OLD | NEW |
---|---|
1 /* | 1 /* |
2 * Copyright 2006 The Android Open Source Project | 2 * Copyright 2006 The Android Open Source Project |
3 * | 3 * |
4 * Use of this source code is governed by a BSD-style license that can be | 4 * Use of this source code is governed by a BSD-style license that can be |
5 * found in the LICENSE file. | 5 * found in the LICENSE file. |
6 */ | 6 */ |
7 | 7 |
8 | 8 |
9 #include "SkEdge.h" | 9 #include "SkEdge.h" |
10 #include "SkFDot6.h" | 10 #include "SkFDot6.h" |
(...skipping 459 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... | |
470 success = this->updateLine(oldx, oldy, newx, newy); | 470 success = this->updateLine(oldx, oldy, newx, newy); |
471 oldx = newx; | 471 oldx = newx; |
472 oldy = newy; | 472 oldy = newy; |
473 } while (count < 0 && !success); | 473 } while (count < 0 && !success); |
474 | 474 |
475 fCx = newx; | 475 fCx = newx; |
476 fCy = newy; | 476 fCy = newy; |
477 fCurveCount = SkToS8(count); | 477 fCurveCount = SkToS8(count); |
478 return success; | 478 return success; |
479 } | 479 } |
480 | |
481 ///////////////////Analytic Edges/////////////////////////////// | |
482 | |
483 int SkAnalyticEdge::setLine(const SkPoint& p0, const SkPoint& p1, const SkIRect* clip) { | |
caryclark
2016/08/10 13:08:09
Since this shares so much code with the other setL
liyuqian
2016/08/16 13:22:05
Done. I removed the other method and make clip hav
| |
484 SkFixed x0, y0, x1, y1; | |
485 | |
486 x0 = SkScalarToFixed(p0.fX); | |
caryclark
2016/08/10 13:08:10
SkFixed x0 = ...
liyuqian
2016/08/16 13:22:05
Done.
| |
487 y0 = snapY(SkScalarToFixed(p0.fY)); | |
488 x1 = SkScalarToFixed(p1.fX); | |
489 y1 = snapY(SkScalarToFixed(p1.fY)); | |
490 | |
491 int winding = 1; | |
492 | |
493 if (y0 > y1) { | |
494 SkTSwap(x0, x1); | |
495 SkTSwap(y0, y1); | |
496 winding = -1; | |
497 } | |
498 | |
499 int top = SkFixedFloorToInt(y0); | |
500 int bot = SkFixedCeilToInt(y1); | |
501 | |
502 // are we a zero-height line? | |
503 if (y0 == y1) { | |
caryclark
2016/08/10 13:08:10
move test before top, bot
liyuqian
2016/08/16 13:22:05
Done.
| |
504 return 0; | |
505 } | |
506 // are we completely above or below the clip? | |
507 if (clip && (top >= clip->fBottom || bot <= clip->fTop)) { | |
508 return 0; | |
509 } | |
510 | |
511 SkFixed slope = SkFixedDiv(x1 - x0, y1 - y0); | |
512 | |
513 fX = x0; | |
514 fDX = slope; | |
515 fUpperX = x0; | |
516 fY = y0; | |
517 fUpperY = y0; | |
518 fLowerY = y1; | |
519 fDY = x1 - x0 != 0 ? SkAbs32(SkFixedDiv(y1 - y0, x1 - x0)) : SK_MaxS 32; | |
caryclark
2016/08/10 13:08:09
x1 == x0 ?
liyuqian
2016/08/16 13:22:05
Done.
