Index: src/pdf/SkPDFFont.cpp |
diff --git a/src/pdf/SkPDFFont.cpp b/src/pdf/SkPDFFont.cpp |
index 093ad4a90daa95470ba3c0674e02190f7a383dbf..ff1dd2d76d594de616b15d074ac19ebe083089fb 100644 |
--- a/src/pdf/SkPDFFont.cpp |
+++ b/src/pdf/SkPDFFont.cpp |
@@ -5,15 +5,14 @@ |
* found in the LICENSE file. |
*/ |
-#include <ctype.h> |
- |
#include "SkData.h" |
#include "SkGlyphCache.h" |
#include "SkPaint.h" |
#include "SkPDFCanon.h" |
+#include "SkPDFConvertType1FontStream.h" |
#include "SkPDFDevice.h" |
+#include "SkPDFMakeToUnicodeCmap.h" |
#include "SkPDFFont.h" |
-#include "SkPDFFontImpl.h" |
#include "SkPDFUtils.h" |
#include "SkRefCnt.h" |
#include "SkScalar.h" |
@@ -31,6 +30,8 @@ |
#endif |
#endif |
+namespace { |
+ |
// PDF's notion of symbolic vs non-symbolic is related to the character set, not |
// symbols vs. characters. Rarely is a font the right character set to call it |
// non-symbolic, so always call it symbolic. (PDF 1.4 spec, section 5.7.1) |
@@ -53,7 +54,66 @@ struct AdvanceMetric { |
AdvanceMetric& operator=(const AdvanceMetric&) = delete; |
}; |
-namespace { |
+class SkPDFType0Font final : public SkPDFFont { |
+public: |
+ SkPDFType0Font(const SkAdvancedTypefaceMetrics* info, |
+ SkTypeface* typeface); |
+ virtual ~SkPDFType0Font(); |
+ bool multiByteGlyphs() const override { return true; } |
+ SkPDFFont* getFontSubset(const SkPDFGlyphSet* usage) override; |
+#ifdef SK_DEBUG |
+ void emitObject(SkWStream*, |
+ const SkPDFObjNumMap&, |
+ const SkPDFSubstituteMap&) const override; |
+#endif |
+ |
+private: |
+#ifdef SK_DEBUG |
+ bool fPopulated; |
+#endif |
+ bool populate(const SkPDFGlyphSet* subset); |
+ typedef SkPDFDict INHERITED; |
+}; |
+ |
+class SkPDFCIDFont final : public SkPDFFont { |
+public: |
+ SkPDFCIDFont(const SkAdvancedTypefaceMetrics* info, |
+ SkTypeface* typeface, |
+ const SkPDFGlyphSet* subset); |
+ virtual ~SkPDFCIDFont(); |
+ bool multiByteGlyphs() const override { return true; } |
+ |
+private: |
+ bool populate(const SkPDFGlyphSet* subset); |
+ bool addFontDescriptor(int16_t defaultWidth, |
+ const SkTDArray<uint32_t>* subset); |
+}; |
+ |
+class SkPDFType1Font final : public SkPDFFont { |
+public: |
+ SkPDFType1Font(const SkAdvancedTypefaceMetrics* info, |
+ SkTypeface* typeface, |
+ uint16_t glyphID, |
+ SkPDFDict* relatedFontDescriptor); |
+ virtual ~SkPDFType1Font(); |
+ bool multiByteGlyphs() const override { return false; } |
+ |
+private: |
+ bool populate(int16_t glyphID); |
+ bool addFontDescriptor(int16_t defaultWidth); |
+}; |
+ |
+class SkPDFType3Font final : public SkPDFFont { |
+public: |
+ SkPDFType3Font(const SkAdvancedTypefaceMetrics* info, |
+ SkTypeface* typeface, |
+ uint16_t glyphID); |
+ virtual ~SkPDFType3Font(); |
+ bool multiByteGlyphs() const override { return false; } |
+ |
+private: |
+ bool populate(uint16_t glyphID); |
+}; |
/////////////////////////////////////////////////////////////////////////////// |
// File-Local Functions |
@@ -260,233 +320,8 @@ static void get_glyph_widths(SkSinglyLinkedList<AdvanceMetric>* glyphWidths, |
//////////////////////////////////////////////////////////////////////////////// |
-bool parsePFBSection(const uint8_t** src, size_t* len, int sectionType, |
- size_t* size) { |
- // PFB sections have a two or six bytes header. 0x80 and a one byte |
