Chromium Code Reviews| Index: src/core/SkEdge.cpp |
| diff --git a/src/core/SkEdge.cpp b/src/core/SkEdge.cpp |
| index d91c3e6bce8f26dd0b5283b056ac3882c31846d1..c7a61175de002c96b17715a1807d869c8dcb979b 100644 |
| --- a/src/core/SkEdge.cpp |
| +++ b/src/core/SkEdge.cpp |
| @@ -477,3 +477,390 @@ int SkCubicEdge::updateCubic() |
| fCurveCount = SkToS8(count); |
| return success; |
| } |
| + |
| +///////////////////Analytic Edges/////////////////////////////// |
| + |
| +static const int kInverseTableSize = 1024; // SK_FDot6One * 16 |
|
reed1
2016/08/18 20:31:01
Does this impl use shared functions form SkEdge.cp
liyuqian
2016/08/22 15:30:48
Nothing shared. I'll create a new cpp file.
|
| + |
| +struct FDot6InverseTable { |
| + SkFixed storage[kInverseTableSize * 2 + 1]; |
| + SkFixed* table = storage + kInverseTableSize; |
| + |
| + FDot6InverseTable() { |
| + for (SkFDot6 i=-kInverseTableSize; i<kInverseTableSize; i++) { |
| + if (i != 0) { |
|
reed1
2016/08/18 20:31:00
nit: is it any faster to just have 2 loops, so we
liyuqian
2016/08/22 15:30:48
Not sure. Since this code is run once during the s
|
| + table[i] = SkFDot6Div(SK_FDot6One, i); |
| + } |
| + } |
| + } |
| +}; |
| + |
| +class QuickFDot6Inverse { |
| +private: |
| + static FDot6InverseTable table; |
|
reed1
2016/08/18 20:31:00
nit: static variables are gPrefixedWIthAG.
liyuqian
2016/08/22 15:30:48
Done.
|
| +public: |
| + inline static SkFixed lookup(SkFDot6 x) { |
|
reed1
2016/08/18 20:31:00
nit: static methods are Capitalized.
liyuqian
2016/08/22 15:30:48
Done.
|
| + SkASSERT(SkAbs32(x) <= kInverseTableSize); |
| + return table.table[x]; |
| + } |
| +}; |
| + |
| +FDot6InverseTable QuickFDot6Inverse::table; |
|
reed1
2016/08/18 20:31:01
Chrome won't allow us to have a complex constructo
liyuqian
2016/08/22 15:30:48
Done.
|
| + |
| +inline SkFixed quickSkFDot6Div(SkFDot6 a, SkFDot6 b) { |
|
reed1
2016/08/18 20:31:00
Would this optimized version of FDot6Div also help
reed1
2016/08/18 20:31:01
'static' is more important than 'inline' (I think)
liyuqian
2016/08/22 15:30:48
Done.
liyuqian
2016/08/22 15:30:48
Maybe. But so far, SkEdge.cpp/h is the only place
|
| + if (SkAbs32(b) < kInverseTableSize) { |
| + #ifdef SK_DEBUG |
| + SkFixed directAnswer = SkFDot6Div(a, b); |
| + // a has already been right shifted by 10, |
| + // maximum inverse of FDot6 is 1 << 8 << 16 (which is 64 * SK_Fixed1), |
| + // so we're safe to directly multiply them together (8 - 10 < 0) |
| + SkFixed ourAnswer = (a * QuickFDot6Inverse::lookup(b)) >> 6; |
| + SkASSERT( |
| + (directAnswer == 0 && ourAnswer == 0) || |
| + SkFixedDiv(SkAbs32(directAnswer - ourAnswer), SkAbs32(directAnswer)) <= 1 << 10 |
| + ); |
| + #endif |
| + return SkFixedMul_lowprec(SkFDot6ToFixed(a), QuickFDot6Inverse::lookup(b)); |
| + } else { |
| + return SkFDot6Div(a, b); |
| + } |
| +} |
| + |
| +// This will become a bottleneck for small ovals rendering if we call SkFixedDiv twice here. |
| +// Therefore, we'll let the outter function compute the slope once and send in the value. |
| +// Moreover, we'll compute fDY by quickly lookup the inverse table (if possible). |
| +bool SkAnalyticEdge::updateLine(SkFixed x0, SkFixed y0, SkFixed x1, SkFixed y1, SkFixed slope) |
| +{ |
|
reed1
2016/08/18 20:31:00
nit: skia places the { on the same line as the fun
liyuqian
2016/08/22 15:30:48
Done.