| |
520 fCurveCount = 0; | |
521 fWinding = SkToS8(winding); | |
522 fCurveShift = 0; | |
523 | |
524 if (clip) { | |
525 this->chopLineWithClip(*clip); | |
526 } | |
527 return 1; | |
528 } | |
529 | |
530 int SkAnalyticEdge::updateLine(SkFixed x0, SkFixed y0, SkFixed x1, SkFixed y1) | |
531 { | |
532 y0 = snapY(y0); | |
533 y1 = snapY(y1); | |
534 SkASSERT(fWinding == 1 || fWinding == -1); | |
535 SkASSERT(fCurveCount != 0); | |
536 | |
537 SkASSERT(y0 <= y1); | |
538 | |
539 // are we a zero-height line? | |
540 if (y0 == y1) | |
caryclark
2016/08/10 13:08:10
add braces around if
liyuqian
2016/08/16 13:22:05
Done.
| |
541 return 0; | |
542 | |
543 SkFixed slope = SkFixedDiv(x1 - x0, y1 - y0); | |
544 | |
545 fX = x0; | |
546 fDX = slope; | |
547 fUpperX = x0; | |
548 fY = y0; | |
549 fUpperY = y0; | |
550 fLowerY = y1; | |
551 fDY = x1 - x0 != 0 ? SkAbs32(SkFixedDiv(y1 - y0, x1 - x0)) : SK_MaxS 32; | |
caryclark
2016/08/10 13:08:09
this also shares a lot of code with setline. Can t
liyuqian
2016/08/16 13:22:05
In my new CL, this probably is not the case as I h
| |
552 | |
553 return 1; | |
554 } | |
555 | |
556 void SkAnalyticEdge::chopLineWithClip(const SkIRect& clip) | |
557 { | |
558 int top = SkFixedFloorToInt(fUpperY); | |
559 | |
560 SkASSERT(top < clip.fBottom); | |
561 | |
562 // clip the line to the clip top | |
563 if (top < clip.fTop) | |
564 { | |
caryclark
2016/08/10 13:08:09
brace on same line as if
liyuqian
2016/08/16 13:22:05
Done.
| |
565 SkASSERT(SkFixedCeilToInt(fLowerY) > clip.fTop); | |
566 SkFixed newY = SkIntToFixed(clip.fTop); | |
567 this->goY(newY); | |
568 fUpperY = newY; | |
569 } | |
570 } | |
571 | |
572 int SkAnalyticQuadraticEdge::setQuadratic(const SkPoint pts[3]) | |
573 { | |
574 SkFDot6 x0, y0, x1, y1, x2, y2; | |
575 | |
576 x0 = SkScalarToFixed(pts[0].fX); | |
caryclark
2016/08/10 13:08:09
SkFDot6 x0 = ...
liyuqian
2016/08/16 13:22:05
Done.
| |
577 y0 = SkScalarToFixed(pts[0].fY); | |
578 x1 = SkScalarToFixed(pts[1].fX); | |
579 y1 = SkScalarToFixed(pts[1].fY); | |
580 x2 = SkScalarToFixed(pts[2].fX); | |
581 y2 = SkScalarToFixed(pts[2].fY); | |
582 | |
583 int winding = 1; | |
584 if (y0 > y2) | |
585 { | |
586 SkTSwap(x0, x2); | |
587 SkTSwap(y0, y2); | |
588 winding = -1; | |
589 } | |
590 SkASSERT(y0 <= y1 && y1 <= y2); | |
591 | |
592 int top = SkFixedFloorToInt(y0); | |
593 int bot = SkFixedCeilToInt(y2); | |
594 | |
595 // are we a zero-height quad (line)? | |
596 if (top == bot) | |
caryclark
2016/08/10 13:08:09
add braces
liyuqian
2016/08/16 13:22:05
Done.