- // section type followed by a four byte section length. Type one is |
- // an ASCII section (includes a length), type two is a binary section |
- // (includes a length) and type three is an EOF marker with no length. |
- const uint8_t* buf = *src; |
- if (*len < 2 || buf[0] != 0x80 || buf[1] != sectionType) { |
- return false; |
- } else if (buf[1] == 3) { |
- return true; |
- } else if (*len < 6) { |
- return false; |
- } |
- |
- *size = (size_t)buf[2] | ((size_t)buf[3] << 8) | ((size_t)buf[4] << 16) | |
- ((size_t)buf[5] << 24); |
- size_t consumed = *size + 6; |
- if (consumed > *len) { |
- return false; |
- } |
- *src = *src + consumed; |
- *len = *len - consumed; |
- return true; |
-} |
- |
-bool parsePFB(const uint8_t* src, size_t size, size_t* headerLen, |
- size_t* dataLen, size_t* trailerLen) { |
- const uint8_t* srcPtr = src; |
- size_t remaining = size; |
- |
- return parsePFBSection(&srcPtr, &remaining, 1, headerLen) && |
- parsePFBSection(&srcPtr, &remaining, 2, dataLen) && |
- parsePFBSection(&srcPtr, &remaining, 1, trailerLen) && |
- parsePFBSection(&srcPtr, &remaining, 3, nullptr); |
-} |
- |
-/* The sections of a PFA file are implicitly defined. The body starts |
- * after the line containing "eexec," and the trailer starts with 512 |
- * literal 0's followed by "cleartomark" (plus arbitrary white space). |
- * |
- * This function assumes that src is NUL terminated, but the NUL |
- * termination is not included in size. |
- * |
- */ |
-bool parsePFA(const char* src, size_t size, size_t* headerLen, |
- size_t* hexDataLen, size_t* dataLen, size_t* trailerLen) { |
- const char* end = src + size; |
- |
- const char* dataPos = strstr(src, "eexec"); |
- if (!dataPos) { |
- return false; |
- } |
- dataPos += strlen("eexec"); |
- while ((*dataPos == '\n' || *dataPos == '\r' || *dataPos == ' ') && |
- dataPos < end) { |
- dataPos++; |
- } |
- *headerLen = dataPos - src; |
- |
- const char* trailerPos = strstr(dataPos, "cleartomark"); |
- if (!trailerPos) { |
- return false; |
- } |
- int zeroCount = 0; |
- for (trailerPos--; trailerPos > dataPos && zeroCount < 512; trailerPos--) { |
- if (*trailerPos == '\n' || *trailerPos == '\r' || *trailerPos == ' ') { |
- continue; |
- } else if (*trailerPos == '0') { |
- zeroCount++; |
- } else { |
- return false; |
- } |
- } |
- if (zeroCount != 512) { |
- return false; |
- } |
- |
- *hexDataLen = trailerPos - src - *headerLen; |
- *trailerLen = size - *headerLen - *hexDataLen; |
- |
- // Verify that the data section is hex encoded and count the bytes. |
- int nibbles = 0; |
- for (; dataPos < trailerPos; dataPos++) { |
- if (isspace(*dataPos)) { |
- continue; |
- } |
- if (!isxdigit(*dataPos)) { |
- return false; |
- } |
- nibbles++; |
- } |
- *dataLen = (nibbles + 1) / 2; |
- |
- return true; |
-} |
- |
-int8_t hexToBin(uint8_t c) { |
- if (!isxdigit(c)) { |
- return -1; |
- } else if (c <= '9') { |
- return c - '0'; |
- } else if (c <= 'F') { |
- return c - 'A' + 10; |
- } else if (c <= 'f') { |
- return c - 'a' + 10; |
- } |
- return -1; |
-} |
- |
-static sk_sp<SkData> handle_type1_stream(SkStream* srcStream, size_t* headerLen, |
- size_t* dataLen, size_t* trailerLen) { |
- // srcStream may be backed by a file or a unseekable fd, so we may not be |
- // able to use skip(), rewind(), or getMemoryBase(). read()ing through |