|
| + // Since we send in the slope, we can no longer snap y inside this function. |
| + // If we don't send in the slope, or we do some more sophisticated snapping, this function |
| + // could be a performance bottleneck. |
| + SkASSERT(fWinding == 1 || fWinding == -1); |
| + SkASSERT(fCurveCount != 0); |
| + |
| + SkASSERT(y0 <= y1); |
| + |
| + SkFDot6 dx = SkFixedToFDot6(x1 - x0); |
| + SkFDot6 dy = SkFixedToFDot6(y1 - y0); |
| + |
| + // are we a zero-height line? |
| + if (dy == 0) { |
| + return false; |
| + } |
| + |
| + SkASSERT(slope < SK_MaxS32); |
| + |
| + SkFDot6 absSlope = SkAbs32(SkFixedToFDot6(slope)); |
| + fX = x0; |
| + fDX = slope; |
| + fUpperX = x0; |
| + fY = y0; |
| + fUpperY = y0; |
| + fLowerY = y1; |
| + fDY = (absSlope | dx) == 0 |
| + ? SK_MaxS32 |
| + : absSlope < kInverseTableSize |
| + ? QuickFDot6Inverse::lookup(absSlope) |
| + : SkAbs32(quickSkFDot6Div(dy, dx)); |
| + |
| + return true; |
| +} |
| + |
| +void SkAnalyticEdge::chopLineWithClip(const SkIRect& clip) |
| +{ |
| + int top = SkFixedFloorToInt(fUpperY); |
| + |
| + SkASSERT(top < clip.fBottom); |
| + |
| + // clip the line to the clip top |
| + if (top < clip.fTop) { |
| + SkASSERT(SkFixedCeilToInt(fLowerY) > clip.fTop); |
| + SkFixed newY = SkIntToFixed(clip.fTop); |
| + this->goY(newY); |
| + fUpperY = newY; |
| + } |
| +} |
| + |
| +int SkAnalyticQuadraticEdge::setQuadratic(const SkPoint pts[3]) |
| +{ |
|
reed1
2016/08/18 20:31:00
interesting. appears that much of this impl is the
liyuqian
2016/08/22 15:30:48
Done.
