Index: src/core/SkScan_AAAPath.cpp |
diff --git a/src/core/SkScan_AAAPath.cpp b/src/core/SkScan_AAAPath.cpp |
new file mode 100644 |
index 0000000000000000000000000000000000000000..37de2ca51650b171f55bd4d3889c460aef47cbb4 |
--- /dev/null |
+++ b/src/core/SkScan_AAAPath.cpp |
@@ -0,0 +1,879 @@ |
+/* |
+ * Copyright 2016 The Android Open Source Project |
+ * |
+ * Use of this source code is governed by a BSD-style license that can be |
+ * found in the LICENSE file. |
+ */ |
+ |
+#include "SkAntiRun.h" |
+#include "SkBlitter.h" |
+#include "SkEdge.h" |
+#include "SkEdgeBuilder.h" |
+#include "SkGeometry.h" |
+#include "SkPath.h" |
+#include "SkQuadClipper.h" |
+#include "SkRasterClip.h" |
+#include "SkRegion.h" |
+#include "SkScan.h" |
+#include "SkScanPriv.h" |
+#include "SkTemplates.h" |
+#include "SkTSort.h" |
+#include "SkUtils.h" |
+ |
+/////////////////////////////////////////////////////////////////////////////// |
+ |
+/* |
+ |
+The following is a high-level overview of our analytic anti-aliasing |
+algorithm. We consider a path as a collection of line segments, as |
+quadratic/cubic curves are converted to small line segments. Without loss of |
+generality, let's assume that the draw region is [0, W] x [0, H]. |
+ |
+Our algorithm is based on horizontal scan lines (y = c_i) as the previous |
+sampling-based algorithm did. However, our algorithm uses non-equal-spaced |
+scan lines, while the previous method always uses equal-spaced scan lines, |
+such as (y = 1/2 + 0, 1/2 + 1, 1/2 + 2, ...) in the previous non-AA algorithm, |
+and (y = 1/8 + 1/4, 1/8 + 2/4, 1/8 + 3/4, ...) in the previous |
+16-supersampling AA algorithm. |
+ |
+Our algorithm contains scan lines y = c_i for c_i that is either: |
+ |
+1. an integer between [0, H] |
+ |
+2. the y value of a line segment endpoint |
+ |
+3. the y value of an intersection of two line segments |
+ |
+For two consecutive scan lines y = c_i, y = c_{i+1}, we analytically computes |
+the coverage of this horizontal strip of our path on each pixel. This can be |
+done very efficiently because the strip of our path now only consists of |
+trapezoids whose top and bottom edges are y = c_i, y = c_{i+1} (this includes |
+rectangles and triangles as special cases). |
+ |
+We now describe how the coverage of single pixel is computed against such a |
+trapezoid. That coverage is essentially the intersection area of a rectangle |
+(e.g., [0, 1] x [c_i, c_{i+1}]) and our trapezoid. However, that intersection |
+could be complicated, as shown in the example region A below: |
+ |
++-----------\----+ |
+| \ C| |
+| \ | |
+\ \ | |
+|\ A \| |
+| \ \ |
+| \ | |
+| B \ | |
++----\-----------+ |
+ |
+However, we don't have to compute the area of A directly. Instead, we can |
+compute the excluded area, which are B and C, quite easily, because they're |
+just triangles. In fact, we can prove that an excluded region (take B as an |
+example) is either itself a simple trapezoid (including rectangles, triangles, |
+and empty regions), or its opposite (the opposite of B is A + C) is a simple |
+trapezoid. In any case, we can compute its area efficiently. |
+ |
+In summary, our algorithm has a higher quality because it generates ground- |
+truth coverages analytically. It is also faster because it has much fewer |
+unnessasary horizontal scan lines. For example, given a triangle path, the |
+number of scan lines in our algorithm is only about 3 + H while the |
+16-supersampling algorithm has about 4H scan lines. |
+ |
+*/ |
+ |