- // the input only once is doable, but very ugly. Furthermore, it'd be nice |
- // if the data was NUL terminated so that we can use strstr() to search it. |
- // Make as few copies as possible given these constraints. |
- SkDynamicMemoryWStream dynamicStream; |
- std::unique_ptr<SkMemoryStream> staticStream; |
- sk_sp<SkData> data; |
- const uint8_t* src; |
- size_t srcLen; |
- if ((srcLen = srcStream->getLength()) > 0) { |
- staticStream.reset(new SkMemoryStream(srcLen + 1)); |
- src = (const uint8_t*)staticStream->getMemoryBase(); |
- if (srcStream->getMemoryBase() != nullptr) { |
- memcpy((void *)src, srcStream->getMemoryBase(), srcLen); |
- } else { |
- size_t read = 0; |
- while (read < srcLen) { |
- size_t got = srcStream->read((void *)staticStream->getAtPos(), |
- srcLen - read); |
- if (got == 0) { |
- return nullptr; |
- } |
- read += got; |
- staticStream->seek(read); |
- } |
- } |
- ((uint8_t *)src)[srcLen] = 0; |
- } else { |
- static const size_t kBufSize = 4096; |
- uint8_t buf[kBufSize]; |
- size_t amount; |
- while ((amount = srcStream->read(buf, kBufSize)) > 0) { |
- dynamicStream.write(buf, amount); |
- } |
- amount = 0; |
- dynamicStream.write(&amount, 1); // nullptr terminator. |
- data.reset(dynamicStream.copyToData()); |
- src = data->bytes(); |
- srcLen = data->size() - 1; |
- } |
- |
- if (parsePFB(src, srcLen, headerLen, dataLen, trailerLen)) { |
- static const int kPFBSectionHeaderLength = 6; |
- const size_t length = *headerLen + *dataLen + *trailerLen; |
- SkASSERT(length > 0); |
- SkASSERT(length + (2 * kPFBSectionHeaderLength) <= srcLen); |
- |
- sk_sp<SkData> data(SkData::MakeUninitialized(length)); |
- |
- const uint8_t* const srcHeader = src + kPFBSectionHeaderLength; |
- // There is a six-byte section header before header and data |
- // (but not trailer) that we're not going to copy. |
- const uint8_t* const srcData = srcHeader + *headerLen + kPFBSectionHeaderLength; |
- const uint8_t* const srcTrailer = srcData + *headerLen; |
- |
- uint8_t* const resultHeader = (uint8_t*)data->writable_data(); |
- uint8_t* const resultData = resultHeader + *headerLen; |
- uint8_t* const resultTrailer = resultData + *dataLen; |
- |
- SkASSERT(resultTrailer + *trailerLen == resultHeader + length); |
- |
- memcpy(resultHeader, srcHeader, *headerLen); |
- memcpy(resultData, srcData, *dataLen); |
- memcpy(resultTrailer, srcTrailer, *trailerLen); |
- |
- return data; |
- } |
- |
- // A PFA has to be converted for PDF. |
- size_t hexDataLen; |
- if (parsePFA((const char*)src, srcLen, headerLen, &hexDataLen, dataLen, |
- trailerLen)) { |
- const size_t length = *headerLen + *dataLen + *trailerLen; |
- SkASSERT(length > 0); |
- SkAutoTMalloc<uint8_t> buffer(length); |
- |
- memcpy(buffer.get(), src, *headerLen); |
- uint8_t* const resultData = &(buffer[SkToInt(*headerLen)]); |
- |
- const uint8_t* hexData = src + *headerLen; |
- const uint8_t* trailer = hexData + hexDataLen; |
- size_t outputOffset = 0; |
- uint8_t dataByte = 0; // To hush compiler. |
- bool highNibble = true; |
- for (; hexData < trailer; hexData++) { |
- int8_t curNibble = hexToBin(*hexData); |
- if (curNibble < 0) { |
- continue; |
- } |
- if (highNibble) { |
- dataByte = curNibble << 4; |
- highNibble = false; |
- } else { |
- dataByte |= curNibble; |
