OLD | NEW |
(Empty) | |
| 1 /* |
| 2 * Copyright 2016 The Android Open Source Project |
| 3 * |
| 4 * Use of this source code is governed by a BSD-style license that can be |
| 5 * found in the LICENSE file. |
| 6 */ |
| 7 |
| 8 #include "SkAntiRun.h" |
| 9 #include "SkBlitter.h" |
| 10 #include "SkEdge.h" |
| 11 #include "SkEdgeBuilder.h" |
| 12 #include "SkGeometry.h" |
| 13 #include "SkPath.h" |
| 14 #include "SkQuadClipper.h" |
| 15 #include "SkRasterClip.h" |
| 16 #include "SkRegion.h" |
| 17 #include "SkScan.h" |
| 18 #include "SkScanPriv.h" |
| 19 #include "SkTemplates.h" |
| 20 #include "SkTSort.h" |
| 21 #include "SkUtils.h" |
| 22 |
| 23 /////////////////////////////////////////////////////////////////////////////// |
| 24 |
| 25 /* |
| 26 |
| 27 The following is a high-level overview of our analytic anti-aliasing |
| 28 algorithm. We consider a path as a collection of line segments, as |
| 29 quadratic/cubic curves are converted to small line segments. Without loss of |
| 30 generality, let's assume that the draw region is [0, W] x [0, H]. |
| 31 |
| 32 Our algorithm is based on horizontal scan lines (y = c_i) as the previous |
| 33 sampling-based algorithm did. However, our algorithm uses non-equal-spaced |
| 34 scan lines, while the previous method always uses equal-spaced scan lines, |
| 35 such as (y = 1/2 + 0, 1/2 + 1, 1/2 + 2, ...) in the previous non-AA algorithm, |
| 36 and (y = 1/8 + 1/4, 1/8 + 2/4, 1/8 + 3/4, ...) in the previous |
| 37 16-supersampling AA algorithm. |
| 38 |
| 39 Our algorithm contains scan lines y = c_i for c_i that is either: |
| 40 |
| 41 1. an integer between [0, H] |
| 42 |
| 43 2. the y value of a line segment endpoint |
| 44 |
| 45 3. the y value of an intersection of two line segments |
| 46 |
| 47 For two consecutive scan lines y = c_i, y = c_{i+1}, we analytically computes |
| 48 the coverage of this horizontal strip of our path on each pixel. This can be |
| 49 done very efficiently because the strip of our path now only consists of |
| 50 trapezoids whose top and bottom edges are y = c_i, y = c_{i+1} (this includes |
| 51 rectangles and triangles as special cases). |
| 52 |
| 53 We now describe how the coverage of single pixel is computed against such a |
| 54 trapezoid. That coverage is essentially the intersection area of a rectangle |
| 55 (e.g., [0, 1] x [c_i, c_{i+1}]) and our trapezoid. However, that intersection |
| 56 could be complicated, as shown in the example region A below: |
| 57 |
| 58 +-----------\----+ |
| 59 | \ C| |
| 60 | \ | |
| 61 \ \ | |
| 62 |\ A \| |
| 63 | \ \ |
| 64 | \ | |
| 65 | B \ | |
| 66 +----\-----------+ |
| 67 |
| 68 However, we don't have to compute the area of A directly. Instead, we can |
| 69 compute the excluded area, which are B and C, quite easily, because they're |
| 70 just triangles. In fact, we can prove that an excluded region (take B as an |
| 71 example) is either itself a simple trapezoid (including rectangles, triangles, |
| 72 and empty regions), or its opposite (the opposite of B is A + C) is a simple |
| 73 trapezoid. In any case, we can compute its area efficiently. |
| 74 |
| 75 In summary, our algorithm has a higher quality because it generates ground- |
| 76 truth coverages analytically. It is also faster because it has much fewer |
| 77 unnessasary horizontal scan lines. For example, given a triangle path, the |
| 78 number of scan lines in our algorithm is only about 3 + H while the |
| 79 16-supersampling algorithm has about 4H scan lines. |
| 80 |
| 81 */ |
| 82 |
| 83 /////////////////////////////////////////////////////////////////////////////// |
| 84 |
| 85 inline void addAlpha(SkAlpha& alpha, SkAlpha delta) { |
| 86 SkASSERT(alpha + (int)delta <= 0xFF); |
| 87 alpha += delta; |
| 88 } |
| 89 |
| 90 class AdditiveBlitter : public SkBlitter { |
| 91 public: |
| 92 virtual ~AdditiveBlitter() {} |
| 93 |
| 94 virtual SkBlitter* getRealBlitter(bool forceRealBlitter = false) = 0; |
| 95 |
| 96 virtual void blitAntiH(int x, int y, const SkAlpha antialias[], int len) = 0
; |
| 97 virtual void blitAntiH(int x, int y, const SkAlpha alpha) = 0; |
| 98 virtual void blitAntiH(int x, int y, int width, const SkAlpha alpha) = 0; |
| 99 |
| 100 void blitAntiH(int x, int y, const SkAlpha antialias[], const int16_t runs[]
) { |
| 101 SkDEBUGFAIL("Please call real blitter's blitAntiH instead."); |
| 102 } |
| 103 |
| 104 void blitV(int x, int y, int height, SkAlpha alpha) override { |
| 105 SkDEBUGFAIL("Please call real blitter's blitV instead."); |
| 106 } |
| 107 |
| 108 void blitH(int x, int y, int width) override { |
| 109 SkDEBUGFAIL("Please call real blitter's blitH instead."); |
| 110 } |
| 111 |
| 112 void blitRect(int x, int y, int width, int height) override { |
| 113 SkDEBUGFAIL("Please call real blitter's blitRect instead."); |
| 114 } |
| 115 |
| 116 void blitAntiRect(int x, int y, int width, int height, |
| 117 SkAlpha leftAlpha, SkAlpha rightAlpha) override { |
| 118 SkDEBUGFAIL("Please call real blitter's blitAntiRect instead."); |
| 119 } |
| 120 |
| 121 virtual int getWidth() = 0; |
| 122 }; |
| 123 |
| 124 // We need this mask blitter because it significantly accelerates small path fil
ling. |
| 125 class MaskAdditiveBlitter : public AdditiveBlitter { |
| 126 public: |
| 127 MaskAdditiveBlitter(SkBlitter* realBlitter, const SkIRect& ir, const SkRegio
n& clip, |
| 128 bool isInverse); |
| 129 ~MaskAdditiveBlitter() { |
| 130 fRealBlitter->blitMask(fMask, fClipRect); |
| 131 } |
| 132 |
| 133 // Most of the time, we still consider this mask blitter as the real blitter |
| 134 // so we can accelerate blitRect and others. But sometimes we want to return |
| 135 // the absolute real blitter (e.g., when we fall back to the old code path). |
| 136 SkBlitter* getRealBlitter(bool forceRealBlitter) override { |
| 137 return forceRealBlitter ? fRealBlitter : this; |
| 138 } |
| 139 |
| 140 // Virtual function is slow. So don't use this. Directly add alpha to the ma
sk instead. |
| 141 void blitAntiH(int x, int y, const SkAlpha antialias[], int len) override; |
| 142 |
| 143 // Allowing following methods are used to blit rectangles during aaa_walk_co
nvex_edges |
| 144 // Since there aren't many rectangles, we can still break the slow speed of