+/////////////////////////////////////////////////////////////////////////////// |
+ |
+class AdditiveBlitter : public SkBlitter { |
+public: |
+ AdditiveBlitter(SkBlitter* realBlitter, const SkIRect& ir, const SkRegion& clip, |
+ bool isInverse); |
+ ~AdditiveBlitter(); |
+ |
+ SkBlitter* getRealBlitter(); |
+ |
+ void blitAntiH(int x, int y, const SkAlpha antialias[], const int16_t runs[]) override; |
+ void blitAntiH(int x, int y, const SkAlpha alpha); |
+ void blitAntiH(int x, int y, int width, const SkAlpha alpha); |
+ |
+ void blitV(int x, int y, int height, SkAlpha alpha) override { |
+ SkDEBUGFAIL("Please call real blitter's blitV instead."); |
+ } |
+ |
+ void blitH(int x, int y, int width) override { |
+ SkDEBUGFAIL("Please call real blitter's blitH instead."); |
+ } |
+ |
+ void blitRect(int x, int y, int width, int height) override { |
+ SkDEBUGFAIL("Please call real blitter's blitRect instead."); |
+ } |
+ |
+ void blitAntiRect(int x, int y, int width, int height, |
+ SkAlpha leftAlpha, SkAlpha rightAlpha) override { |
+ SkDEBUGFAIL("Please call real blitter's blitAntiRect instead."); |
+ } |
+ |
+ int getWidth(); |
+ |
+private: |
+ SkBlitter* fRealBlitter; |
+ |
+ /// Current y coordinate |
+ int fCurrY; |
+ /// Widest row of region to be blitted |
+ int fWidth; |
+ /// Leftmost x coordinate in any row |
+ int fLeft; |
+ /// Initial y coordinate (top of bounds). |
+ int fTop; |
+ |
+ // The next three variables are used to track a circular buffer that |
+ // contains the values used in SkAlphaRuns. These variables should only |
+ // ever be updated in advanceRuns(), and fRuns should always point to |
+ // a valid SkAlphaRuns... |
+ int fRunsToBuffer; |
+ void* fRunsBuffer; |
+ int fCurrentRun; |
+ SkAlphaRuns fRuns; |
+ |
+ int fOffsetX; |
+ |
+ inline bool check(int x, int width) { |
+ #ifdef SK_DEBUG |
+ if (x < 0 || x + width > fWidth) { |
+ SkDebugf("Ignore x = %d, width = %d\n", x, width); |
+ } |
+ #endif |
+ return (x >= 0 && x + width <= fWidth); |
+ } |
+ |
+ // extra one to store the zero at the end |
+ inline int getRunsSz() const { return (fWidth + 1 + (fWidth + 2)/2) * sizeof(int16_t); } |
+ |
+ // This function updates the fRuns variable to point to the next buffer space |
+ // with adequate storage for a SkAlphaRuns. It mostly just advances fCurrentRun |
+ // and resets fRuns to point to an empty scanline. |
+ inline void advanceRuns() { |
+ const size_t kRunsSz = this->getRunsSz(); |
+ fCurrentRun = (fCurrentRun + 1) % fRunsToBuffer; |
+ fRuns.fRuns = reinterpret_cast<int16_t*>( |
+ reinterpret_cast<uint8_t*>(fRunsBuffer) + fCurrentRun * kRunsSz); |
+ fRuns.fAlpha = reinterpret_cast<SkAlpha*>(fRuns.fRuns + fWidth + 1); |
+ fRuns.reset(fWidth); |
+ } |
+ |
+ inline SkAlpha snapAlpha(SkAlpha alpha) { |
+ return alpha > 247 ? 0xFF : alpha < 8 ? 0 : alpha; |
+ } |
+ |
+ inline void flush() { |
+ if (fCurrY >= fTop) { |
+ SkASSERT(fCurrentRun < fRunsToBuffer); |
+ for (int x = 0; fRuns.fRuns[x]; x += fRuns.fRuns[x]) { |
+ // It seems that blitting 255 or 0 is much faster than blitting 254 or 1 |
+ fRuns.fAlpha[x] = snapAlpha(fRuns.fAlpha[x]); |
+ } |
+ if (!fRuns.empty()) { |
+ // SkDEBUGCODE(fRuns.dump();) |
+ fRealBlitter->blitAntiH(fLeft, fCurrY, fRuns.fAlpha, fRuns.fRuns); |
+ this->advanceRuns(); |
+ fOffsetX = 0; |
+ } |
+ fCurrY = fTop - 1; |
+ } |
+ } |
+ |
+ inline void checkY(int y) { |
+ if (y != fCurrY) { |
+ this->flush(); |
+ fCurrY = y; |
+ } |
+ } |
+}; |
+ |
+AdditiveBlitter::AdditiveBlitter(SkBlitter* realBlitter, const SkIRect& ir, const SkRegion& clip, |
+ bool isInverse) { |