|
| + SkFixed x0 = SkScalarToFixed(pts[0].fX); |
| + SkFixed y0 = SkScalarToFixed(pts[0].fY); |
| + SkFixed x1 = SkScalarToFixed(pts[1].fX); |
| + SkFixed y1 = SkScalarToFixed(pts[1].fY); |
| + SkFixed x2 = SkScalarToFixed(pts[2].fX); |
| + SkFixed y2 = SkScalarToFixed(pts[2].fY); |
| + |
| + int winding = 1; |
| + if (y0 > y2) |
| + { |
| + SkTSwap(x0, x2); |
| + SkTSwap(y0, y2); |
| + winding = -1; |
| + } |
| + SkASSERT(y0 <= y1 && y1 <= y2); |
| + |
| + int top = SkFixedFloorToInt(y0); |
| + int bot = SkFixedCeilToInt(y2); |
| + |
| + // are we a zero-height quad (line)? |
| + if (top == bot) { |
| + return 0; |
| + } |
| + |
| + int shift; |
| + // compute number of steps needed (1 << shift) |
| + { |
| + // The dx, dy here are 4 times larger so we get the right shift |
| + // from 4x4 supersampling's diff_to_shift function |
| + SkFDot6 dx = SkFixedToFDot6((SkLeftShift(x1, 1) - x0 - x2)); |
| + SkFDot6 dy = SkFixedToFDot6((SkLeftShift(y1, 1) - y0 - y2)); |
| + shift = diff_to_shift(dx, dy); |
| + SkASSERT(shift >= 0); |
| + } |
| + // need at least 1 subdivision for our bias trick |
| + shift = SkTPin(shift, 1, MAX_COEFF_SHIFT); |
| + |
| + fWinding = SkToS8(winding); |
| + //fCubicDShift only set for cubics |
| + fCurveCount = SkToS8(1 << shift); |
| + |
| + /* |
| + * We want to reformulate into polynomial form, to make it clear how we |
| + * should forward-difference. |
| + * |
| + * p0 (1 - t)^2 + p1 t(1 - t) + p2 t^2 ==> At^2 + Bt + C |
| + * |
| + * A = p0 - 2p1 + p2 |
| + * B = 2(p1 - p0) |
| + * C = p0 |
| + * |
| + * Our caller must have constrained our inputs (p0..p2) to all fit into |
| + * 16.16. However, as seen above, we sometimes compute values that can be |
| + * larger (e.g. B = 2*(p1 - p0)). To guard against overflow, we will store |
| + * A and B at 1/2 of their actual value, and just apply a 2x scale during |
| + * application in updateQuadratic(). Hence we store (shift - 1) in |
| + * fCurveShift. |
| + */ |
| + |
| + fCurveShift = SkToU8(shift - 1); |
| + |
| + SkFixed A = (x0 - x1 - x1 + x2) >> 1; // 1/2 the real value |
| + SkFixed B = x1 - x0; // 1/2 the real value |
| + |
| + fQx = x0; |
| + fQDx = B + (A >> shift); // biased by shift |
| + fQDDx = A >> (shift - 1); // biased by shift |
| + |
| + A = (y0 - y1 - y1 + y2) >> 1; // 1/2 the real value |
| + B = y1 - y0; // 1/2 the real value |
| + |
| + fQy = y0; |
| + fQDy = B + (A >> shift); // biased by shift |
| + fQDDy = A >> (shift - 1); // biased by shift |
| + |
| + fQLastX = x2; |
| + fQLastY = y2; |
| + |
| + fSnappedX = fQx; |
| + fSnappedY = fQy; |
| + |
| + return this->updateQuadratic(); |
| +} |
| + |
| +int SkAnalyticQuadraticEdge::updateQuadratic() |
| +{ |
| + int success = 0; // initialize to fail! |
| + int count = fCurveCount; |
| + SkFixed oldx = fQx; |
| + SkFixed oldy = fQy; |
| + SkFixed dx = fQDx; |
| + SkFixed dy = fQDy; |
| + SkFixed newx, newy, newSnappedX, newSnappedY; |
| + int shift = fCurveShift; |
| + |