virtual functions. |
| 145 void blitAntiH(int x, int y, const SkAlpha alpha) override; |
| 146 void blitAntiH(int x, int y, int width, const SkAlpha alpha) override; |
| 147 void blitV(int x, int y, int height, SkAlpha alpha) override; |
| 148 void blitRect(int x, int y, int width, int height) override; |
| 149 void blitAntiRect(int x, int y, int width, int height, |
| 150 SkAlpha leftAlpha, SkAlpha rightAlpha) override; |
| 151 |
| 152 int getWidth() override { return fClipRect.width(); } |
| 153 |
| 154 static bool canHandleRect(const SkIRect& bounds) { |
| 155 int width = bounds.width(); |
| 156 int64_t rb = SkAlign4(width); |
| 157 // use 64bits to detect overflow |
| 158 int64_t storage = rb * bounds.height(); |
| 159 |
| 160 return (width <= MaskAdditiveBlitter::kMAX_WIDTH) && |
| 161 (storage <= MaskAdditiveBlitter::kMAX_STORAGE); |
| 162 } |
| 163 |
| 164 // Return a pointer where pointer[x] corresonds to the alpha of (x, y) |
| 165 inline uint8_t* getRow(int y) { |
| 166 if (y != fY) { |
| 167 fY = y; |
| 168 fRow = fMask.fImage + (y - fMask.fBounds.fTop) * fMask.fRowBytes - f
Mask.fBounds.fLeft; |
| 169 } |
| 170 return fRow; |
| 171 } |
| 172 |
| 173 private: |
| 174 // so we don't try to do very wide things, where the RLE blitter would be fa
ster |
| 175 static const int kMAX_WIDTH = 32; |
| 176 static const int kMAX_STORAGE = 1024; |
| 177 |
| 178 SkBlitter* fRealBlitter; |
| 179 SkMask fMask; |
| 180 SkIRect fClipRect; |
| 181 // we add 2 because we can write 1 extra byte at either end due to precision
error |
| 182 uint32_t fStorage[(kMAX_STORAGE >> 2) + 2]; |
| 183 |
| 184 uint8_t* fRow; |
| 185 int fY; |
| 186 }; |
| 187 |
| 188 MaskAdditiveBlitter::MaskAdditiveBlitter(SkBlitter* realBlitter, const SkIRect&
ir, const SkRegion& clip, |
| 189 bool isInverse) { |
| 190 SkASSERT(canHandleRect(ir)); |
| 191 SkASSERT(!isInverse); |
| 192 |
| 193 fRealBlitter = realBlitter; |
| 194 |
| 195 fMask.fImage = (uint8_t*)fStorage + 1; // There's 1 extra byte at either
end of fStorage |
| 196 fMask.fBounds = ir; |
| 197 fMask.fRowBytes = ir.width(); |
| 198 fMask.fFormat = SkMask::kA8_Format; |
| 199 |
| 200 fY = ir.fTop - 1; |
| 201 fRow = nullptr; |
| 202 |
| 203 fClipRect = ir; |
| 204 if (!fClipRect.intersect(clip.getBounds())) { |
| 205 SkASSERT(0); |
| 206 fClipRect.setEmpty(); |
| 207 } |
| 208 |
| 209 memset(fStorage, 0, fMask.fBounds.height() * fMask.fRowBytes + 2); |
| 210 } |
| 211 |
| 212 void MaskAdditiveBlitter::blitAntiH(int x, int y, const SkAlpha antialias[], int
len) { |
| 213 SkFAIL("Don't use this; directly add alphas to the mask."); |
| 214 } |
| 215 |
| 216 void MaskAdditiveBlitter::blitAntiH(int x, int y, const SkAlpha alpha) { |
| 217 SkASSERT(x >= fMask.fBounds.fLeft -1); |
| 218 addAlpha(this->getRow(y)[x], alpha); |
| 219 } |
| 220 |
| 221 void MaskAdditiveBlitter::blitAntiH(int x, int y, int width, const SkAlpha alpha
) { |
| 222 SkASSERT(x >= fMask.fBounds.fLeft -1); |
| 223 uint8_t* row = this->getRow(y); |
| 224 for (int i=0; i<width; i++) { |
| 225 addAlpha(row[x + i], alpha); |
| 226 } |
| 227 } |
| 228 |
| 229 void MaskAdditiveBlitter::blitV(int x, int y, int height, SkAlpha alpha) { |
| 230 if (alpha == 0) { |
| 231 return; |
| 232 } |
| 233 SkASSERT(x >= fMask.fBounds.fLeft -1); |
| 234 // This must be called as if this is a real blitter. |
| 235 // So we directly set alpha rather than adding it. |
| 236 uint8_t* row = this->getRow(y); |
| 237 for (int i=0; i<height; i++) { |
| 238 row[x] = alpha; |
| 239 row += fMask.fRowBytes; |
| 240 } |
| 241 } |
| 242 |
| 243 void MaskAdditiveBlitter::blitRect(int x, int y, int width, int height) { |
| 244 SkASSERT(x >= fMask.fBounds.fLeft -1); |
| 245 // This must be called as if this is a real blitter. |
| 246 // So we directly set alpha rather than adding it. |
| 247 uint8_t* row = this->getRow(y); |
| 248 for (int i=0; i<height; i++) { |
| 249 memset(row + x, 0xFF, width); |
| 250 row += fMask.fRowBytes; |
| 251 } |
| 252 } |
| 253 |
| 254 void MaskAdditiveBlitter::blitAntiRect(int x, int y, int width, int height, |
| 255 SkAlpha leftAlpha, SkAlpha rightAlpha) { |
| 256 blitV(x, y, height, leftAlpha); |
| 257 blitV(x + 1 + width, y, height, rightAlpha); |
| 258 blitRect(x + 1, y, width, height); |
| 259 } |
| 260 |
| 261 class RunBasedAdditiveBlitter : public AdditiveBlitter { |
| 262 public: |
| 263 RunBasedAdditiveBlitter(SkBlitter* realBlitter, const SkIRect& ir, const SkR
egion& clip, |
| 264 bool isInverse); |
| 265 ~RunBasedAdditiveBlitter(); |
| 266 |
| 267 SkBlitter* getRealBlitter(bool forceRealBlitter) override; |
| 268 |
| 269 void blitAntiH(int x, int y, const SkAlpha antialias[], int len) override; |
| 270 void blitAntiH(int x, int y, const SkAlpha alpha) override; |
| 271 void blitAntiH(int x, int y, int width, const SkAlpha alpha) override; |
| 272 |
| 273 int getWidth() override; |
| 274 |
| 275 private: |
| 276 SkBlitter* fRealBlitter; |
| 277 |
| 278 /// Current y coordinate |
| 279 int fCurrY; |
| 280 /// Widest row of region to be blitted |
| 281 int fWidth; |
| 282 /// Leftmost x coordinate in any row |
| 283 int fLeft; |
| 284 /// Initial y coordinate (top of bounds). |
| 285 int fTop; |
| 286 |
| 287 // The next three variables are used to track a circular buffer that |
| 288 // contains the values used in SkAlphaRuns. These variables should only |
| 289 // ever be updated in advanceRuns(), and fRuns should always point to |
| 290 // a valid SkAlphaRuns... |
| 291 int fRunsToBuffer; |
| 292 void* fRunsBuffer; |
| 293 int fCurrentRun; |
| 294 SkAlphaRuns fRuns; |
| 295 |
| 296 int fOffsetX; |
| 297 |
| 298 inline bool check(int x, int width) { |
| 299 #ifdef SK_DEBUG |
| 300 if (x < 0 || x + width > fWidth) { |
| 301 SkDebugf("Ignore x = %d, width = %d\n", x, width); |
| 302 } |
| 303 #endif |
| 304 return (x >= 0 && x + width <= fWidth); |
| 305 } |
| 306 |
| 307 // extra one to store the zero at the end |
| 308 inline int getRunsSz() const { return (fWidth + 1 + (fWidth + 2)/2) * sizeof
(int16_t); } |
| 309 |
| 310 // This function updates the fRuns variable to point to the next buffer spac
e |
| 311 // with adequate storage for a SkAlphaRuns. It mostly just advances fCurrent
Run |