+ fRealBlitter = realBlitter; |
+ |
+ SkIRect sectBounds; |
+ if (isInverse) { |
+ // We use the clip bounds instead of the ir, since we may be asked to |
+ //draw outside of the rect when we're a inverse filltype |
+ sectBounds = clip.getBounds(); |
+ } else { |
+ if (!sectBounds.intersect(ir, clip.getBounds())) { |
+ sectBounds.setEmpty(); |
+ } |
+ } |
+ |
+ const int left = sectBounds.left(); |
+ const int right = sectBounds.right(); |
+ |
+ fLeft = left; |
+ fWidth = right - left; |
+ fTop = sectBounds.top(); |
+ fCurrY = fTop - 1; |
+ |
+ fRunsToBuffer = realBlitter->requestRowsPreserved(); |
+ fRunsBuffer = realBlitter->allocBlitMemory(fRunsToBuffer * this->getRunsSz()); |
+ fCurrentRun = -1; |
+ |
+ this->advanceRuns(); |
+ |
+ fOffsetX = 0; |
+} |
+ |
+AdditiveBlitter::~AdditiveBlitter() { |
+ this->flush(); |
+} |
+ |
+SkBlitter* AdditiveBlitter::getRealBlitter() { |
+ return fRealBlitter; |
+} |
+ |
+void AdditiveBlitter::blitAntiH(int x, int y, const SkAlpha antialias[], const int16_t runs[]) { |
+ checkY(y); |
+ x -= fLeft; |
+ |
+ if (x < fOffsetX) { |
+ fOffsetX = 0; |
+ } |
+ |
+ for (int i=0; runs[i]; i += runs[i]) { |
+ if (check(x, runs[i])) { |
+ fOffsetX = fRuns.add(x, 0, runs[i], 0, antialias[i], fOffsetX); |
+ } |
+ x += runs[i]; |
+ } |
+} |
+ |
+void AdditiveBlitter::blitAntiH(int x, int y, const SkAlpha alpha) { |
+ checkY(y); |
+ x -= fLeft; |
+ |
+ if (x < fOffsetX) { |
+ fOffsetX = 0; |
+ } |
+ |
+ if (check(x, 1)) { |
+ fOffsetX = fRuns.add(x, 0, 1, 0, alpha, fOffsetX); |
+ } |
+} |
+ |
+void AdditiveBlitter::blitAntiH(int x, int y, int width, const SkAlpha alpha) { |
+ checkY(y); |
+ x -= fLeft; |
+ |
+ if (x < fOffsetX) { |
+ fOffsetX = 0; |
+ } |
+ |
+ if (check(x, width)) { |
+ fOffsetX = fRuns.add(x, 0, width, 0, alpha, fOffsetX); |
+ } |
+} |
+ |
+int AdditiveBlitter::getWidth() { return fWidth; } |
+ |
+/////////////////////////////////////////////////////////////////////////////// |
+ |
+// Return the alpha of a trapezoid whose height is 1 |
+inline SkAlpha trapezoidToAlpha(SkFixed l1, SkFixed l2) { |
+ SkASSERT(l1 >= 0 && l2 >= 0); |
+ return ((l1 + l2) >> 9); |
+} |
+ |
+// Return the alpha of a right-angle triangle whose two right-angle edges are l1, l2 |
+inline SkAlpha triangleToAlpha(SkFixed l1, SkFixed l2) { |
+ SkASSERT(l1 >= 0 && l2 >= 0); |
+ // Since l1, l2 <= SK_Fixed1, we should be able to become more accurate in multiplication |
+ return SkFixedMul_lowprec(l1, l2) >> 9; |
+} |
+ |
+inline SkAlpha getPartialAlpha(SkAlpha alpha, SkFixed partialHeight) { |
+ return (alpha * partialHeight) >> 16; |
+} |
+ |
+// Suppose that line (l1, y)-(r1, y+1) intersects with (l2, y)-(r2, y+1), |
+// approximate (very coarsely) the x coordinate of the intersection. |
+inline SkFixed approximateIntersection(SkFixed l1, SkFixed r1, SkFixed l2, SkFixed r2) { |
+ if (l1 > r1) { SkTSwap(l1, r1); } |
+ if (l2 > r2) { SkTSwap(l2, r2); } |
+ return (SkTMax(l1, l2) + SkTMin(r1, r2)) >> 1; |
+} |
+ |
+inline void computeAlphaAboveLine(SkAlpha* alphas, SkFixed l, SkFixed r, SkFixed dY, SkFixed rowHeight) { |
+ SkASSERT(l <= r); |
+ SkASSERT(l >> 16 == 0); |
+ int R = SkFixedCeilToInt(r); |
+ if (R == 0) { |
+ return; |
+ } else if (R == 1) { |
+ alphas[0] = getPartialAlpha(((R << 17) - l - r) >> 9, rowHeight); |
+ } else { |
+ SkFixed first = SK_Fixed1 - l; |
+ SkFixed last = r - ((R - 1) << 16); |
+ SkFixed alpha16 = SkFixedMul_lowprec(first, SkFixedMul_lowprec(first, dY)) >> 1; |
+ for (int i = 0; i < R - 1; i++) { |
+ alphas[i] = alpha16 >> 8; |