| + SkASSERT(count > 0); |
| + |
| + do { |
| + SkFixed slope; |
| + if (--count > 0) |
| + { |
| + newx = oldx + (dx >> shift); |
| + newy = oldy + (dy >> shift); |
| + slope = dy >> 10 > 0 ? quickSkFDot6Div(dx >> 10, dy >> 10) : SK_MaxS32; |
| + if (SkAbs32(dy) >= SK_Fixed1 * 2) { // only snap when dy is large enough |
| + newSnappedY = SkTMin<SkFixed>(fQLastY, SkFixedRoundToFixed(newy)); |
| + newSnappedX = newx + SkFixedMul_lowprec(slope, newSnappedY - newy); |
| + } else { |
| + newSnappedY = newy; |
| + newSnappedX = newx; |
| + } |
| + dx += fQDDx; |
| + dy += fQDDy; |
| + } |
| + else // last segment |
| + { |
| + newx = fQLastX; |
| + newy = fQLastY; |
| + newSnappedY = newy; |
| + newSnappedX = newx; |
| + slope = (newSnappedY - fSnappedY) >> 10 |
| + ? quickSkFDot6Div((newx - fSnappedX) >> 10, (newy - fSnappedY) >> 10) |
| + : SK_MaxS32; |
| + } |
| + if (slope < SK_MaxS32) { |
| + success = this->updateLine(fSnappedX, fSnappedY, newSnappedX, newSnappedY, slope); |
| + } |
| + oldx = newx; |
| + oldy = newy; |
| + } while (count > 0 && !success); |
| + |
| + SkASSERT(newSnappedY <= fQLastY); |
| + |
| + fQx = newx; |
| + fQy = newy; |
| + fQDx = dx; |
| + fQDy = dy; |
| + fSnappedX = newSnappedX; |
| + fSnappedY = newSnappedY; |
| + fCurveCount = SkToS8(count); |
| + return success; |
| +} |
| + |
| +int SkAnalyticCubicEdge::setCubic(const SkPoint pts[4]) { |
| + SkFixed x0, y0, x1, y1, x2, y2, x3, y3; |
| + |
| + x0 = SkScalarToFixed(pts[0].fX); |
| + y0 = SkScalarToFixed(pts[0].fY); |
| + x1 = SkScalarToFixed(pts[1].fX); |
| + y1 = SkScalarToFixed(pts[1].fY); |
| + x2 = SkScalarToFixed(pts[2].fX); |
| + y2 = SkScalarToFixed(pts[2].fY); |
| + x3 = SkScalarToFixed(pts[3].fX); |
| + y3 = SkScalarToFixed(pts[3].fY); |
| + |
| + int winding = 1; |
| + if (y0 > y3) |
| + { |
| + SkTSwap(x0, x3); |
| + SkTSwap(x1, x2); |
| + SkTSwap(y0, y3); |
| + SkTSwap(y1, y2); |
| + winding = -1; |
| + } |
| + |
| + int top = SkFixedFloorToInt(y0); |
| + int bot = SkFixedCeilToInt(y3); |
| + |
| + // are we a zero-height cubic (line)? |
| + if (top == bot) |
| + return 0; |
| + |
| + int shift; |
| + // compute number of steps needed (1 << shift) |
| + { |
| + // The dx, dy here are 4 times larger so we get the right shift |
| + // from 4x4 supersampling's diff_to_shift function |
| + |
| + // Can't use (center of curve - center of baseline), since center-of-curve |
| + // need not be the max delta from the baseline (it could even be coincident) |
| + // so we try just looking at the two off-curve points |
| + SkFDot6 dx = cubic_delta_from_line(SkFixedToFDot6(x0 << 2),SkFixedToFDot6(x1 << 2), |
| + SkFixedToFDot6(x2 << 2), SkFixedToFDot6(x3 << 2)); |
| + SkFDot6 dy = cubic_delta_from_line(SkFixedToFDot6(y0 << 2), SkFixedToFDot6(y1 << 2), |
| + SkFixedToFDot6(y2 << 2), SkFixedToFDot6(y3 << 2)); |
| + // add 1 (by observation) |
| + shift = diff_to_shift(dx, dy) + 1; |
| + } |
| + // need at least 1 subdivision for our bias trick |
