[1] = Sk8f(2.0f*(By - Ay)); |
} |
break; |
- case kLine_SegType: |
- SkDEBUGF(("Unimplemented")); |
+ case kLine_SegType: { |
+ // the length of the derivative of a line is constant |
+ // we put in in both coeff arrays for consistency's sake |
+ SkScalar length = (pts[1] - pts[0]).length(); |
+ xCoeff[0] = Sk8f(length); |
+ yCoeff[0] = Sk8f(length); |
+ } |
break; |
case kCubic_SegType: |
{ |
@@ -73,6 +136,7 @@ ArcLengthIntegrator::ArcLengthIntegrator(const SkPoint* pts, SkSegType segType) |
float Cy = pts[2].y(); |
float Dy = pts[3].y(); |
+ // precompute coefficients for derivative |
xCoeff[0] = Sk8f(3.0f*(-Ax + 3.0f*(Bx - Cx) + Dx)); |
xCoeff[1] = Sk8f(3.0f*(2.0f*(Ax - 2.0f*Bx + Cx))); |
xCoeff[2] = Sk8f(3.0f*(-Ax + Bx)); |
@@ -83,10 +147,10 @@ ArcLengthIntegrator::ArcLengthIntegrator(const SkPoint* pts, SkSegType segType) |
} |
break; |
case kConic_SegType: |
- SkDEBUGF(("Unimplemented")); |
+ UNIMPLEMENTED; |
break; |
default: |
- SkDEBUGF(("Unimplemented")); |
+ UNIMPLEMENTED; |
} |
} |
@@ -117,7 +181,8 @@ SkCurveMeasure::SkCurveMeasure(const SkPoint* pts, SkSegType segType) |
} |
break; |
case SkSegType::kLine_SegType: |
- SkDebugf("Unimplemented"); |
+ fPts[0] = pts[0]; |
+ fPts[1] = pts[1]; |
break; |
case SkSegType::kCubic_SegType: |
for (size_t i = 0; i < 4; i++) { |
@@ -125,10 +190,12 @@ SkCurveMeasure::SkCurveMeasure(const SkPoint* pts, SkSegType segType) |
} |
break; |
case SkSegType::kConic_SegType: |
- SkDebugf("Unimplemented"); |
+ for (size_t i = 0; i < 4; i++) { |
+ fPts[i] = pts[i]; |
+ } |
break; |
default: |
- SkDEBUGF(("Unimplemented")); |
+ UNIMPLEMENTED; |
break; |
} |
fIntegrator = ArcLengthIntegrator(fPts, fSegType); |
@@ -199,9 +266,8 @@ SkScalar SkCurveMeasure::getTime(SkScalar targetLength) { |
prevT = currentT; |
if (iterations < kNewtonIters) { |
- // TODO(hstern) switch here on curve type. |
// This is just newton's formula. |
- SkScalar dt = evaluateQuadDerivative(currentT).length(); |
+ SkScalar dt = evaluateDerivative(fPts, fSegType, currentT).length(); |
newT = currentT - (lengthDiff / dt); |
// If newT is out of bounds, bisect inside newton. |
@@ -218,7 +284,7 @@ SkScalar SkCurveMeasure::getTime(SkScalar targetLength) { |
newT = (minT + maxT) * 0.5f; |
} else { |
SkDEBUGF(("%.7f %.7f didn't get close enough after bisection.\n", |
- currentT, currentLength)); |
+ currentT, currentLength)); |
break; |
} |
currentT = newT; |
@@ -235,52 +301,16 @@ SkScalar SkCurveMeasure::getTime(SkScalar targetLength) { |
} |
void SkCurveMeasure::getPosTanTime(SkScalar targetLength, SkPoint* pos, |
- SkVector* tan, SkScalar* time) { |
+ SkVector* tan, SkScalar* time) { |
SkScalar t = getTime(targetLength); |
if (time) { |
*time = t; |
} |
if (pos) { |
- // TODO(hstern) switch here on curve type. |
- *pos = evaluateQuad(t); |
+ *pos = evaluate(fPts, fSegType, t); |
} |
if (tan) { |
- // TODO(hstern) switch here on curve type. |
- *tan = evaluateQuadDerivative(t); |
+ *tan = evaluateDerivative(fPts, fSegType, t); |
} |
} |
- |
-// this is why I feel that the ArcLengthIntegrator should be combined |
-// with some sort of evaluator that caches the constants computed from the |
-// control points. this is basically the same code in ArcLengthIntegrator |
-SkPoint SkCurveMeasure::evaluateQuad(SkScalar t) { |
- SkScalar ti = 1.0f - t; |
- |
- SkScalar Ax = fPts[0].x(); |
- SkScalar Bx = fPts[1].x(); |
- SkScalar Cx = fPts[2].x(); |
- SkScalar Ay = fPts[0].y(); |
- SkScalar By = fPts[1].y(); |
- SkScalar Cy = fPts[2].y(); |
- |
- SkScalar x = Ax*ti*ti + 2.0f*Bx*t*ti + Cx*t*t; |
- SkScalar y = Ay*ti*ti + 2.0f*By*t*ti + Cy*t*t; |
- return SkPoint::Make(x, y); |
-} |
- |
-SkVector SkCurveMeasure::evaluateQuadDerivative(SkScalar t) { |
- SkScalar Ax = fPts[0].x(); |
- SkScalar Bx = fPts[1].x(); |
- SkScalar Cx = fPts[2].x(); |
- SkScalar Ay = fPts[0].y(); |
- SkScalar By = fPts[1].y(); |
- SkScalar Cy = fPts[2].y(); |
- |
- SkScalar A2BCx = 2.0f*(Ax - 2*Bx + Cx); |
- SkScalar A2BCy = 2.0f*(Ay - 2*By + Cy); |
- SkScalar ABx = 2.0f*(Bx - Ax); |
- SkScalar ABy = 2.0f*(By - Ay); |
- |
- return SkPoint::Make(A2BCx*t + ABx, A2BCy*t + ABy); |
-} |