| 312 // and resets fRuns to point to an empty scanline. |
| 313 inline void advanceRuns() { |
| 314 const size_t kRunsSz = this->getRunsSz(); |
| 315 fCurrentRun = (fCurrentRun + 1) % fRunsToBuffer; |
| 316 fRuns.fRuns = reinterpret_cast<int16_t*>( |
| 317 reinterpret_cast<uint8_t*>(fRunsBuffer) + fCurrentRun * kRunsSz); |
| 318 fRuns.fAlpha = reinterpret_cast<SkAlpha*>(fRuns.fRuns + fWidth + 1); |
| 319 fRuns.reset(fWidth); |
| 320 } |
| 321 |
| 322 // Blitting 0xFF and 0 is much faster so we snap alphas close to them |
| 323 inline SkAlpha snapAlpha(SkAlpha alpha) { |
| 324 return alpha > 247 ? 0xFF : alpha < 8 ? 0 : alpha; |
| 325 } |
| 326 |
| 327 inline void flush() { |
| 328 if (fCurrY >= fTop) { |
| 329 SkASSERT(fCurrentRun < fRunsToBuffer); |
| 330 for (int x = 0; fRuns.fRuns[x]; x += fRuns.fRuns[x]) { |
| 331 // It seems that blitting 255 or 0 is much faster than blitting
254 or 1 |
| 332 fRuns.fAlpha[x] = snapAlpha(fRuns.fAlpha[x]); |
| 333 } |
| 334 if (!fRuns.empty()) { |
| 335 // SkDEBUGCODE(fRuns.dump();) |
| 336 fRealBlitter->blitAntiH(fLeft, fCurrY, fRuns.fAlpha, fRuns.fRuns
); |
| 337 this->advanceRuns(); |
| 338 fOffsetX = 0; |
| 339 } |
| 340 fCurrY = fTop - 1; |
| 341 } |
| 342 } |
| 343 |
| 344 inline void checkY(int y) { |
| 345 if (y != fCurrY) { |
| 346 this->flush(); |
| 347 fCurrY = y; |
| 348 } |
| 349 } |
| 350 }; |
| 351 |
| 352 RunBasedAdditiveBlitter::RunBasedAdditiveBlitter(SkBlitter* realBlitter, const S
kIRect& ir, const SkRegion& clip, |
| 353 bool isInverse) { |
| 354 fRealBlitter = realBlitter; |
| 355 |
| 356 SkIRect sectBounds; |
| 357 if (isInverse) { |
| 358 // We use the clip bounds instead of the ir, since we may be asked to |
| 359 //draw outside of the rect when we're a inverse filltype |
| 360 sectBounds = clip.getBounds(); |
| 361 } else { |
| 362 if (!sectBounds.intersect(ir, clip.getBounds())) { |
| 363 sectBounds.setEmpty(); |
| 364 } |
| 365 } |
| 366 |
| 367 const int left = sectBounds.left(); |
| 368 const int right = sectBounds.right(); |
| 369 |
| 370 fLeft = left; |
| 371 fWidth = right - left; |
| 372 fTop = sectBounds.top(); |
| 373 fCurrY = fTop - 1; |
| 374 |
| 375 fRunsToBuffer = realBlitter->requestRowsPreserved(); |
| 376 fRunsBuffer = realBlitter->allocBlitMemory(fRunsToBuffer * this->getRunsSz()
); |
| 377 fCurrentRun = -1; |
| 378 |
| 379 this->advanceRuns(); |
| 380 |
| 381 fOffsetX = 0; |
| 382 } |
| 383 |
| 384 RunBasedAdditiveBlitter::~RunBasedAdditiveBlitter() { |
| 385 this->flush(); |
| 386 } |
| 387 |
| 388 SkBlitter* RunBasedAdditiveBlitter::getRealBlitter(bool forceRealBlitter) { |
| 389 return fRealBlitter; |
| 390 } |
| 391 |
| 392 void RunBasedAdditiveBlitter::blitAntiH(int x, int y, const SkAlpha antialias[],
int len) { |
| 393 checkY(y); |
| 394 x -= fLeft; |
| 395 |
| 396 if (x < 0) { |
| 397 antialias -= x; |
| 398 x = 0; |
| 399 } |
| 400 len = SkTMin(len, fWidth - x); |
| 401 SkASSERT(check(x, len)); |
| 402 |
| 403 if (x < fOffsetX) { |
| 404 fOffsetX = 0; |
| 405 } |
| 406 |
| 407 fOffsetX = fRuns.add(x, 0, len, 0, 0, fOffsetX); // Break the run |
| 408 for (int i = 0; i < len; i += fRuns.fRuns[x + i]) { |
| 409 for (int j = 1; j < fRuns.fRuns[x + i]; j++) { |
| 410 fRuns.fRuns[x + i + j] = 1; |
| 411 fRuns.fAlpha[x + i + j] = fRuns.fAlpha[x + i]; |
| 412 } |
| 413 fRuns.fRuns[x + i] = 1; |
| 414 } |
| 415 for (int i=0; i<len; i++) { |
| 416 addAlpha(fRuns.fAlpha[x + i], antialias[i]); |
| 417 } |
| 418 } |
| 419 void RunBasedAdditiveBlitter::blitAntiH(int x, int y, const SkAlpha alpha) { |
| 420 checkY(y); |
| 421 x -= fLeft; |
| 422 |
| 423 if (x < fOffsetX) { |
| 424 fOffsetX = 0; |
| 425 } |
| 426 |
| 427 if (this->check(x, 1)) { |
| 428 fOffsetX = fRuns.add(x, 0, 1, 0, alpha, fOffsetX); |
| 429 } |
| 430 } |
| 431 |
| 432 void RunBasedAdditiveBlitter::blitAntiH(int x, int y, int width, const SkAlpha a
lpha) { |
| 433 checkY(y); |
| 434 x -= fLeft; |
| 435 |
| 436 if (x < fOffsetX) { |
| 437 fOffsetX = 0; |
| 438 } |
| 439 |
| 440 if (this->check(x, width)) { |
| 441 fOffsetX = fRuns.add(x, 0, width, 0, alpha, fOffsetX); |
| 442 } |
| 443 } |
| 444 |
| 445 int RunBasedAdditiveBlitter::getWidth() { return fWidth; } |
| 446 |
| 447 /////////////////////////////////////////////////////////////////////////////// |
| 448 |
| 449 // Return the alpha of a trapezoid whose height is 1 |
| 450 inline SkAlpha trapezoidToAlpha(SkFixed l1, SkFixed l2) { |
| 451 SkASSERT(l1 >= 0 && l2 >= 0); |
| 452 return ((l1 + l2) >> 9); |
| 453 } |
| 454 |
| 455 struct PartialTriangleAlphaTable { |
| 456 SkFixed table[(1 << 8) + 1][(1 << 9) + 1]; |
| 457 |
| 458 PartialTriangleAlphaTable() { |
| 459 for (int i=0; i <= (1 << 8); i++) { |
| 460 for (int j=0; j <= (1 << 9); j++) { |
| 461 table[i][j] = (((i * i) >> 8) * j) >> 1; |
| 462 } |
| 463 } |
| 464 } |
| 465 }; |
| 466 |
| 467 class QuickPartialTriangleAlpha { |
| 468 private: |
| 469 static PartialTriangleAlphaTable table; |
| 470 public: |
| 471 static inline SkFixed lookup(SkFixed a, SkFixed b) { |
| 472 SkASSERT(a <= SK_Fixed1 && b <= SK_Fixed1 << 1); |
| 473 return table.table[a >> 8][b >> 8]; |
| 474 } |
| 475 }; |
| 476 |
| 477 PartialTriangleAlphaTable QuickPartialTriangleAlpha::table; |
| 478 |
| 479 // The alpha of right-triangle (a, a*b), in 16 bits |
| 480 inline SkFixed partialTriangleToAlpha16(SkFixed a, SkFixed b) { |
| 481 SkASSERT(a <= SK_Fixed1); |
| 482 if (b <= SK_Fixed1 << 1) { |
| 483 return QuickPartialTriangleAlpha::lookup(a, b); |
| 484 } else { |
| 485 // This is unlikely to happen because when b is large, we would |
| 486 // mostly end up in trapezoidToAlpha rather than computing triangles |
| 487 return ((((a >> 8) * (a >> 8)) >> 8) * (b >> 8)) >> 1; |
| 488 } |
| 489 } |
| 490 |
| 491 // The alpha of right-triangle (a, a*b) |
| 492 inline SkAlpha partialTriangleToAlpha(SkFixed a, SkFixed b) { |
| 493 // (a >> 8) * (a >> 8) * (b >> 8) >> 9 |
| 494 return partialTriangleToAlpha16(a, b) >> 8; |
| 495 } |
| 496 |
| 497 inline SkAlpha getPartialAlpha(SkAlpha alpha, SkFixed partialHeight) { |
| 498 return (alpha * partialHeight) >> 16; |
| 499 } |
| 500 |
| 501 inline SkAlpha getPartialAlpha(SkAlpha alpha, SkAlpha fullAlpha) { |
| 502 return ((uint16_t)alpha * fullAlpha) >> 8; |