- highNibble = true; |
- resultData[outputOffset++] = dataByte; |
- } |
- } |
- if (!highNibble) { |
- resultData[outputOffset++] = dataByte; |
- } |
- SkASSERT(outputOffset == *dataLen); |
- |
- uint8_t* const resultTrailer = &(buffer[SkToInt(*headerLen + outputOffset)]); |
- memcpy(resultTrailer, src + *headerLen + hexDataLen, *trailerLen); |
- |
- return SkData::MakeFromMalloc(buffer.release(), length); |
- } |
- return nullptr; |
-} |
- |
// scale from em-units to base-1000, returning as a SkScalar |
-SkScalar scaleFromFontUnits(int16_t val, uint16_t emSize) { |
- SkScalar scaled = SkIntToScalar(val); |
+SkScalar from_font_units(SkScalar scaled, uint16_t emSize) { |
if (emSize == 1000) { |
return scaled; |
} else { |
@@ -494,6 +329,11 @@ SkScalar scaleFromFontUnits(int16_t val, uint16_t emSize) { |
} |
} |
+SkScalar scaleFromFontUnits(int16_t val, uint16_t emSize) { |
+ return from_font_units(SkIntToScalar(val), emSize); |
+} |
+ |
+ |
void setGlyphWidthAndBoundingBox(SkScalar width, SkIRect box, |
SkWStream* content) { |
// Specify width and bounding box for the glyph. |
@@ -555,233 +395,6 @@ sk_sp<SkPDFArray> composeAdvanceData( |
} // namespace |
-static void append_tounicode_header(SkDynamicMemoryWStream* cmap, |
- uint16_t firstGlyphID, |
- uint16_t lastGlyphID) { |
- // 12 dict begin: 12 is an Adobe-suggested value. Shall not change. |
- // It's there to prevent old version Adobe Readers from malfunctioning. |
- const char* kHeader = |
- "/CIDInit /ProcSet findresource begin\n" |
- "12 dict begin\n" |
- "begincmap\n"; |
- cmap->writeText(kHeader); |
- |
- // The /CIDSystemInfo must be consistent to the one in |
- // SkPDFFont::populateCIDFont(). |
- // We can not pass over the system info object here because the format is |
- // different. This is not a reference object. |
- const char* kSysInfo = |
- "/CIDSystemInfo\n" |
- "<< /Registry (Adobe)\n" |
- "/Ordering (UCS)\n" |
- "/Supplement 0\n" |
- ">> def\n"; |
- cmap->writeText(kSysInfo); |
- |
- // The CMapName must be consistent to /CIDSystemInfo above. |
- // /CMapType 2 means ToUnicode. |
- // Codespace range just tells the PDF processor the valid range. |
- const char* kTypeInfoHeader = |
- "/CMapName /Adobe-Identity-UCS def\n" |
- "/CMapType 2 def\n" |
- "1 begincodespacerange\n"; |
- cmap->writeText(kTypeInfoHeader); |
- |
- // e.g. "<0000> <FFFF>\n" |
- SkString range; |
- range.appendf("<%04X> <%04X>\n", firstGlyphID, lastGlyphID); |
- cmap->writeText(range.c_str()); |
- |
- const char* kTypeInfoFooter = "endcodespacerange\n"; |
- cmap->writeText(kTypeInfoFooter); |
-} |
- |
-static void append_cmap_footer(SkDynamicMemoryWStream* cmap) { |
- const char* kFooter = |
- "endcmap\n" |
- "CMapName currentdict /CMap defineresource pop\n" |
- "end\n" |
- "end"; |
- cmap->writeText(kFooter); |
-} |
- |
-struct BFChar { |
- uint16_t fGlyphId; |
- SkUnichar fUnicode; |
-}; |
- |
-struct BFRange { |
- uint16_t fStart; |
- uint16_t fEnd; |
- SkUnichar fUnicode; |
-}; |
- |
-static void write_utf16be(SkDynamicMemoryWStream* wStream, SkUnichar utf32) { |
- uint16_t utf16[2] = {0, 0}; |
- size_t len = SkUTF16_FromUnichar(utf32, utf16); |
- SkASSERT(len == 1 || len == 2); |
- SkPDFUtils::WriteUInt16BE(wStream, utf16[0]); |
- if (len == 2) { |
- SkPDFUtils::WriteUInt16BE(wStream, utf16[1]); |
- } |
-} |