+ alpha16 += dY; |
+ } |
+ alphas[R - 1] = getPartialAlpha(0xFF, rowHeight) - triangleToAlpha(last, SkFixedMul_lowprec(last, dY)); |
+ } |
+} |
+ |
+inline void computeAlphaBelowLine(SkAlpha* alphas, SkFixed l, SkFixed r, SkFixed dY, SkFixed rowHeight) { |
+ SkASSERT(l <= r); |
+ SkASSERT(l >> 16 == 0); |
+ int R = SkFixedCeilToInt(r); |
+ if (R == 0) { |
+ return; |
+ } else if (R == 1) { |
+ alphas[0] = getPartialAlpha(trapezoidToAlpha(l, r), rowHeight); |
+ } else { |
+ SkFixed first = SK_Fixed1 - l; |
+ SkFixed last = r - ((R - 1) << 16); |
+ SkFixed alpha16 = SkFixedMul_lowprec(last, SkFixedMul_lowprec(last, dY)) >> 1; |
+ for (int i = R - 1; i > 0; i--) { |
+ alphas[i] = alpha16 >> 8; |
+ alpha16 += dY; |
+ } |
+ alphas[0] = getPartialAlpha(0xFF, rowHeight) - triangleToAlpha(first, SkFixedMul_lowprec(first, dY)); |
+ } |
+} |
+ |
+// Blit antialiasing trapzoid (ul, y), (ur, y), (ll, y + rowHeight), (lr, y + rowHeight) |
+// ul = upper left, ur = upper rite, ll = lower left, lr = lower rite |
+// When rowHeight < SK_Fixed1, blit the partial row with that partial height. |
+// lDY is the dY for the left edge (ul, y) - (ll, y + rowHeight), |
+// and rDY is the dY for the right edge. |
+// |
+// NOTE! To increase performance, we use real blitter (without additive alphas) |
+// if rowHeight = SK_Fixed1. Therefore, we'll lose information if there are |
+// many thin vertical strips within the same pixel. |
+void blit_aaa_trapzoid_row(AdditiveBlitter* blitter, int y, |
+ SkFixed ul, SkFixed ur, SkFixed ll, SkFixed lr, |
+ SkFixed lDY, SkFixed rDY, |
+ SkFixed rowHeight) { |
+ SkASSERT(lDY >= 0 && rDY >= 0); // We should only send in the absolte value |
+ |
+ if (ul > ur) { |
+#ifdef SK_DEBUG |
+ SkDebugf("ul = %f > ur = %f!\n", SkFixedToFloat(ul), SkFixedToFloat(ur)); |
+#endif |
+ return; |
+ } |
+ |
+ // Edge crosses. Approximate it. This should only happend due to precision limit, |
+ // so the approximation could be very coarse. |
+ if (ll > lr) { |
+#ifdef SK_DEBUG |
+ SkDebugf("approximate intersection: %d %f %f\n", y, |
+ SkFixedToFloat(ll), SkFixedToFloat(lr)); |
+#endif |
+ ll = lr = approximateIntersection(ul, ll, ur, lr); |
+ } |
+ |
+ if (ul == ur && ll == lr) { |
+ return; // empty trapzoid |
+ } |
+ |
+ bool isFullRow = rowHeight == SK_Fixed1; |
+ SkAlpha fullAlpha = getPartialAlpha(0xFF, rowHeight); |
+ |
+ SkFixed joinLeft = SkFixedCeilToFixed(SkTMax(ul, ll)); |
+ SkFixed joinRite = SkFixedFloorToFixed(SkTMin(ur, lr)); |
+ if (joinLeft < joinRite) { |
+ // There's a strip from joinLeft to joinRite that we can blit at once |
+ blit_aaa_trapzoid_row(blitter, y, ul, joinLeft, ll, joinLeft, lDY, SK_MaxS32, rowHeight); |
+ if (isFullRow) { |
+ blitter->getRealBlitter()->blitH(joinLeft >> 16, y, (joinRite - joinLeft) >> 16); |
+ } else { |
+ blitter->blitAntiH(joinLeft >> 16, y, (joinRite - joinLeft) >> 16, fullAlpha); |
+ } |
+ blit_aaa_trapzoid_row(blitter, y, joinRite, ur, joinRite, lr, SK_MaxS32, rDY, rowHeight); |
+ return; |
+ } |
+ |
+ SkFixed left = SkTMin(ul, ll), rite = SkTMax(ur, lr); |
+ int L = SkFixedFloorToInt(left), R = SkFixedCeilToInt(rite); |
+ int len = R - L; |
+ |
+ #ifdef SK_DEBUG |
+ // SkDebugf("y = %d, len = %d\n", y, len); |
+ #endif |
+ |
+ if (len == 1) { // Most of the time, len is 1 so we accelerate it |
+ SkAlpha alpha = trapezoidToAlpha(ur - ul, lr - ll); |
+ if (isFullRow) { |
+ blitter->getRealBlitter()->blitV(L, y, 1, alpha); |
+ } else { |
+ blitter->blitAntiH(L, y, getPartialAlpha(alpha, rowHeight)); |
+ } |
+ return; |
+ } |
+ |