| 503 } |
| 504 |
| 505 // Suppose that line (l1, y)-(r1, y+1) intersects with (l2, y)-(r2, y+1), |
| 506 // approximate (very coarsely) the x coordinate of the intersection. |
| 507 inline SkFixed approximateIntersection(SkFixed l1, SkFixed r1, SkFixed l2, SkFix
ed r2) { |
| 508 if (l1 > r1) { SkTSwap(l1, r1); } |
| 509 if (l2 > r2) { SkTSwap(l2, r2); } |
| 510 return (SkTMax(l1, l2) + SkTMin(r1, r2)) >> 1; |
| 511 } |
| 512 |
| 513 // Here we always send in l < SK_Fixed1, and the first alpha we want to compute
is alphas[0] |
| 514 inline void computeAlphaAboveLine(SkAlpha* alphas, SkFixed l, SkFixed r, SkFixed
dY, SkAlpha fullAlpha) { |
| 515 SkASSERT(l <= r); |
| 516 SkASSERT(l >> 16 == 0); |
| 517 int R = SkFixedCeilToInt(r); |
| 518 if (R == 0) { |
| 519 return; |
| 520 } else if (R == 1) { |
| 521 alphas[0] = getPartialAlpha(((R << 17) - l - r) >> 9, fullAlpha); |
| 522 } else { |
| 523 SkFixed first = SK_Fixed1 - l; // horizontal edge length of the left-mos
t triangle |
| 524 SkFixed last = r - ((R - 1) << 16); // horizontal edge length of the rig
ht-most triangle |
| 525 SkFixed firstH = SkFixedMul_lowprec(first, dY); // vertical edge of the
left-most triangle |
| 526 alphas[0] = SkFixedMul_lowprec(first, firstH) >> 9; // triangle alpha |
| 527 SkFixed alpha16 = firstH + (dY >> 1); // rectangle plus triangle |
| 528 for (int i = 1; i < R - 1; i++) { |
| 529 alphas[i] = alpha16 >> 8; |
| 530 alpha16 += dY; |
| 531 } |
| 532 alphas[R - 1] = fullAlpha - partialTriangleToAlpha(last, dY); |
| 533 } |
| 534 } |
| 535 |
| 536 // Here we always send in l < SK_Fixed1, and the first alpha we want to compute
is alphas[0] |
| 537 inline void computeAlphaBelowLine(SkAlpha* alphas, SkFixed l, SkFixed r, SkFixed
dY, SkAlpha fullAlpha) { |
| 538 SkASSERT(l <= r); |
| 539 SkASSERT(l >> 16 == 0); |
| 540 int R = SkFixedCeilToInt(r); |
| 541 if (R == 0) { |
| 542 return; |
| 543 } else if (R == 1) { |
| 544 alphas[0] = getPartialAlpha(trapezoidToAlpha(l, r), fullAlpha); |
| 545 } else { |
| 546 SkFixed first = SK_Fixed1 - l; // horizontal edge length of the left-mos
t triangle |
| 547 SkFixed last = r - ((R - 1) << 16); // horizontal edge length of the rig
ht-most triangle |
| 548 SkFixed lastH = SkFixedMul_lowprec(last, dY); // vertical edge of the ri
ght-most triangle |
| 549 alphas[R-1] = SkFixedMul_lowprec(last, lastH) >> 9; // triangle alpha |
| 550 SkFixed alpha16 = lastH + (dY >> 1); // rectangle plus triangle |
| 551 for (int i = R - 2; i > 0; i--) { |
| 552 alphas[i] = alpha16 >> 8; |
| 553 alpha16 += dY; |
| 554 } |
| 555 alphas[0] = fullAlpha - partialTriangleToAlpha(first, dY); |
| 556 } |
| 557 } |
| 558 |
| 559 // Note that if fullAlpha != 0xFF, we'll multiply alpha by fullAlpha |
| 560 inline void blit_single_alpha(AdditiveBlitter* blitter, int y, int x, |
| 561 SkAlpha alpha, SkAlpha fullAlpha, SkAlpha* maskRow
, |
| 562 bool isUsingMask) { |
| 563 if (isUsingMask) { |
| 564 if (fullAlpha == 0xFF) { |
| 565 maskRow[x] = alpha; |
| 566 } else { |
| 567 addAlpha(maskRow[x], getPartialAlpha(alpha, fullAlpha)); |
| 568 } |
| 569 } else { |
| 570 if (fullAlpha == 0xFF) { |
| 571 blitter->getRealBlitter()->blitV(x, y, 1, alpha); |
| 572 } else { |
| 573 blitter->blitAntiH(x, y, getPartialAlpha(alpha, fullAlpha)); |
| 574 } |
| 575 } |
| 576 } |
| 577 |
| 578 inline void blit_two_alphas(AdditiveBlitter* blitter, int y, int x, |
| 579 SkAlpha a1, SkAlpha a2, SkAlpha fullAlpha, SkAlpha*
maskRow, |
| 580 bool isUsingMask) { |
| 581 if (isUsingMask) { |
| 582 addAlpha(maskRow[x], a1); |
| 583 addAlpha(maskRow[x + 1], a2); |
| 584 } else { |
| 585 if (fullAlpha == 0xFF) { |
| 586 blitter->getRealBlitter()->blitV(x, y, 1, a1); |
| 587 blitter->getRealBlitter()->blitV(x + 1, y, 1, a2); |
| 588 } else { |
| 589 blitter->blitAntiH(x, y, a1); |
| 590 blitter->blitAntiH(x + 1, y, a2); |
| 591 } |
| 592 } |
| 593 } |
| 594 |
| 595 // It's important that this is inline. Otherwise it'll be much slower. |
| 596 SK_ALWAYS_INLINE void blit_full_alpha(AdditiveBlitter* blitter, int y, int x, in
t len, |
| 597 SkAlpha fullAlpha, SkAlpha* maskRow, bool isUsingMas
k) { |
| 598 if (isUsingMask) { |
| 599 for (int i=0; i<len; i++) { |
| 600 addAlpha(maskRow[x + i], fullAlpha); |
| 601 } |
| 602 } else { |
| 603 if (fullAlpha == 0xFF) { |
| 604 blitter->getRealBlitter()->blitH(x, y, len); |
| 605 } else { |
| 606 blitter->blitAntiH(x, y, len, fullAlpha); |
| 607 } |
| 608 } |
| 609 } |
| 610 |
| 611 void blit_aaa_trapezoid_row(AdditiveBlitter* blitter, int y, |
| 612 SkFixed ul, SkFixed ur, SkFixed ll, SkFixed lr, |
| 613 SkFixed lDY, SkFixed rDY, SkAlpha fullAlpha, SkAlpha
* maskRow, |
| 614 bool isUsingMask) { |
| 615 int L = SkFixedFloorToInt(ul), R = SkFixedCeilToInt(lr); |
| 616 int len = R - L; |
| 617 |
| 618 if (len == 1) { |
| 619 SkAlpha alpha = trapezoidToAlpha(ur - ul, lr - ll); |
| 620 blit_single_alpha(blitter, y, L, alpha, fullAlpha, maskRow, isUsingMask)
; |
| 621 return; |
| 622 } |
| 623 |
| 624 // SkDebugf("y = %d, len = %d, ul = %f, ur = %f, ll = %f, lr = %f\n", y, len
, |
| 625 // SkFixedToFloat(ul), SkFixedToFloat(ur), SkFixedToFloat(ll), SkFix
edToFloat(lr)); |
| 626 |
| 627 const int kQuickLen = 31; |
| 628 // This is faster than SkAutoSMalloc<1024> |
| 629 char quickMemory[(sizeof(SkAlpha) * 2 + sizeof(int16_t)) * (kQuickLen + 1)]; |
| 630 SkAlpha* alphas; |
| 631 |
| 632 if (len <= kQuickLen) { |
| 633 alphas = (SkAlpha*)quickMemory; |
| 634 } else { |
| 635 alphas = new SkAlpha[(len + 1) * (sizeof(SkAlpha) * 2 + sizeof(int16_t))
]; |
| 636 } |
| 637 |
| 638 SkAlpha* tempAlphas = alphas + len + 1; |
| 639 int16_t* runs = (int16_t*)(alphas + (len + 1) * 2); |
| 640 |
| 641 for (int i = 0; i < len; i++) { |
| 642 runs[i] = 1; |
| 643 alphas[i] = fullAlpha; |
| 644 } |
| 645 runs[len] = 0; |
| 646 |
| 647 int uL = SkFixedFloorToInt(ul); |
| 648 int lL = SkFixedCeilToInt(ll); |
| 649 if (uL + 2 == lL) { // We only need to compute two triangles, accelerate thi
s special case |
| 650 SkFixed first = (uL << 16) + SK_Fixed1 - ul; |
| 651 SkFixed second = ll - ul - first; |
| 652 SkAlpha a1 = fullAlpha - partialTriangleToAlpha(first, lDY); |
| 653 SkAlpha a2 = partialTriangleToAlpha(second, lDY); |
| 654 alphas[0] = alphas[0] > a1 ? alphas[0] - a1 : 0; |