| |
597 return 0; | |
598 | |
599 int shift; | |
600 // compute number of steps needed (1 << shift) | |
601 { | |
602 // The dx, dy here are 4 times larger so we get the right shift | |
603 // from 4x4 supersampling's diff_to_shift function | |
604 SkFDot6 dx = SkFixedToFDot6((SkLeftShift(x1, 1) - x0 - x2)); | |
605 SkFDot6 dy = SkFixedToFDot6((SkLeftShift(y1, 1) - y0 - y2)); | |
606 shift = diff_to_shift(dx, dy); | |
607 SkASSERT(shift >= 0); | |
608 } | |
609 // need at least 1 subdivision for our bias trick | |
610 if (shift == 0) { | |
611 shift = 1; | |
612 } else if (shift > MAX_COEFF_SHIFT) { | |
613 shift = MAX_COEFF_SHIFT; | |
614 } | |
caryclark
2016/08/10 13:08:09
Out of curiosity, is this any less efficient and m
liyuqian
2016/08/16 13:22:05
I'm not sure. Maybe shift = SkTPin(shift, 1, MAX_C
| |
615 | |
616 fWinding = SkToS8(winding); | |
617 //fCubicDShift only set for cubics | |
618 fCurveCount = SkToS8(1 << shift); | |
619 | |
620 /* | |
621 * We want to reformulate into polynomial form, to make it clear how we | |
622 * should forward-difference. | |
623 * | |
624 * p0 (1 - t)^2 + p1 t(1 - t) + p2 t^2 ==> At^2 + Bt + C | |
625 * | |
626 * A = p0 - 2p1 + p2 | |
627 * B = 2(p1 - p0) | |
628 * C = p0 | |
629 * | |
630 * Our caller must have constrained our inputs (p0..p2) to all fit into | |
631 * 16.16. However, as seen above, we sometimes compute values that can be | |
632 * larger (e.g. B = 2*(p1 - p0)). To guard against overflow, we will store | |
633 * A and B at 1/2 of their actual value, and just apply a 2x scale during | |
634 * application in updateQuadratic(). Hence we store (shift - 1) in | |
635 * fCurveShift. | |
636 */ | |
637 | |
638 fCurveShift = SkToU8(shift - 1); | |
639 | |
640 SkFixed A = (x0 - x1 - x1 + x2) >> 1; // 1/2 the real value | |
641 SkFixed B = x1 - x0; // 1/2 the real value | |
642 | |
643 fQx = x0; | |
644 fQDx = B + (A >> shift); // biased by shift | |
645 fQDDx = A >> (shift - 1); // biased by shift | |
646 | |
647 A = (y0 - y1 - y1 + y2) >> 1; // 1/2 the real value | |
648 B = y1 - y0; // 1/2 the real value | |
649 | |
650 fQy = y0; | |
651 fQDy = B + (A >> shift); // biased by shift | |
652 fQDDy = A >> (shift - 1); // biased by shift | |
653 | |
654 fQLastX = x2; | |
655 fQLastY = y2; | |
656 | |
657 fSnappedX = fQx; | |
658 fSnappedY = fQy; | |
659 | |
660 return this->updateQuadratic(); | |
661 } | |
662 | |
663 int SkAnalyticQuadraticEdge::updateQuadratic() | |
664 { | |
665 int success = 0; // initialize to fail! | |
666 int count = fCurveCount; | |
667 SkFixed oldx = fQx; | |
668 SkFixed oldy = fQy; | |
669 SkFixed dx = fQDx; | |
670 SkFixed dy = fQDy; | |
671 SkFixed newx, newy, newSnappedX, newSnappedY; | |
672 int shift = fCurveShift; | |
673 | |
674 SkASSERT(count > 0); | |
675 | |
676 do { | |
677 if (--count > 0) | |
678 { | |
679 newx = oldx + (dx >> shift); | |
680 dx += fQDDx; | |
681 newy = oldy + (dy >> shift); | |