+ SkAutoSMalloc<1024> storage((len + 1) * (sizeof(SkAlpha) * 2 + sizeof(int16_t))); |
+ SkAlpha* alphas = (SkAlpha*)storage.get(); |
+ SkAlpha* tempAlphas = alphas + len + 1; |
+ int16_t* runs = (int16_t*)(alphas + (len + 1) * 2); |
+ |
+ // We're going to use the left line ul-ll and the rite line ur-lr |
+ // to exclude the area that's not covered by the path. |
+ // Swapping (ul, ll) or (ur, lr) won't affect that exclusion |
+ // so we'll do that for simplicity. |
+ if (ul > ll) { SkTSwap(ul, ll); } |
+ if (ur > lr) { SkTSwap(ur, lr); } |
+ |
+ for (int i = 0; i < len; i++) { |
+ runs[i] = 1; |
+ alphas[i] = fullAlpha; |
+ } |
+ runs[len] = 0; |
+ |
+ if (ul == ll && ll == L << 16) { // the left edge is vertical integer |
+ computeAlphaBelowLine(alphas, ur - (L << 16), lr - (L << 16), rDY, rowHeight); |
+ } else if (ur == lr && lr == R << 16) { // the right edge is vertical integer |
+ computeAlphaAboveLine(alphas, ul - (L << 16), ll - (L << 16), lDY, rowHeight); |
+ } else { |
+ int uL = SkFixedFloorToInt(ul); |
+ int lL = SkFixedCeilToInt(ll); |
+ computeAlphaBelowLine(tempAlphas + uL - L, ul - (uL << 16), ll - (uL << 16), |
+ lDY, rowHeight); |
+ for (int i = uL; i < lL; i++) { |
+ if (alphas[i - L] > tempAlphas[i - L]) { |
+ alphas[i - L] -= tempAlphas[i - L]; |
+ } else { |
+ alphas[i - L] = 0; |
+ } |
+ } |
+ |
+ int uR = SkFixedFloorToInt(ur); |
+ int lR = SkFixedCeilToInt(lr); |
+ computeAlphaAboveLine(tempAlphas + uR - L, ur - (uR << 16), lr - (uR << 16), |
+ rDY, rowHeight); |
+ for (int i = uR; i < lR; i++) { |
+ if (alphas[i - L] > tempAlphas[i - L]) { |
+ alphas[i - L] -= tempAlphas[i - L]; |
+ } else { |
+ alphas[i - L] = 0; |
+ } |
+ } |
+ } |
+ |
+ if (isFullRow) { |
+ blitter->getRealBlitter()->blitAntiH(L, y, alphas, runs); |
+ } else { |
+ blitter->blitAntiH(L, y, alphas, runs); |
+ } |
+} |
+ |
+/////////////////////////////////////////////////////////////////////////////// |
+ |
+static bool operator<(const SkAnalyticEdge& a, const SkAnalyticEdge& b) { |
+ int valuea = a.fUpperY; |
+ int valueb = b.fUpperY; |
+ |
+ if (valuea == valueb) { |
+ valuea = a.fX; |
+ valueb = b.fX; |
+ } |
+ |
+ if (valuea == valueb) { |
+ valuea = a.fDX; |
+ valueb = b.fDX; |
+ } |
+ |
+ return valuea < valueb; |
+} |
+ |
+static SkAnalyticEdge* sort_edges(SkAnalyticEdge* list[], int count, SkAnalyticEdge** last) { |
+ SkTQSort(list, list + count - 1); |
+ |
+ // now make the edges linked in sorted order |
+ for (int i = 1; i < count; i++) { |
+ list[i - 1]->fNext = list[i]; |
+ list[i]->fPrev = list[i - 1]; |
+ } |
+ |
+ *last = list[count - 1]; |
+ return list[0]; |
+} |
+ |
+#ifdef SK_DEBUG |
+ static void validate_sort(const SkAnalyticEdge* edge) { |
+ SkFixed y = SkIntToFixed(-32768); |
+ |
+ while (edge->fUpperY != SK_MaxS32) { |
+ edge->validate(); |
+ SkASSERT(y <= edge->fUpperY); |
+ |
+ y = edge->fUpperY; |
+ edge = (SkAnalyticEdge*)edge->fNext; |
+ } |
+ } |
+#else |
+ #define validate_sort(edge) |
+#endif |
+ |
+// return true if we're done with this edge |
+static bool update_edge(SkAnalyticEdge* edge, SkFixed last_y) { |
+ if (last_y >= edge->fLowerY) { |
+ if (edge->fCurveCount < 0) { |
+ if (static_cast<SkAnalyticCubicEdge*>(edge)->updateCubic()) { |
+ return false; |
+ } |
+ } else if (edge->fCurveCount > 0) { |
+ if (static_cast<SkAnalyticQuadraticEdge*>(edge)->updateQuadratic()) { |
+ return false; |
+ } |
+ } |
+ return true; |
+ } |
+ SkASSERT(false); |
+ return false; |
+} |
+ |
+void aaa_walk_convex_edges(SkAnalyticEdge* prevHead, AdditiveBlitter* blitter, |