| 655 alphas[1] = alphas[1] > a2 ? alphas[1] - a2 : 0; |
| 656 } else { |
| 657 computeAlphaBelowLine(tempAlphas + uL - L, ul - (uL << 16), ll - (uL <<
16), |
| 658 lDY, fullAlpha); |
| 659 for (int i = uL; i < lL; i++) { |
| 660 if (alphas[i - L] > tempAlphas[i - L]) { |
| 661 alphas[i - L] -= tempAlphas[i - L]; |
| 662 } else { |
| 663 alphas[i - L] = 0; |
| 664 } |
| 665 } |
| 666 } |
| 667 |
| 668 int uR = SkFixedFloorToInt(ur); |
| 669 int lR = SkFixedCeilToInt(lr); |
| 670 if (uR + 2 == lR) { // We only need to compute two triangles, accelerate thi
s special case |
| 671 SkFixed first = (uR << 16) + SK_Fixed1 - ur; |
| 672 SkFixed second = lr - ur - first; |
| 673 SkAlpha a1 = partialTriangleToAlpha(first, rDY); |
| 674 SkAlpha a2 = fullAlpha - partialTriangleToAlpha(second, rDY); |
| 675 alphas[len-2] = alphas[len-2] > a1 ? alphas[len-2] - a1 : 0; |
| 676 alphas[len-1] = alphas[len-1] > a2 ? alphas[len-1] - a2 : 0; |
| 677 } else { |
| 678 computeAlphaAboveLine(tempAlphas + uR - L, ur - (uR << 16), lr - (uR <<
16), |
| 679 rDY, fullAlpha); |
| 680 for (int i = uR; i < lR; i++) { |
| 681 if (alphas[i - L] > tempAlphas[i - L]) { |
| 682 alphas[i - L] -= tempAlphas[i - L]; |
| 683 } else { |
| 684 alphas[i - L] = 0; |
| 685 } |
| 686 } |
| 687 } |
| 688 |
| 689 if (isUsingMask) { |
| 690 for (int i=0; i<len; i++) { |
| 691 addAlpha(maskRow[L + i], alphas[i]); |
| 692 } |
| 693 } else { |
| 694 if (fullAlpha == 0xFF) { // Real blitter is faster than RunBasedAdditive
Blitter |
| 695 blitter->getRealBlitter()->blitAntiH(L, y, alphas, runs); |
| 696 } else { |
| 697 blitter->blitAntiH(L, y, alphas, len); |
| 698 } |
| 699 } |
| 700 |
| 701 if (len > kQuickLen) { |
| 702 delete [] alphas; |
| 703 } |
| 704 } |
| 705 |
| 706 inline void blit_trapezoid_row(AdditiveBlitter* blitter, int y, |
| 707 SkFixed ul, SkFixed ur, SkFixed ll, SkFixed lr, |
| 708 SkFixed lDY, SkFixed rDY, SkAlpha fullAlpha, |
| 709 SkAlpha* maskRow, bool isUsingMask) { |
| 710 SkASSERT(lDY >= 0 && rDY >= 0); // We should only send in the absolte value |
| 711 |
| 712 if (ul > ur) { |
| 713 #ifdef SK_DEBUG |
| 714 SkDebugf("ul = %f > ur = %f!\n", SkFixedToFloat(ul), SkFixedToFloat(ur))
; |
| 715 #endif |
| 716 return; |
| 717 } |
| 718 |
| 719 // Edge crosses. Approximate it. This should only happend due to precision l
imit, |
| 720 // so the approximation could be very coarse. |
| 721 if (ll > lr) { |
| 722 #ifdef SK_DEBUG |
| 723 SkDebugf("approximate intersection: %d %f %f\n", y, |
| 724 SkFixedToFloat(ll), SkFixedToFloat(lr)); |
| 725 #endif |
| 726 ll = lr = approximateIntersection(ul, ll, ur, lr); |
| 727 } |
| 728 |
| 729 if (ul == ur && ll == lr) { |
| 730 return; // empty trapzoid |
| 731 } |
| 732 |
| 733 // We're going to use the left line ul-ll and the rite line ur-lr |
| 734 // to exclude the area that's not covered by the path. |
| 735 // Swapping (ul, ll) or (ur, lr) won't affect that exclusion |
| 736 // so we'll do that for simplicity. |
| 737 if (ul > ll) { SkTSwap(ul, ll); } |
| 738 if (ur > lr) { SkTSwap(ur, lr); } |
| 739 |
| 740 SkFixed joinLeft = SkFixedCeilToFixed(ll); |
| 741 SkFixed joinRite = SkFixedFloorToFixed(ur); |
| 742 if (joinLeft <= joinRite) { // There's a rect from joinLeft to joinRite that
we can blit |
| 743 if (joinLeft < joinRite) { |
| 744 blit_full_alpha(blitter, y, joinLeft >> 16, (joinRite - joinLeft) >>
16, fullAlpha, |
| 745 maskRow, isUsingMask); |
| 746 } |
| 747 if (ul < joinLeft) { |
| 748 int len = SkFixedCeilToInt(joinLeft - ul); |
| 749 if (len == 1) { |
| 750 SkAlpha alpha = trapezoidToAlpha(joinLeft - ul, joinLeft - ll); |
| 751 blit_single_alpha(blitter, y, ul >> 16, alpha, fullAlpha, maskRo
w, isUsingMask); |
| 752 } else if (len == 2) { |
| 753 SkFixed first = joinLeft - SK_Fixed1 - ul; |
| 754 SkFixed second = ll - ul - first; |
| 755 SkAlpha a1 = partialTriangleToAlpha(first, lDY); |
| 756 SkAlpha a2 = fullAlpha - partialTriangleToAlpha(second, lDY); |
| 757 blit_two_alphas(blitter, y, ul >> 16, a1, a2, fullAlpha, maskRow
, isUsingMask); |
| 758 } else { |
| 759 blit_aaa_trapezoid_row(blitter, y, ul, joinLeft, ll, joinLeft, l
DY, SK_MaxS32, |
| 760 fullAlpha, maskRow, isUsingMask); |
| 761 } |
| 762 } |
| 763 if (lr > joinRite) { |
| 764 int len = SkFixedCeilToInt(lr - joinRite); |
| 765 if (len == 1) { |
| 766 SkAlpha alpha = trapezoidToAlpha(ur - joinRite, lr - joinRite); |
| 767 blit_single_alpha(blitter, y, joinRite >> 16, alpha, fullAlpha,
maskRow, |
| 768 isUsingMask); |
| 769 } else if (len == 2) { |
| 770 SkFixed first = joinRite + SK_Fixed1 - ur; |
| 771 SkFixed second = lr - ur - first; |
| 772 SkAlpha a1 = fullAlpha - partialTriangleToAlpha(first, rDY); |
| 773 SkAlpha a2 = partialTriangleToAlpha(second, rDY); |
| 774 blit_two_alphas(blitter, y, joinRite >> 16, a1, a2, fullAlpha, m
askRow, |
| 775 isUsingMask); |
| 776 } else { |
| 777 blit_aaa_trapezoid_row(blitter, y, joinRite, ur, joinRite, lr, S
K_MaxS32, rDY, |
| 778 fullAlpha, maskRow, isUsingMask); |
| 779 } |
| 780 } |
| 781 } else { |
| 782 blit_aaa_trapezoid_row(blitter, y, ul, ur, ll, lr, lDY, rDY, fullAlpha,
maskRow, |
| 783 isUsingMask); |
| 784 } |
| 785 } |
| 786 |
| 787 /////////////////////////////////////////////////////////////////////////////// |
| 788 |
| 789 static bool operator<(const SkAnalyticEdge& a, const SkAnalyticEdge& b) { |
| 790 int valuea = a.fUpperY; |
| 791 int valueb = b.fUpperY; |
| 792 |
| 793 if (valuea == valueb) { |
| 794 valuea = a.fX; |
| 795 valueb = b.fX; |
| 796 } |
| 797 |
| 798 if (valuea == valueb) { |
| 799 valuea = a.fDX; |
| 800 valueb = b.fDX; |
| 801 } |
| 802 |
| 803 return valuea < valueb; |
| 804 } |
| 805 |
| 806 static SkAnalyticEdge* sort_edges(SkAnalyticEdge* list[], int count, SkAnalyticE
dge** last) { |
| 807 SkTQSort(list, list + count - 1); |
| 808 |
| 809 // now make the edges linked in sorted order |
| 810 for (int i = 1; i < count; i++) { |
| 811 list[i - 1]->fNext = list[i]; |
| 812 list[i]->fPrev = list[i - 1]; |
| 813 } |
| 814 |
| 815 *last = list[count - 1]; |
| 816 return list[0]; |
| 817 } |
| 818 |
| 819 #ifdef SK_DEBUG |
| 820 static void validate_sort(const SkAnalyticEdge* edge) { |
| 821 SkFixed y = SkIntToFixed(-32768); |
| 822 |