- |
-static void append_bfchar_section(const SkTDArray<BFChar>& bfchar, |
- SkDynamicMemoryWStream* cmap) { |
- // PDF spec defines that every bf* list can have at most 100 entries. |
- for (int i = 0; i < bfchar.count(); i += 100) { |
- int count = bfchar.count() - i; |
- count = SkMin32(count, 100); |
- cmap->writeDecAsText(count); |
- cmap->writeText(" beginbfchar\n"); |
- for (int j = 0; j < count; ++j) { |
- cmap->writeText("<"); |
- SkPDFUtils::WriteUInt16BE(cmap, bfchar[i + j].fGlyphId); |
- cmap->writeText("> <"); |
- write_utf16be(cmap, bfchar[i + j].fUnicode); |
- cmap->writeText(">\n"); |
- } |
- cmap->writeText("endbfchar\n"); |
- } |
-} |
- |
-static void append_bfrange_section(const SkTDArray<BFRange>& bfrange, |
- SkDynamicMemoryWStream* cmap) { |
- // PDF spec defines that every bf* list can have at most 100 entries. |
- for (int i = 0; i < bfrange.count(); i += 100) { |
- int count = bfrange.count() - i; |
- count = SkMin32(count, 100); |
- cmap->writeDecAsText(count); |
- cmap->writeText(" beginbfrange\n"); |
- for (int j = 0; j < count; ++j) { |
- cmap->writeText("<"); |
- SkPDFUtils::WriteUInt16BE(cmap, bfrange[i + j].fStart); |
- cmap->writeText("> <"); |
- SkPDFUtils::WriteUInt16BE(cmap, bfrange[i + j].fEnd); |
- cmap->writeText("> <"); |
- write_utf16be(cmap, bfrange[i + j].fUnicode); |
- cmap->writeText(">\n"); |
- } |
- cmap->writeText("endbfrange\n"); |
- } |
-} |
- |
-// Generate <bfchar> and <bfrange> table according to PDF spec 1.4 and Adobe |
-// Technote 5014. |
-// The function is not static so we can test it in unit tests. |
-// |
-// Current implementation guarantees bfchar and bfrange entries do not overlap. |
-// |
-// Current implementation does not attempt aggresive optimizations against |
-// following case because the specification is not clear. |
-// |
-// 4 beginbfchar 1 beginbfchar |
-// <0003> <0013> <0020> <0014> |
-// <0005> <0015> to endbfchar |
-// <0007> <0017> 1 beginbfrange |
-// <0020> <0014> <0003> <0007> <0013> |
-// endbfchar endbfrange |
-// |
-// Adobe Technote 5014 said: "Code mappings (unlike codespace ranges) may |
-// overlap, but succeeding maps supersede preceding maps." |
-// |
-// In case of searching text in PDF, bfrange will have higher precedence so |
-// typing char id 0x0014 in search box will get glyph id 0x0004 first. However, |
-// the spec does not mention how will this kind of conflict being resolved. |
-// |
-// For the worst case (having 65536 continuous unicode and we use every other |
-// one of them), the possible savings by aggressive optimization is 416KB |
-// pre-compressed and does not provide enough motivation for implementation. |
- |
-// TODO(halcanary): this should be in a header so that it is separately testable |
-// ( see caller in tests/ToUnicode.cpp ) |
-void append_cmap_sections(const SkTDArray<SkUnichar>& glyphToUnicode, |
- const SkPDFGlyphSet* subset, |
- SkDynamicMemoryWStream* cmap, |
- bool multiByteGlyphs, |
- uint16_t firstGlyphID, |
- uint16_t lastGlyphID); |
- |
-void append_cmap_sections(const SkTDArray<SkUnichar>& glyphToUnicode, |
- const SkPDFGlyphSet* subset, |
- SkDynamicMemoryWStream* cmap, |
- bool multiByteGlyphs, |
- uint16_t firstGlyphID, |
- uint16_t lastGlyphID) { |
- if (glyphToUnicode.isEmpty()) { |
- return; |
- } |
- int glyphOffset = 0; |