+ int start_y, int stop_y) { |
+ validate_sort((SkAnalyticEdge*)prevHead->fNext); |
+ |
+ SkAnalyticEdge* leftE = (SkAnalyticEdge*) prevHead->fNext; |
+ SkAnalyticEdge* riteE = (SkAnalyticEdge*) leftE->fNext; |
+ SkAnalyticEdge* currE = (SkAnalyticEdge*) riteE->fNext; |
+ |
+ SkFixed y = SkTMax(leftE->fUpperY, riteE->fUpperY); |
+ int local_top = SkFixedFloorToInt(y); |
+ SkASSERT(local_top >= start_y); |
+ |
+ #ifdef SK_DEBUG |
+ int frac_y_cnt = 0; |
+ int total_y_cnt = 0; |
+ #endif |
+ |
+ for (;;) { |
+ SkASSERT(SkFixedFloorToInt(leftE->fUpperY) <= stop_y); |
+ SkASSERT(SkFixedFloorToInt(riteE->fUpperY) <= stop_y); |
+ |
+ if (leftE->fX > riteE->fX || (leftE->fX == riteE->fX && |
+ leftE->fDX > riteE->fDX)) { |
+ SkTSwap(leftE, riteE); |
+ } |
+ |
+ SkFixed local_bot_fixed = SkMin32(leftE->fLowerY, riteE->fLowerY); |
+ local_bot_fixed = SkMin32(local_bot_fixed, SkIntToFixed(stop_y + 1)); |
+ |
+ SkFixed left = leftE->fX; |
+ SkFixed dLeft = leftE->fDX; |
+ SkFixed rite = riteE->fX; |
+ SkFixed dRite = riteE->fDX; |
+ // x may be out of range without snapping due to precision limit |
+ SkFixed snappedLeft = SkAnalyticEdge::snapX(left); |
+ SkFixed snappedRite = SkAnalyticEdge::snapX(rite); |
+ if (0 == (dLeft | dRite)) { |
+ int fullLeft = SkFixedCeilToInt(snappedLeft); |
+ int fullRite = SkFixedFloorToInt(snappedRite); |
+ SkFixed partialLeft = SkIntToFixed(fullLeft) - snappedLeft; |
+ SkFixed partialRite = snappedRite - SkIntToFixed(fullRite); |
+ int fullTop = SkFixedCeilToInt(y); |
+ int fullBot = SkFixedFloorToInt(local_bot_fixed); |
+ SkFixed partialTop = SkIntToFixed(fullTop) - y; |
+ SkFixed partialBot = local_bot_fixed - SkIntToFixed(fullBot); |
+ |
+ if (fullRite >= fullLeft) { |
+ // Blit all full-height rows from fullTop to fullBot |
+ blitter->getRealBlitter()->blitAntiRect(fullLeft - 1, fullTop, fullRite - fullLeft, |
+ fullBot - fullTop, |
+ partialLeft >> 8, partialRite >> 8); |
+ |
+ if (partialTop > 0) { // blit first partial row |
+ if (partialLeft > 0) { |
+ blitter->blitAntiH(fullLeft - 1, fullTop - 1, |
+ SkFixedMul_lowprec(partialTop, partialLeft) >> 8); |
+ } |
+ if (partialRite > 0) { |
+ blitter->blitAntiH(fullRite, fullTop - 1, |
+ SkFixedMul_lowprec(partialTop, partialRite) >> 8); |
+ } |
+ blitter->blitAntiH(fullLeft, fullTop - 1, fullRite - fullLeft, partialTop >> 8); |
+ } |
+ |
+ if (partialBot > 0) { // blit last partial row |
+ if (partialLeft > 0) { |
+ blitter->blitAntiH(fullLeft - 1, fullBot, |
+ SkFixedMul_lowprec(partialBot, partialLeft) >> 8); |
+ } |
+ if (partialRite > 0) { |
+ blitter->blitAntiH(fullRite, fullBot, |
+ SkFixedMul_lowprec(partialBot, partialRite) >> 8); |
+ } |
+ blitter->blitAntiH(fullLeft, fullBot, fullRite - fullLeft, partialBot >> 8); |
+ } |
+ } else { |
+ if (partialTop > 0) { |
+ blitter->getRealBlitter()->blitV(fullLeft - 1, fullTop - 1, 1, |
+ SkFixedMul_lowprec(partialTop, rite - left) >> 8); |
+ } |
+ if (partialBot > 0) { |
+ blitter->getRealBlitter()->blitV(fullLeft - 1, fullBot, 1, |
+ SkFixedMul_lowprec(partialBot, snappedRite - snappedLeft) >> 8); |
+ } |
+ if (fullBot >= fullTop) { |
+ blitter->getRealBlitter()->blitV(fullLeft - 1, fullTop, fullBot - fullTop, |
+ (snappedRite - snappedLeft) >> 8); |
+ } |
+ } |
+ |
+ y = local_bot_fixed; |
+ } else { |
+ do { |
+ #ifdef SK_DEBUG |
+ if ((y >> 16 << 16) != y) { |
+ frac_y_cnt++; |
+ SkDebugf("frac_y = %f\n", SkFixedToFloat(y)); |
+ } |
+ total_y_cnt++; |
+ #endif |
+ |
+ local_top = SkFixedFloorToInt(y); |
+ SkFixed nextY = SkIntToFixed(local_top + 1); |