| 823 while (edge->fUpperY != SK_MaxS32) { |
| 824 edge->validate(); |
| 825 SkASSERT(y <= edge->fUpperY); |
| 826 |
| 827 y = edge->fUpperY; |
| 828 edge = (SkAnalyticEdge*)edge->fNext; |
| 829 } |
| 830 } |
| 831 #else |
| 832 #define validate_sort(edge) |
| 833 #endif |
| 834 |
| 835 // return true if we're done with this edge |
| 836 static bool update_edge(SkAnalyticEdge* edge, SkFixed last_y) { |
| 837 if (last_y >= edge->fLowerY) { |
| 838 if (edge->fCurveCount < 0) { |
| 839 if (static_cast<SkAnalyticCubicEdge*>(edge)->updateCubic()) { |
| 840 return false; |
| 841 } |
| 842 } else if (edge->fCurveCount > 0) { |
| 843 if (static_cast<SkAnalyticQuadraticEdge*>(edge)->updateQuadratic())
{ |
| 844 return false; |
| 845 } |
| 846 } |
| 847 return true; |
| 848 } |
| 849 SkASSERT(false); |
| 850 return false; |
| 851 } |
| 852 |
| 853 // For an edge, we consider it smooth if the Dx doesn't change much, and Dy is l
arge enough |
| 854 // For curves that are updating, the Dx is not changing much if fQDx/fCDx and fQ
Dy/fCDy are |
| 855 // relatively large compared to fQDDx/QCDDx and fQDDy/fCDDy |
| 856 inline bool isSmoothEnough(SkAnalyticEdge* thisEdge, SkAnalyticEdge* nextEdge, i
nt stop_y) { |
| 857 if (thisEdge->fCurveCount < 0) { |
| 858 SkAnalyticCubicEdge* cubicEdge = static_cast<SkAnalyticCubicEdge*>(thisE
dge); |
| 859 return cubicEdge->fCDx >> 1 >= cubicEdge->fCDDx >> cubicEdge->fCurveShif
t && |
| 860 cubicEdge->fCDy >> 1 >= cubicEdge->fCDDy >> cubicEdge->fCurveShi
ft && |
| 861 // current Dy is (fCDy - (fCDDy >> ddshift)) >> dshift |
| 862 (cubicEdge->fCDy - (cubicEdge->fCDDy >> cubicEdge->fCurveShift)) |
| 863 >> cubicEdge->fCubicDShift |
| 864 >= SK_Fixed1; |
| 865 } else if (thisEdge->fCurveCount > 0) { |
| 866 SkAnalyticQuadraticEdge* quadraticEdge = static_cast<SkAnalyticQuadratic
Edge*>(thisEdge); |
| 867 return quadraticEdge->fQDx >> 1 >= quadraticEdge->fQDDx && |
| 868 quadraticEdge->fQDy >> 1 >= quadraticEdge->fQDDy && |
| 869 // current Dy is (fQDy - fQDDy) >> shift |
| 870 (quadraticEdge->fQDy - quadraticEdge->fQDDy) >> quadraticEdge->f
CurveShift |
| 871 >= SK_Fixed1; |
| 872 } |
| 873 return SkAbs32(nextEdge->fDX - thisEdge->fDX) <= SK_Fixed1 && // DDx should
be small |
| 874 nextEdge->fLowerY - nextEdge->fUpperY >= SK_Fixed1; // Dy should be
large |
| 875 } |
| 876 |
| 877 // Check if the leftE and riteE are changing smoothly in terms of fDX. |
| 878 // If yes, we can later skip the fractional y and directly jump to integer y. |
| 879 inline bool isSmoothEnough(SkAnalyticEdge* leftE, SkAnalyticEdge* riteE, |
| 880 SkAnalyticEdge* currE, int stop_y) { |
| 881 if (currE->fUpperY >= stop_y << 16) { |
| 882 return false; // We're at the end so we won't skip anything |
| 883 } |
| 884 if (leftE->fLowerY + SK_Fixed1 < riteE->fLowerY) { |
| 885 return isSmoothEnough(leftE, currE, stop_y); // Only leftE is changing |
| 886 } else if (leftE->fLowerY > riteE->fLowerY + SK_Fixed1) { |
| 887 return isSmoothEnough(riteE, currE, stop_y); // Only riteE is changing |
| 888 } |
| 889 |
| 890 // Now both edges are changing, find the second next edge |
| 891 SkAnalyticEdge* nextCurrE = currE->fNext; |
| 892 if (nextCurrE->fUpperY >= stop_y << 16) { // Check if we're at the end |
| 893 return false; |
| 894 } |
| 895 if (*nextCurrE < *currE) { |
| 896 SkTSwap(currE, nextCurrE); |
| 897 } |
| 898 return isSmoothEnough(leftE, currE, stop_y) && isSmoothEnough(riteE, nextCur
rE, stop_y); |
| 899 } |
| 900 |
| 901 inline void aaa_walk_convex_edges(SkAnalyticEdge* prevHead, AdditiveBlitter* bli
tter, |
| 902 int start_y, int stop_y, SkFixed leftBound, SkFixed r
iteBound, |
| 903 bool isUsingMask) { |
| 904 validate_sort((SkAnalyticEdge*)prevHead->fNext); |
| 905 |
| 906 SkAnalyticEdge* leftE = (SkAnalyticEdge*) prevHead->fNext; |
| 907 SkAnalyticEdge* riteE = (SkAnalyticEdge*) leftE->fNext; |
| 908 SkAnalyticEdge* currE = (SkAnalyticEdge*) riteE->fNext; |
| 909 |
| 910 SkFixed y = SkTMax(leftE->fUpperY, riteE->fUpperY); |
| 911 |
| 912 #ifdef SK_DEBUG |
| 913 int frac_y_cnt = 0; |
| 914 int total_y_cnt = 0; |
| 915 #endif |
| 916 |
| 917 for (;;) { |
| 918 SkASSERT(SkFixedFloorToInt(leftE->fUpperY) <= stop_y); |
| 919 SkASSERT(SkFixedFloorToInt(riteE->fUpperY) <= stop_y); |
| 920 |
| 921 leftE->goY(y); |
| 922 riteE->goY(y); |
| 923 |
| 924 if (leftE->fX > riteE->fX || (leftE->fX == riteE->fX && |
| 925 leftE->fDX > riteE->fDX)) { |
| 926 SkTSwap(leftE, riteE); |
| 927 } |
| 928 |
| 929 SkFixed local_bot_fixed = SkMin32(leftE->fLowerY, riteE->fLowerY); |
| 930 // Skip the fractional y if edges are changing smoothly |
| 931 if (isSmoothEnough(leftE, riteE, currE, stop_y)) { |
| 932 local_bot_fixed = SkFixedCeilToFixed(local_bot_fixed); |
| 933 } |
| 934 local_bot_fixed = SkMin32(local_bot_fixed, SkIntToFixed(stop_y + 1)); |
| 935 |
| 936 SkFixed left = leftE->fX; |
| 937 SkFixed dLeft = leftE->fDX; |
| 938 SkFixed rite = riteE->fX; |
| 939 SkFixed dRite = riteE->fDX; |
| 940 if (0 == (dLeft | dRite)) { |
| 941 int fullLeft = SkFixedCeilToInt(left); |
| 942 int fullRite = SkFixedFloorToInt(rite); |
| 943 SkFixed partialLeft = SkIntToFixed(fullLeft) - left; |
| 944 SkFixed partialRite = rite - SkIntToFixed(fullRite); |
| 945 int fullTop = SkFixedCeilToInt(y); |
| 946 int fullBot = SkFixedFloorToInt(local_bot_fixed); |
| 947 SkFixed partialTop = SkIntToFixed(fullTop) - y; |
| 948 SkFixed partialBot = local_bot_fixed - SkIntToFixed(fullBot); |
| 949 |
| 950 if (fullRite >= fullLeft) { |
| 951 // Blit all full-height rows from fullTop to fullBot |
| 952 if (fullBot > fullTop) { |
| 953 blitter->getRealBlitter()->blitAntiRect(fullLeft - 1, fullTo
p, fullRite - fullLeft, |
| 954 fullBot - fullTop, |
| 955 partialLeft >> 8, pa
rtialRite >> 8); |
| 956 } |
| 957 |
| 958 if (partialTop > 0) { // blit first partial row |
| 959 if (partialLeft > 0) { |
| 960 blitter->blitAntiH(fullLeft - 1, fullTop - 1, |
| 961 SkFixedMul_lowprec(partialTop, partia
lLeft) >> 8); |
| 962 } |
| 963 if (partialRite > 0) { |
| 964 blitter->blitAntiH(fullRite, fullTop - 1, |
| 965 SkFixedMul_lowprec(partialTop, partia
lRite) >> 8); |
| 966 } |
| 967 blitter->blitAntiH(fullLeft, fullTop - 1, fullRite - fullLef
t, partialTop >> 8); |
| 968 } |
| 969 |