- if (!multiByteGlyphs) { |
- glyphOffset = firstGlyphID - 1; |
- } |
- |
- SkTDArray<BFChar> bfcharEntries; |
- SkTDArray<BFRange> bfrangeEntries; |
- |
- BFRange currentRangeEntry = {0, 0, 0}; |
- bool rangeEmpty = true; |
- const int limit = |
- SkMin32(lastGlyphID + 1, glyphToUnicode.count()) - glyphOffset; |
- |
- for (int i = firstGlyphID - glyphOffset; i < limit + 1; ++i) { |
- bool inSubset = i < limit && |
- (subset == nullptr || subset->has(i + glyphOffset)); |
- if (!rangeEmpty) { |
- // PDF spec requires bfrange not changing the higher byte, |
- // e.g. <1035> <10FF> <2222> is ok, but |
- // <1035> <1100> <2222> is no good |
- bool inRange = |
- i == currentRangeEntry.fEnd + 1 && |
- i >> 8 == currentRangeEntry.fStart >> 8 && |
- i < limit && |
- glyphToUnicode[i + glyphOffset] == |
- currentRangeEntry.fUnicode + i - currentRangeEntry.fStart; |
- if (!inSubset || !inRange) { |
- if (currentRangeEntry.fEnd > currentRangeEntry.fStart) { |
- bfrangeEntries.push(currentRangeEntry); |
- } else { |
- BFChar* entry = bfcharEntries.append(); |
- entry->fGlyphId = currentRangeEntry.fStart; |
- entry->fUnicode = currentRangeEntry.fUnicode; |
- } |
- rangeEmpty = true; |
- } |
- } |
- if (inSubset) { |
- currentRangeEntry.fEnd = i; |
- if (rangeEmpty) { |
- currentRangeEntry.fStart = i; |
- currentRangeEntry.fUnicode = glyphToUnicode[i + glyphOffset]; |
- rangeEmpty = false; |
- } |
- } |
- } |
- |
- // The spec requires all bfchar entries for a font must come before bfrange |
- // entries. |
- append_bfchar_section(bfcharEntries, cmap); |
- append_bfrange_section(bfrangeEntries, cmap); |
-} |
- |
-static sk_sp<SkPDFStream> generate_tounicode_cmap( |
- const SkTDArray<SkUnichar>& glyphToUnicode, |
- const SkPDFGlyphSet* subset, |
- bool multiByteGlyphs, |
- uint16_t firstGlyphID, |
- uint16_t lastGlyphID) { |
- SkDynamicMemoryWStream cmap; |
- if (multiByteGlyphs) { |
- append_tounicode_header(&cmap, firstGlyphID, lastGlyphID); |
- } else { |
- append_tounicode_header(&cmap, 1, lastGlyphID - firstGlyphID + 1); |
- } |
- append_cmap_sections(glyphToUnicode, subset, &cmap, multiByteGlyphs, |
- firstGlyphID, lastGlyphID); |
- append_cmap_footer(&cmap); |
- return sk_make_sp<SkPDFStream>( |
- std::unique_ptr<SkStreamAsset>(cmap.detachAsStream())); |
-} |
/////////////////////////////////////////////////////////////////////////////// |
// class SkPDFGlyphSet |
@@ -1069,11 +682,11 @@ void SkPDFFont::populateToUnicodeTable(const SkPDFGlyphSet* subset) { |
return; |
} |
this->insertObjRef("ToUnicode", |
- generate_tounicode_cmap(fFontInfo->fGlyphToUnicode, |
- subset, |
- multiByteGlyphs(), |
- firstGlyphID(), |
- lastGlyphID())); |
+ SkPDFMakeToUnicodeCmap(fFontInfo->fGlyphToUnicode, |
+ subset, |
+ multiByteGlyphs(), |
+ firstGlyphID(), |
+ lastGlyphID())); |
} |
/////////////////////////////////////////////////////////////////////////////// |
@@ -1274,6 +887,20 @@ void set_glyph_widths(SkTypeface* tf, |
} |
} |
+sk_sp<const SkAdvancedTypefaceMetrics> SkPDFFont::GetFontMetricsWithGlyphNames( |
+ SkTypeface* typeface, uint32_t* glyphs, uint32_t glyphsCount) { |
+ return sk_sp<const SkAdvancedTypefaceMetrics>( |
+ typeface->getAdvancedTypefaceMetrics( |
+ SkTypeface::kGlyphNames_PerGlyphInfo, glyphs, glyphsCount)); |
+} |
+ |