+ nextY = SkTMin(nextY, local_bot_fixed); |
+ SkFixed dY = nextY - y; |
+ |
+ SkFixed nextLeft = left + dLeft; |
+ SkFixed nextRite = rite + dRite; |
+ |
+ if (dY != SK_Fixed1) { |
+ nextLeft = left + SkFixedMul_lowprec(dLeft, dY); |
+ nextRite = rite + SkFixedMul_lowprec(dRite, dY); |
+ } |
+ |
+ SkFixed snappedNextLeft = SkAnalyticEdge::snapX(nextLeft); |
+ SkFixed snappedNextRite = SkAnalyticEdge::snapX(nextRite); |
+ |
+ blit_aaa_trapzoid_row(blitter, local_top, snappedLeft, snappedRite, |
+ snappedNextLeft, snappedNextRite, |
+ leftE->fDY, riteE->fDY, nextY - y); |
+ |
+ left = nextLeft; |
+ rite = nextRite; |
+ snappedLeft = snappedNextLeft; |
+ snappedRite = snappedNextRite; |
+ y = nextY; |
+ } while (y < local_bot_fixed); |
+ } |
+ |
+ leftE->fX = left; |
+ riteE->fX = rite; |
+ |
+ while (leftE->fLowerY <= y) { |
+ if (update_edge(leftE, y)) { |
+ if (SkFixedFloorToInt(currE->fUpperY) >= stop_y) { |
+ goto END_WALK; |
+ } |
+ leftE = currE; |
+ leftE->goY(y); |
+ currE = (SkAnalyticEdge*)currE->fNext; |
+ } |
+ } |
+ while (riteE->fLowerY <= y) { |
+ if (update_edge(riteE, y)) { |
+ if (SkFixedFloorToInt(currE->fUpperY) >= stop_y) { |
+ goto END_WALK; |
+ } |
+ riteE = currE; |
+ riteE->goY(y); |
+ currE = (SkAnalyticEdge*)currE->fNext; |
+ } |
+ } |
+ |
+ SkASSERT(leftE); |
+ SkASSERT(riteE); |
+ |
+ // check our bottom clip |
+ SkASSERT(y == local_bot_fixed); |
+ if (SkFixedFloorToInt(y) >= stop_y) { |
+ break; |
+ } |
+ } |
+ |
+END_WALK: |
+ ; |
+ #ifdef SK_DEBUG |
+ SkDebugf("frac_y_cnt = %d, total_y_cnt = %d\n", frac_y_cnt, total_y_cnt); |
+ #endif |
+} |
+ |
+void SkScan::aaa_fill_path(const SkPath& path, const SkIRect* clipRect, AdditiveBlitter* blitter, |
+ int start_y, int stop_y, const SkRegion& clipRgn) { |
+ SkASSERT(blitter); |
+ |
+ if (path.isInverseFillType() || !path.isConvex()) { |
+ // fall back to supersampling AA |
+ GlobalAAConfig::getInstance().fUseAnalyticAA = false; |
+ SkScan::AntiFillPath(path, clipRgn, blitter->getRealBlitter(), false); |
+ GlobalAAConfig::getInstance().fUseAnalyticAA = true; // turne analytic AA back on |
+ return; |
+ } |
+ |
+ SkEdgeBuilder builder; |
+ |
+ // If we're convex, then we need both edges, even the right edge is past the clip |
+ const bool canCullToTheRight = !path.isConvex(); |
+ |
+ SkASSERT(GlobalAAConfig::getInstance().fUseAnalyticAA); |
+ int count = builder.build(path, clipRect, 0, canCullToTheRight, true); |
+ SkASSERT(count >= 0); |
+ |
+ SkAnalyticEdge** list = (SkAnalyticEdge**)builder.analyticEdgeList(); |
+ |
+ if (0 == count) { |
+ if (path.isInverseFillType()) { |
+ /* |
+ * Since we are in inverse-fill, our caller has already drawn above |
+ * our top (start_y) and will draw below our bottom (stop_y). Thus |
+ * we need to restrict our drawing to the intersection of the clip |
+ * and those two limits. |
+ */ |
+ SkIRect rect = clipRgn.getBounds(); |
+ if (rect.fTop < start_y) { |
+ rect.fTop = start_y; |
+ } |
+ if (rect.fBottom > stop_y) { |
+ rect.fBottom = stop_y; |
+ } |
+ if (!rect.isEmpty()) { |
+ blitter->blitRect(rect.fLeft, rect.fTop, rect.width(), rect.height()); |
+ } |
+ } |
+ return; |
+ } |
+ |
+ SkAnalyticEdge headEdge, tailEdge, *last; |
+ // this returns the first and last edge after they're sorted into a dlink list |
+ SkAnalyticEdge* edge = sort_edges(list, count, &last); |
+ |
+ headEdge.fPrev = nullptr; |
+ headEdge.fNext = edge; |
+ headEdge.fUpperY = headEdge.fLowerY = SK_MinS32; |
+ headEdge.fX = SK_MinS32; |
+ headEdge.fDX = 0; |
+ headEdge.fDY = SK_MaxS32; |
+ headEdge.fUpperX = SK_MinS32; |