| 970 if (partialBot > 0) { // blit last partial row |
| 971 if (partialLeft > 0) { |
| 972 blitter->blitAntiH(fullLeft - 1, fullBot, |
| 973 SkFixedMul_lowprec(partialBot, partia
lLeft) >> 8); |
| 974 } |
| 975 if (partialRite > 0) { |
| 976 blitter->blitAntiH(fullRite, fullBot, |
| 977 SkFixedMul_lowprec(partialBot, partia
lRite) >> 8); |
| 978 } |
| 979 blitter->blitAntiH(fullLeft, fullBot, fullRite - fullLeft, p
artialBot >> 8); |
| 980 } |
| 981 } else { // left and rite are within the same pixel |
| 982 if (partialTop > 0) { |
| 983 blitter->getRealBlitter()->blitV(fullLeft - 1, fullTop - 1,
1, |
| 984 SkFixedMul_lowprec(partialTop, rite - left) >> 8); |
| 985 } |
| 986 if (partialBot > 0) { |
| 987 blitter->getRealBlitter()->blitV(fullLeft - 1, fullBot, 1, |
| 988 SkFixedMul_lowprec(partialBot, rite - left) >> 8); |
| 989 } |
| 990 if (fullBot >= fullTop) { |
| 991 blitter->getRealBlitter()->blitV(fullLeft - 1, fullTop, full
Bot - fullTop, |
| 992 (rite - left) >> 8); |
| 993 } |
| 994 } |
| 995 |
| 996 y = local_bot_fixed; |
| 997 } else { |
| 998 // The following constant are used to snap X |
| 999 // We snap X mainly for speedup (no tiny triangle) and |
| 1000 // avoiding edge cases caused by precision errors |
| 1001 const SkFixed kSnapDigit = SK_Fixed1 >> 4; |
| 1002 const SkFixed kSnapHalf = kSnapDigit >> 1; |
| 1003 const SkFixed kSnapMask = (-1 ^ (kSnapDigit - 1)); |
| 1004 left += kSnapHalf, rite += kSnapHalf; // For fast rounding |
| 1005 |
| 1006 // Number of blit_trapezoid_row calls we'll have |
| 1007 int count = SkFixedCeilToInt(local_bot_fixed) - SkFixedFloorToInt(y)
; |
| 1008 #ifdef SK_DEBUG |
| 1009 total_y_cnt += count; |
| 1010 frac_y_cnt += ((int)(y & 0xFFFF0000) != y); |
| 1011 #endif |
| 1012 |
| 1013 // If we're using mask blitter, we advance the mask row in this func
tion |
| 1014 // to save some "if" condition checks. |
| 1015 SkAlpha* maskRow = nullptr; |
| 1016 if (isUsingMask) { |
| 1017 maskRow = static_cast<MaskAdditiveBlitter*>(blitter)->getRow(y >
> 16); |
| 1018 } |
| 1019 |
| 1020 // Instead of writing one loop that handles both partial-row blit_tr
apezoid_row |
| 1021 // and full-row trapezoid_row together, we use the following 3-stage
flow to |
| 1022 // handle partial-row blit and full-row blit separately. It will sav
e us much time |
| 1023 // on changing y, left, and rite. |
| 1024 if (count > 1) { |
| 1025 if ((int)(y & 0xFFFF0000) != y) { // There's a partial-row on th
e top |
| 1026 count--; |
| 1027 SkFixed nextY = SkFixedCeilToFixed(y + 1); |
| 1028 SkFixed dY = nextY - y; |
| 1029 SkFixed nextLeft = left + SkFixedMul_lowprec(dLeft, dY); |
| 1030 SkFixed nextRite = rite + SkFixedMul_lowprec(dRite, dY); |
| 1031 blit_trapezoid_row(blitter, y >> 16, left & kSnapMask, rite
& kSnapMask, |
| 1032 nextLeft & kSnapMask, nextRite & kSnapMask, leftE->f
DY, riteE->fDY, |
| 1033 getPartialAlpha(0xFF, dY), maskRow, isUsingMask); |
| 1034 left = nextLeft, rite = nextRite, y = nextY; |
| 1035 } |
| 1036 |
| 1037 while (count > 1) { // Full rows in the middle |
| 1038 count--; |
| 1039 if (isUsingMask) { |
| 1040 maskRow = static_cast<MaskAdditiveBlitter*>(blitter)->ge
tRow(y >> 16); |
| 1041 } |
| 1042 SkFixed nextY = y + SK_Fixed1, nextLeft = left + dLeft, next
Rite = rite + dRite; |
| 1043 blit_trapezoid_row(blitter, y >> 16, left & kSnapMask, rite
& kSnapMask, |
| 1044 nextLeft & kSnapMask, nextRite & kSnapMask, |
| 1045 leftE->fDY, riteE->fDY, 0xFF, maskRow, isUsingMask); |
| 1046 left = nextLeft, rite = nextRite, y = nextY; |
| 1047 } |
| 1048 } |
| 1049 |
| 1050 if (isUsingMask) { |
| 1051 maskRow = static_cast<MaskAdditiveBlitter*>(blitter)->getRow(y >
> 16); |
| 1052 } |
| 1053 |
| 1054 SkFixed dY = local_bot_fixed - y; // partial-row on the bottom |
| 1055 SkASSERT(dY <= SK_Fixed1); |
| 1056 // Smooth jumping to integer y may make the last nextLeft/nextRite o
ut of bound. |
| 1057 // Take them back into the bound here. |
| 1058 SkFixed nextLeft = SkTMax(left + SkFixedMul_lowprec(dLeft, dY), left
Bound); |
| 1059 SkFixed nextRite = SkTMin(rite + SkFixedMul_lowprec(dRite, dY), rite
Bound); |
| 1060 blit_trapezoid_row(blitter, y >> 16, left & kSnapMask, rite & kSnapM
ask, |
| 1061 nextLeft & kSnapMask, nextRite & kSnapMask, leftE->fDY, rite
E->fDY, |
| 1062 getPartialAlpha(0xFF, dY), maskRow, isUsingMask); |
| 1063 left = nextLeft, rite = nextRite, y = local_bot_fixed; |
| 1064 left -= kSnapHalf, rite -= kSnapHalf; |
| 1065 } |
| 1066 |
| 1067 leftE->fX = left; |
| 1068 riteE->fX = rite; |
| 1069 leftE->fY = riteE->fY = y; |
| 1070 |
| 1071 while (leftE->fLowerY <= y) { // Due to smooth jump, we may pass multipl
e short edges |
| 1072 if (update_edge(leftE, y)) { |
| 1073 if (SkFixedFloorToInt(currE->fUpperY) >= stop_y) { |
| 1074 goto END_WALK; |
| 1075 } |
| 1076 leftE = currE; |
| 1077 currE = (SkAnalyticEdge*)currE->fNext; |
| 1078 } |
| 1079 } |
| 1080 while (riteE->fLowerY <= y) { // Due to smooth jump, we may pass multipl
e short edges |
| 1081 if (update_edge(riteE, y)) { |
| 1082 if (SkFixedFloorToInt(currE->fUpperY) >= stop_y) { |
| 1083 goto END_WALK; |
| 1084 } |
| 1085 riteE = currE; |
| 1086 currE = (SkAnalyticEdge*)currE->fNext; |
| 1087 } |
| 1088 } |
| 1089 |
| 1090 SkASSERT(leftE); |
| 1091 SkASSERT(riteE); |
| 1092 |
| 1093 // check our bottom clip |
| 1094 SkASSERT(y == local_bot_fixed); |
| 1095 if (SkFixedFloorToInt(y) >= stop_y) { |
| 1096 break; |
| 1097 } |
| 1098 } |
| 1099 |
| 1100 END_WALK: |
| 1101 ; |
| 1102 #ifdef SK_DEBUG |
| 1103 SkDebugf("frac_y_cnt = %d, total_y_cnt = %d\n", frac_y_cnt, total_y_cnt); |
| 1104 #endif |
| 1105 } |
| 1106 |
| 1107 void SkScan::aaa_fill_path(const SkPath& path, const SkIRect* clipRect, Additive
Blitter* blitter, |
| 1108 int start_y, int stop_y, const SkRegion& clipRgn, bool isUsin
gMask) { |
| 1109 SkASSERT(blitter); |
| 1110 |
| 1111 if (path.isInverseFillType() || !path.isConvex()) { |
| 1112 // fall back to supersampling AA |
| 1113 SkScan::AntiFillPath(path, clipRgn, blitter->getRealBlitter(true), false
); |
| 1114 return; |
| 1115 } |
| 1116 |
| 1117 SkEdgeBuilder builder; |
| 1118 |
| 1119 // If we're convex, then we need both edges, even the right edge is past the
clip |
| 1120 const bool canCullToTheRight = !path.isConvex(); |