+sk_sp<const SkAdvancedTypefaceMetrics> SkPDFFont::GetFontMetricsWithToUnicode( |
+ SkTypeface* typeface, uint32_t* glyphs, uint32_t glyphsCount) { |
+ return sk_sp<const SkAdvancedTypefaceMetrics>( |
+ typeface->getAdvancedTypefaceMetrics( |
+ SkTypeface::kToUnicode_PerGlyphInfo, glyphs, glyphsCount)); |
+} |
+ |
bool SkPDFCIDFont::populate(const SkPDFGlyphSet* subset) { |
// Generate new font metrics with advance info for true type fonts. |
// Generate glyph id array. |
@@ -1285,13 +912,12 @@ bool SkPDFCIDFont::populate(const SkPDFGlyphSet* subset) { |
subset->exportTo(&glyphIDs); |
} |
if (fontInfo()->fType == SkAdvancedTypefaceMetrics::kTrueType_Font) { |
- SkTypeface::PerGlyphInfo info = SkTypeface::kGlyphNames_PerGlyphInfo; |
uint32_t* glyphs = (glyphIDs.count() == 0) ? nullptr : glyphIDs.begin(); |
uint32_t glyphsCount = glyphs ? glyphIDs.count() : 0; |
- sk_sp<const SkAdvancedTypefaceMetrics> fontMetrics( |
- typeface()->getAdvancedTypefaceMetrics(info, glyphs, glyphsCount)); |
- setFontInfo(fontMetrics.get()); |
- addFontDescriptor(0, &glyphIDs); |
+ sk_sp<const SkAdvancedTypefaceMetrics> fontMetrics = |
+ SkPDFFont::GetFontMetricsWithGlyphNames(this->typeface(), glyphs, glyphsCount); |
+ this->setFontInfo(fontMetrics.get()); |
+ this->addFontDescriptor(0, &glyphIDs); |
} else { |
// Other CID fonts |
addFontDescriptor(0, nullptr); |
@@ -1357,13 +983,9 @@ bool SkPDFType1Font::addFontDescriptor(int16_t defaultWidth) { |
size_t data SK_INIT_TO_AVOID_WARNING; |
size_t trailer SK_INIT_TO_AVOID_WARNING; |
std::unique_ptr<SkStreamAsset> rawFontData(typeface()->openStream(&ttcIndex)); |
- SkASSERT(rawFontData); |
- SkASSERT(rawFontData->getLength() > 0); |
- if (!rawFontData || 0 == rawFontData->getLength()) { |
- return false; |
- } |
- sk_sp<SkData> fontData(handle_type1_stream(rawFontData.get(), &header, &data, &trailer)); |
- if (fontData.get() == nullptr) { |
+ sk_sp<SkData> fontData = SkPDFConvertType1FontStream(std::move(rawFontData), |
+ &header, &data, &trailer); |
+ if (!fontData) { |
return false; |
} |
SkASSERT(this->canEmbed()); |
@@ -1379,43 +1001,47 @@ bool SkPDFType1Font::addFontDescriptor(int16_t defaultWidth) { |
} |
bool SkPDFType1Font::populate(int16_t glyphID) { |
+ this->insertName("Subtype", "Type1"); |
+ this->insertName("BaseFont", fontInfo()->fFontName); |
adjustGlyphRangeForSingleByteEncoding(glyphID); |
- |
- int16_t defaultWidth = 0; |
- const AdvanceMetric* widthRangeEntry = nullptr; |
+ SkGlyphID firstGlyphID = this->firstGlyphID(); |
+ SkGlyphID lastGlyphID = this->lastGlyphID(); |
+ |
+ // glyphCount not including glyph 0 |
+ unsigned glyphCount = 1 + lastGlyphID - firstGlyphID; |
+ SkASSERT(glyphCount > 0 && glyphCount <= 255); |
+ this->insertInt("FirstChar", (size_t)0); |
+ this->insertInt("LastChar", (size_t)glyphCount); |
{ |
- SkSinglyLinkedList<AdvanceMetric> tmpMetrics; |
- set_glyph_widths(this->typeface(), nullptr, &tmpMetrics); |
- for (const auto& widthEntry : tmpMetrics) { |
- switch (widthEntry.fType) { |
- case AdvanceMetric::kDefault: |
- defaultWidth = widthEntry.fAdvance[0]; |
- break; |
- case AdvanceMetric::kRun: |
- SkASSERT(false); |
- break; |
- case AdvanceMetric::kRange: |
- SkASSERT(widthRangeEntry == nullptr); |
- widthRangeEntry = &widthEntry; |
- break; |
- } |
+ SkPaint tmpPaint; |
+ tmpPaint.setHinting(SkPaint::kNo_Hinting); |