682 dy += fQDDy; | |
683 if (SkAbs32(dy) >= SK_Fixed1 * 2) { // only snap when dy is large en ough | |
684 newSnappedY = SkTMin<SkFixed>(fQLastY, SkFixedRoundToFixed(newy) ); | |
685 newSnappedX = newx + SkFixedMul(SkFixedDiv(dx, dy), newSnappedY - newy); | |
686 } else { | |
687 newSnappedY = newy; | |
688 newSnappedX = newx; | |
689 } | |
690 } | |
691 else // last segment | |
692 { | |
693 newx = fQLastX; | |
694 newy = fQLastY; | |
695 newSnappedY = newy; | |
696 newSnappedX = newx; | |
697 } | |
698 if (newSnappedY > fSnappedY) { | |
699 success = this->updateLine(fSnappedX, fSnappedY, newSnappedX, newSna ppedY); | |
700 } | |
701 oldx = newx; | |
702 oldy = newy; | |
703 } while (count > 0 && !success); | |
704 | |
705 SkASSERT(newSnappedY <= fQLastY); | |
706 | |
707 fQx = newx; | |
708 fQy = newy; | |
709 fQDx = dx; | |
710 fQDy = dy; | |
711 fSnappedX = newSnappedX; | |
712 fSnappedY = newSnappedY; | |
713 fCurveCount = SkToS8(count); | |
714 return success; | |
715 } | |
716 | |
717 int SkAnalyticCubicEdge::setCubic(const SkPoint pts[4]) { | |
718 SkFixed x0, y0, x1, y1, x2, y2, x3, y3; | |
719 | |
720 x0 = SkScalarToFixed(pts[0].fX); | |
721 y0 = SkScalarToFixed(pts[0].fY); | |
722 x1 = SkScalarToFixed(pts[1].fX); | |
723 y1 = SkScalarToFixed(pts[1].fY); | |
724 x2 = SkScalarToFixed(pts[2].fX); | |
725 y2 = SkScalarToFixed(pts[2].fY); | |
726 x3 = SkScalarToFixed(pts[3].fX); | |
727 y3 = SkScalarToFixed(pts[3].fY); | |
728 | |
729 int winding = 1; | |
730 if (y0 > y3) | |
731 { | |
732 SkTSwap(x0, x3); | |
733 SkTSwap(x1, x2); | |
734 SkTSwap(y0, y3); | |
735 SkTSwap(y1, y2); | |
736 winding = -1; | |
737 } | |
738 | |
739 int top = SkFixedFloorToInt(y0); | |
740 int bot = SkFixedCeilToInt(y3); | |
741 | |
742 // are we a zero-height cubic (line)? | |
743 if (top == bot) | |
744 return 0; | |
745 | |
746 int shift; | |
747 // compute number of steps needed (1 << shift) | |
748 { | |
749 // The dx, dy here are 4 times larger so we get the right shift | |
750 // from 4x4 supersampling's diff_to_shift function | |
751 | |
752 // Can't use (center of curve - center of baseline), since center-of-cur ve | |
753 // need not be the max delta from the baseline (it could even be coincid ent) | |
754 // so we try just looking at the two off-curve points | |
755 SkFDot6 dx = cubic_delta_from_line(SkFixedToFDot6(x0 << 2),SkFixedToFDot 6(x1 << 2), | |
756 SkFixedToFDot6(x2 << 2), SkFixedToFDo t6(x3 << 2)); | |
757 SkFDot6 dy = cubic_delta_from_line(SkFixedToFDot6(y0 << 2), SkFixedToFDo t6(y1 << 2), | |
758 SkFixedToFDot6(y2 << 2), SkFixedToFDo t6(y3 << 2)); | |
759 // add 1 (by observation) | |
760 shift = diff_to_shift(dx, dy) + 1; | |
761 } | |
762 // need at least 1 subdivision for our bias trick | |
763 SkASSERT(shift > 0); | |
764 if (shift > MAX_COEFF_SHIFT) { | |
765 shift = MAX_COEFF_SHIFT; | |
766 } | |
767 | |