| 1121 |
| 1122 SkASSERT(GlobalAAConfig::getInstance().fUseAnalyticAA); |
| 1123 int count = builder.build(path, clipRect, 0, canCullToTheRight, true); |
| 1124 SkASSERT(count >= 0); |
| 1125 |
| 1126 SkAnalyticEdge** list = (SkAnalyticEdge**)builder.analyticEdgeList(); |
| 1127 |
| 1128 SkIRect rect = clipRgn.getBounds(); |
| 1129 if (0 == count) { |
| 1130 if (path.isInverseFillType()) { |
| 1131 /* |
| 1132 * Since we are in inverse-fill, our caller has already drawn above |
| 1133 * our top (start_y) and will draw below our bottom (stop_y). Thus |
| 1134 * we need to restrict our drawing to the intersection of the clip |
| 1135 * and those two limits. |
| 1136 */ |
| 1137 if (rect.fTop < start_y) { |
| 1138 rect.fTop = start_y; |
| 1139 } |
| 1140 if (rect.fBottom > stop_y) { |
| 1141 rect.fBottom = stop_y; |
| 1142 } |
| 1143 if (!rect.isEmpty()) { |
| 1144 blitter->blitRect(rect.fLeft, rect.fTop, rect.width(), rect.heig
ht()); |
| 1145 } |
| 1146 } |
| 1147 return; |
| 1148 } |
| 1149 |
| 1150 SkAnalyticEdge headEdge, tailEdge, *last; |
| 1151 // this returns the first and last edge after they're sorted into a dlink li
st |
| 1152 SkAnalyticEdge* edge = sort_edges(list, count, &last); |
| 1153 |
| 1154 headEdge.fPrev = nullptr; |
| 1155 headEdge.fNext = edge; |
| 1156 headEdge.fUpperY = headEdge.fLowerY = SK_MinS32; |
| 1157 headEdge.fX = SK_MinS32; |
| 1158 headEdge.fDX = 0; |
| 1159 headEdge.fDY = SK_MaxS32; |
| 1160 headEdge.fUpperX = SK_MinS32; |
| 1161 edge->fPrev = &headEdge; |
| 1162 |
| 1163 tailEdge.fPrev = last; |
| 1164 tailEdge.fNext = nullptr; |
| 1165 tailEdge.fUpperY = tailEdge.fLowerY = SK_MaxS32; |
| 1166 headEdge.fX = SK_MaxS32; |
| 1167 headEdge.fDX = 0; |
| 1168 headEdge.fDY = SK_MaxS32; |
| 1169 headEdge.fUpperX = SK_MaxS32; |
| 1170 last->fNext = &tailEdge; |
| 1171 |
| 1172 // now edge is the head of the sorted linklist |
| 1173 |
| 1174 if (clipRect && start_y < clipRect->fTop) { |
| 1175 start_y = clipRect->fTop; |
| 1176 } |
| 1177 if (clipRect && stop_y > clipRect->fBottom) { |
| 1178 stop_y = clipRect->fBottom; |
| 1179 } |
| 1180 |
| 1181 if (!path.isInverseFillType() && path.isConvex()) { |
| 1182 SkASSERT(count >= 2); // convex walker does not handle missing right e
dges |
| 1183 aaa_walk_convex_edges(&headEdge, blitter, start_y, stop_y, |
| 1184 rect.fLeft << 16, rect.fRight << 16, isUsingMask); |
| 1185 } else { |
| 1186 SkFAIL("Concave AAA is not yet implemented!"); |
| 1187 } |
| 1188 } |
| 1189 |
| 1190 /////////////////////////////////////////////////////////////////////////////// |
| 1191 |
| 1192 void SkScan::AAAFillPath(const SkPath& path, const SkRegion& origClip, SkBlitter
* blitter) { |
| 1193 if (origClip.isEmpty()) { |
| 1194 return; |
| 1195 } |
| 1196 |
| 1197 const bool isInverse = path.isInverseFillType(); |
| 1198 SkIRect ir; |
| 1199 path.getBounds().roundOut(&ir); |
| 1200 if (ir.isEmpty()) { |
| 1201 if (isInverse) { |
| 1202 blitter->blitRegion(origClip); |
| 1203 } |
| 1204 return; |
| 1205 } |
| 1206 |
| 1207 SkIRect clippedIR; |
| 1208 if (isInverse) { |
| 1209 // If the path is an inverse fill, it's going to fill the entire |
| 1210 // clip, and we care whether the entire clip exceeds our limits. |
| 1211 clippedIR = origClip.getBounds(); |
| 1212 } else { |
| 1213 if (!clippedIR.intersect(ir, origClip.getBounds())) { |
| 1214 return; |
| 1215 } |
| 1216 } |
| 1217 |
| 1218 // Our antialiasing can't handle a clip larger than 32767, so we restrict |
| 1219 // the clip to that limit here. (the runs[] uses int16_t for its index). |
| 1220 // |
| 1221 // A more general solution (one that could also eliminate the need to |
| 1222 // disable aa based on ir bounds (see overflows_short_shift) would be |
| 1223 // to tile the clip/target... |
| 1224 SkRegion tmpClipStorage; |
| 1225 const SkRegion* clipRgn = &origClip; |
| 1226 { |
| 1227 static const int32_t kMaxClipCoord = 32767; |
| 1228 const SkIRect& bounds = origClip.getBounds(); |
| 1229 if (bounds.fRight > kMaxClipCoord || bounds.fBottom > kMaxClipCoord) { |
| 1230 SkIRect limit = { 0, 0, kMaxClipCoord, kMaxClipCoord }; |
| 1231 tmpClipStorage.op(origClip, limit, SkRegion::kIntersect_Op); |
| 1232 clipRgn = &tmpClipStorage; |
| 1233 } |
| 1234 } |
| 1235 // for here down, use clipRgn, not origClip |
| 1236 |
| 1237 SkScanClipper clipper(blitter, clipRgn, ir); |
| 1238 const SkIRect* clipRect = clipper.getClipRect(); |
| 1239 |
| 1240 if (clipper.getBlitter() == nullptr) { // clipped out |
| 1241 if (isInverse) { |
| 1242 blitter->blitRegion(*clipRgn); |
| 1243 } |
| 1244 return; |
| 1245 } |
| 1246 |
| 1247 // now use the (possibly wrapped) blitter |
| 1248 blitter = clipper.getBlitter(); |
| 1249 |
| 1250 if (isInverse) { |
| 1251 // Currently, we use the old path to render the inverse path, |
| 1252 // so we don't need this. |
| 1253 // sk_blit_above(blitter, ir, *clipRgn); |
| 1254 } |
| 1255 |
| 1256 SkASSERT(SkIntToScalar(ir.fTop) <= path.getBounds().fTop); |
| 1257 |
| 1258 if (MaskAdditiveBlitter::canHandleRect(ir) && !isInverse) { |
| 1259 MaskAdditiveBlitter additiveBlitter(blitter, ir, *clipRgn, isInverse); |
| 1260 aaa_fill_path(path, clipRect, &additiveBlitter, ir.fTop, ir.fBottom, *cl
ipRgn, true); |
| 1261 } else { |
| 1262 RunBasedAdditiveBlitter additiveBlitter(blitter, ir, *clipRgn, isInverse
); |
| 1263 aaa_fill_path(path, clipRect, &additiveBlitter, ir.fTop, ir.fBottom, *cl
ipRgn, false); |
| 1264 } |
| 1265 |
| 1266 if (isInverse) { |
| 1267 // Currently, we use the old path to render the inverse path, |
| 1268 // so we don't need this. |
| 1269 // sk_blit_below(blitter, ir, *clipRgn); |
| 1270 } |
| 1271 } |
| 1272 |
| 1273 // This almost copies SkScan::AntiFillPath |
| 1274 void SkScan::AAAFillPath(const SkPath& path, const SkRasterClip& clip, SkBlitter
* blitter) { |
| 1275 if (clip.isEmpty()) { |
| 1276 return; |
| 1277 } |
| 1278 |
| 1279 if (clip.isBW()) { |
| 1280 AAAFillPath(path, clip.bwRgn(), blitter); |
| 1281 } else { |
| 1282 SkRegion tmp; |
| 1283 SkAAClipBlitter aaBlitter; |
| 1284 |
| 1285 tmp.setRect(clip.getBounds()); |
| 1286 aaBlitter.init(blitter, &clip.aaRgn()); |
| 1287 AAAFillPath(path, tmp, &aaBlitter); |
| 1288 } |
| 1289 } |
OLD | NEW |