+ edge->fPrev = &headEdge; |
+ |
+ tailEdge.fPrev = last; |
+ tailEdge.fNext = nullptr; |
+ tailEdge.fUpperY = tailEdge.fLowerY = SK_MaxS32; |
+ headEdge.fX = SK_MaxS32; |
+ headEdge.fDX = 0; |
+ headEdge.fDY = SK_MaxS32; |
+ headEdge.fUpperX = SK_MaxS32; |
+ last->fNext = &tailEdge; |
+ |
+ // now edge is the head of the sorted linklist |
+ |
+ if (clipRect && start_y < clipRect->fTop) { |
+ start_y = clipRect->fTop; |
+ } |
+ if (clipRect && stop_y > clipRect->fBottom) { |
+ stop_y = clipRect->fBottom; |
+ } |
+ |
+ if (!path.isInverseFillType() && path.isConvex()) { |
+ SkASSERT(count >= 2); // convex walker does not handle missing right edges |
+ aaa_walk_convex_edges(&headEdge, blitter, start_y, stop_y); |
+ } else { |
+ SkFAIL("Concave AAA is not yet implemented!"); |
+ } |
+} |
+ |
+/////////////////////////////////////////////////////////////////////////////// |
+ |
+void SkScan::AAAFillPath(const SkPath& path, const SkRegion& origClip, SkBlitter* blitter) { |
+ if (origClip.isEmpty()) { |
+ return; |
+ } |
+ |
+ const bool isInverse = path.isInverseFillType(); |
+ SkIRect ir; |
+ path.getBounds().roundOut(&ir); |
+ if (ir.isEmpty()) { |
+ if (isInverse) { |
+ blitter->blitRegion(origClip); |
+ } |
+ return; |
+ } |
+ |
+ SkIRect clippedIR; |
+ if (isInverse) { |
+ // If the path is an inverse fill, it's going to fill the entire |
+ // clip, and we care whether the entire clip exceeds our limits. |
+ clippedIR = origClip.getBounds(); |
+ } else { |
+ if (!clippedIR.intersect(ir, origClip.getBounds())) { |
+ return; |
+ } |
+ } |
+ |
+ // Our antialiasing can't handle a clip larger than 32767, so we restrict |
+ // the clip to that limit here. (the runs[] uses int16_t for its index). |
+ // |
+ // A more general solution (one that could also eliminate the need to |
+ // disable aa based on ir bounds (see overflows_short_shift) would be |
+ // to tile the clip/target... |
+ SkRegion tmpClipStorage; |
+ const SkRegion* clipRgn = &origClip; |
+ { |
+ static const int32_t kMaxClipCoord = 32767; |
+ const SkIRect& bounds = origClip.getBounds(); |
+ if (bounds.fRight > kMaxClipCoord || bounds.fBottom > kMaxClipCoord) { |
+ SkIRect limit = { 0, 0, kMaxClipCoord, kMaxClipCoord }; |
+ tmpClipStorage.op(origClip, limit, SkRegion::kIntersect_Op); |
+ clipRgn = &tmpClipStorage; |
+ } |
+ } |
+ // for here down, use clipRgn, not origClip |
+ |
+ SkScanClipper clipper(blitter, clipRgn, ir); |
+ const SkIRect* clipRect = clipper.getClipRect(); |
+ |
+ if (clipper.getBlitter() == nullptr) { // clipped out |
+ if (isInverse) { |
+ blitter->blitRegion(*clipRgn); |
+ } |
+ return; |
+ } |
+ |
+ // now use the (possibly wrapped) blitter |
+ blitter = clipper.getBlitter(); |
+ |
+ if (isInverse) { |
+ sk_blit_above(blitter, ir, *clipRgn); |
+ } |
+ |
+ SkASSERT(SkIntToScalar(ir.fTop) <= path.getBounds().fTop); |
+ |
+ AdditiveBlitter additiveBlitter(blitter, ir, *clipRgn, isInverse); |
+ aaa_fill_path(path, clipRect, &additiveBlitter, ir.fTop, ir.fBottom, *clipRgn); |
+ |
+ if (isInverse) { |
+ sk_blit_below(blitter, ir, *clipRgn); |
+ } |
+} |
+ |
+// This almost copies SkScan::AntiFillPath |
+void SkScan::AAAFillPath(const SkPath& path, const SkRasterClip& clip, SkBlitter* blitter) { |
+ if (clip.isEmpty()) { |
+ return; |
+ } |
+ |
+ if (clip.isBW()) { |
+ AAAFillPath(path, clip.bwRgn(), blitter); |
+ } else { |
+ SkRegion tmp; |
+ SkAAClipBlitter aaBlitter; |
+ |
+ tmp.setRect(clip.getBounds()); |
+ aaBlitter.init(blitter, &clip.aaRgn()); |
+ AAAFillPath(path, tmp, &aaBlitter); |
+ } |
+} |