768 /* Since our in coming data is initially shifted down by 10 (or 8 in | |
769 antialias). That means the most we can shift up is 8. However, we | |
770 compute coefficients with a 3*, so the safest upshift is really 6 | |
771 */ | |
772 int upShift = 6; // largest safe value | |
773 int downShift = shift + upShift - 10; | |
774 if (downShift < 0) { | |
775 downShift = 0; | |
776 upShift = 10 - shift; | |
777 } | |
778 | |
779 fWinding = SkToS8(winding); | |
780 fCurveCount = SkToS8(SkLeftShift(-1, shift)); | |
781 fCurveShift = SkToU8(shift); | |
782 fCubicDShift = SkToU8(downShift); | |
783 | |
784 SkFixed B = SkFDot6UpShift(SkFixedToFDot6(3 * (x1 - x0)), upShift); | |
785 SkFixed C = SkFDot6UpShift(SkFixedToFDot6(3 * (x0 - x1 - x1 + x2)), upShift) ; | |
786 SkFixed D = SkFDot6UpShift(SkFixedToFDot6(x3 + 3 * (x1 - x2) - x0), upShift) ; | |
787 | |
788 fCx = x0; | |
789 fCDx = B + (C >> shift) + (D >> 2*shift); // biased by shift | |
790 fCDDx = 2*C + (3*D >> (shift - 1)); // biased by 2*shift | |
791 fCDDDx = 3*D >> (shift - 1); // biased by 2*shift | |
792 | |
793 B = SkFDot6UpShift(SkFixedToFDot6(3 * (y1 - y0)), upShift); | |
794 C = SkFDot6UpShift(SkFixedToFDot6(3 * (y0 - y1 - y1 + y2)), upShift); | |
795 D = SkFDot6UpShift(SkFixedToFDot6(y3 + 3 * (y1 - y2) - y0), upShift); | |
796 | |
797 fCy = y0; | |
798 fCDy = B + (C >> shift) + (D >> 2*shift); // biased by shift | |
799 fCDDy = 2*C + (3*D >> (shift - 1)); // biased by 2*shift | |
800 fCDDDy = 3*D >> (shift - 1); // biased by 2*shift | |
801 | |
802 fCLastX = x3; | |
803 fCLastY = y3; | |
804 | |
805 return this->updateCubic(); | |
806 } | |
807 | |
808 int SkAnalyticCubicEdge::updateCubic() | |
809 { | |
810 int success; | |
811 int count = fCurveCount; | |
812 SkFixed oldx = fCx; | |
813 SkFixed oldy = fCy; | |
814 SkFixed newx, newy; | |
815 const int ddshift = fCurveShift; | |
816 const int dshift = fCubicDShift; | |
817 | |
818 SkASSERT(count < 0); | |
819 | |
820 do { | |
821 if (++count < 0) | |
822 { | |
823 newx = oldx + (fCDx >> dshift); | |
824 fCDx += fCDDx >> ddshift; | |
825 fCDDx += fCDDDx; | |
826 | |
827 newy = oldy + (fCDy >> dshift); | |
828 fCDy += fCDDy >> ddshift; | |
829 fCDDy += fCDDDy; | |
830 } | |
831 else // last segment | |
832 { | |
833 // SkDebugf("LastX err=%d, LastY err=%d\n", (oldx + (fCDx >> shift) - f LastX), (oldy + (fCDy >> shift) - fLastY)); | |
834 newx = fCLastX; | |
835 newy = fCLastY; | |
836 } | |
837 | |
838 // we want to say SkASSERT(oldy <= newy), but our finite fixedpoint | |
839 // doesn't always achieve that, so we have to explicitly pin it here. | |
840 if (newy < oldy) { | |
841 newy = oldy; | |
842 } | |
843 | |
844 success = this->updateLine(oldx, oldy, newx, newy); | |
845 oldx = newx; | |
846 oldy = newy; | |
847 } while (count < 0 && !success); | |
848 | |
849 fCx = newx; | |
850 fCy = newy; | |
851 fCurveCount = SkToS8(count); | |
852 return success; | |
853 } | |
OLD | NEW |