| + SkASSERT(shift > 0); |
| + if (shift > MAX_COEFF_SHIFT) { |
| + shift = MAX_COEFF_SHIFT; |
| + } |
| + |
| + /* Since our in coming data is initially shifted down by 10 (or 8 in |
| + antialias). That means the most we can shift up is 8. However, we |
| + compute coefficients with a 3*, so the safest upshift is really 6 |
| + */ |
| + int upShift = 6; // largest safe value |
| + int downShift = shift + upShift - 10; |
| + if (downShift < 0) { |
| + downShift = 0; |
| + upShift = 10 - shift; |
| + } |
| + |
| + fWinding = SkToS8(winding); |
| + fCurveCount = SkToS8(SkLeftShift(-1, shift)); |
| + fCurveShift = SkToU8(shift); |
| + fCubicDShift = SkToU8(downShift); |
| + |
| + SkFixed B = SkFDot6UpShift(SkFixedToFDot6(3 * (x1 - x0)), upShift); |
| + SkFixed C = SkFDot6UpShift(SkFixedToFDot6(3 * (x0 - x1 - x1 + x2)), upShift); |
| + SkFixed D = SkFDot6UpShift(SkFixedToFDot6(x3 + 3 * (x1 - x2) - x0), upShift); |
| + |
| + fCx = x0; |
| + fCDx = B + (C >> shift) + (D >> 2*shift); // biased by shift |
| + fCDDx = 2*C + (3*D >> (shift - 1)); // biased by 2*shift |
| + fCDDDx = 3*D >> (shift - 1); // biased by 2*shift |
| + |
| + B = SkFDot6UpShift(SkFixedToFDot6(3 * (y1 - y0)), upShift); |
| + C = SkFDot6UpShift(SkFixedToFDot6(3 * (y0 - y1 - y1 + y2)), upShift); |
| + D = SkFDot6UpShift(SkFixedToFDot6(y3 + 3 * (y1 - y2) - y0), upShift); |
| + |
| + fCy = y0; |
| + fCDy = B + (C >> shift) + (D >> 2*shift); // biased by shift |
| + fCDDy = 2*C + (3*D >> (shift - 1)); // biased by 2*shift |
| + fCDDDy = 3*D >> (shift - 1); // biased by 2*shift |
| + |
| + fCLastX = x3; |
| + fCLastY = y3; |
| + |
| + return this->updateCubic(); |
| +} |
| + |
| +int SkAnalyticCubicEdge::updateCubic() |
| +{ |
| + int success; |
| + int count = fCurveCount; |
| + SkFixed oldx = fCx; |
| + SkFixed oldy = fCy; |
| + SkFixed newx, newy; |
| + const int ddshift = fCurveShift; |
| + const int dshift = fCubicDShift; |
| + |
| + SkASSERT(count < 0); |
| + |
| + do { |
| + if (++count < 0) |
| + { |
| + newx = oldx + (fCDx >> dshift); |
| + fCDx += fCDDx >> ddshift; |
| + fCDDx += fCDDDx; |
| + |
| + newy = oldy + (fCDy >> dshift); |
| + fCDy += fCDDy >> ddshift; |
| + fCDDy += fCDDDy; |
| + } |
| + else // last segment |
| + { |
| + // SkDebugf("LastX err=%d, LastY err=%d\n", (oldx + (fCDx >> shift) - fLastX), (oldy + (fCDy >> shift) - fLastY)); |
| + newx = fCLastX; |
| + newy = fCLastY; |
| + } |
| + |
| + // we want to say SkASSERT(oldy <= newy), but our finite fixedpoint |
| + // doesn't always achieve that, so we have to explicitly pin it here. |
| + if (newy < oldy) { |
| + newy = oldy; |
| + } |
| + |
| + success = this->updateLine(oldx, oldy, newx, newy, |
| + SkFixedToFDot6(newy - oldy) == 0 ? SK_MaxS32 : |
| + SkFDot6Div(SkFixedToFDot6(newx - oldx), SkFixedToFDot6(newy - oldy))); |
| + oldx = newx; |
| + oldy = newy; |
| + } while (count < 0 && !success); |
| + |
| + fCx = newx; |
| + fCy = newy; |
| + fCurveCount = SkToS8(count); |
| + return success; |
| +} |