+ tmpPaint.setTypeface(sk_ref_sp(this->typeface())); |
+ tmpPaint.setTextSize((SkScalar)this->typeface()->getUnitsPerEm()); |
+ SkAutoGlyphCache glyphCache(tmpPaint, nullptr, nullptr); |
+ auto widths = sk_make_sp<SkPDFArray>(); |
+ SkScalar advance = glyphCache->getGlyphIDAdvance(0).fAdvanceX; |
+ const uint16_t emSize = this->fontInfo()->fEmSize; |
+ widths->appendScalar(from_font_units(advance, emSize)); |
+ for (unsigned gID = firstGlyphID; gID <= lastGlyphID; gID++) { |
+ advance = glyphCache->getGlyphIDAdvance(gID).fAdvanceX; |
+ widths->appendScalar(from_font_units(advance, emSize)); |
} |
+ this->insertObject("Widths", std::move(widths)); |
} |
- |
- if (!addFontDescriptor(defaultWidth)) { |
+ if (!addFontDescriptor(0)) { |
return false; |
} |
- |
- insertName("Subtype", "Type1"); |
- insertName("BaseFont", fontInfo()->fFontName); |
- |
- addWidthInfoFromRange(defaultWidth, widthRangeEntry); |
auto encDiffs = sk_make_sp<SkPDFArray>(); |
- encDiffs->reserve(lastGlyphID() - firstGlyphID() + 2); |
- encDiffs->appendInt(1); |
- SkASSERT(this->fontInfo()->fGlyphNames.count() >= this->lastGlyphID()); |
- for (int gID = firstGlyphID(); gID <= lastGlyphID(); gID++) { |
- encDiffs->appendName(fontInfo()->fGlyphNames[gID].c_str()); |
+ encDiffs->reserve(lastGlyphID - firstGlyphID + 3); |
+ encDiffs->appendInt(0); |
+ const SkTArray<SkString>& glyphNames = this->fontInfo()->fGlyphNames; |
+ SkASSERT(glyphNames.count() > lastGlyphID); |
+ encDiffs->appendName(glyphNames[0].c_str()); |
+ const SkString unknown("UNKNOWN"); |
+ for (int gID = firstGlyphID; gID <= lastGlyphID; gID++) { |
+ const bool valid = gID < glyphNames.count() && !glyphNames[gID].isEmpty(); |
+ const SkString& name = valid ? glyphNames[gID] : unknown; |
+ encDiffs->appendName(name); |
} |
auto encoding = sk_make_sp<SkPDFDict>("Encoding"); |
@@ -1424,38 +1050,6 @@ bool SkPDFType1Font::populate(int16_t glyphID) { |
return true; |
} |
-void SkPDFType1Font::addWidthInfoFromRange( |
- int16_t defaultWidth, |
- const AdvanceMetric* widthRangeEntry) { |
- auto widthArray = sk_make_sp<SkPDFArray>(); |
- int firstChar = 0; |
- if (widthRangeEntry) { |
- const uint16_t emSize = fontInfo()->fEmSize; |
- int startIndex = firstGlyphID() - widthRangeEntry->fStartId; |
- int endIndex = startIndex + lastGlyphID() - firstGlyphID() + 1; |
- if (startIndex < 0) |
- startIndex = 0; |
- if (endIndex > widthRangeEntry->fAdvance.count()) |
- endIndex = widthRangeEntry->fAdvance.count(); |
- if (widthRangeEntry->fStartId == 0) { |
- widthArray->appendScalar( |
- scaleFromFontUnits(widthRangeEntry->fAdvance[0], emSize)); |
- } else { |
- firstChar = startIndex + widthRangeEntry->fStartId; |
- } |
- for (int i = startIndex; i < endIndex; i++) { |
- widthArray->appendScalar( |
- scaleFromFontUnits(widthRangeEntry->fAdvance[i], emSize)); |
- } |
- } else { |
- widthArray->appendScalar( |
- scaleFromFontUnits(defaultWidth, 1000)); |
- } |
- this->insertInt("FirstChar", firstChar); |
- this->insertInt("LastChar", firstChar + widthArray->size() - 1); |
- this->insertObject("Widths", std::move(widthArray)); |
-} |
- |
/////////////////////////////////////////////////////////////////////////////// |
// class SkPDFType3Font |
/////////////////////////////////////////////////////////////////////////////// |