| Index: infra_libs/ts_mon/common/metrics.py
|
| diff --git a/infra_libs/ts_mon/common/metrics.py b/infra_libs/ts_mon/common/metrics.py
|
| deleted file mode 100644
|
| index a9ee417384f1b4142449ab25ecf93beb040cf339..0000000000000000000000000000000000000000
|
| --- a/infra_libs/ts_mon/common/metrics.py
|
| +++ /dev/null
|
| @@ -1,493 +0,0 @@
|
| -# Copyright 2015 The Chromium Authors. All rights reserved.
|
| -# Use of this source code is governed by a BSD-style license that can be
|
| -# found in the LICENSE file.
|
| -
|
| -"""Classes representing individual metrics that can be sent."""
|
| -
|
| -import copy
|
| -
|
| -from infra_libs.ts_mon.protos import metrics_pb2
|
| -
|
| -from infra_libs.ts_mon.common import distribution
|
| -from infra_libs.ts_mon.common import errors
|
| -from infra_libs.ts_mon.common import interface
|
| -
|
| -
|
| -MICROSECONDS_PER_SECOND = 1000000
|
| -
|
| -
|
| -class Metric(object):
|
| - """Abstract base class for a metric.
|
| -
|
| - A Metric is an attribute that may be monitored across many targets. Examples
|
| - include disk usage or the number of requests a server has received. A single
|
| - process may keep track of many metrics.
|
| -
|
| - Note that Metric objects may be initialized at any time (for example, at the
|
| - top of a library), but cannot be sent until the underlying Monitor object
|
| - has been set up (usually by the top-level process parsing the command line).
|
| -
|
| - A Metric can actually store multiple values that are identified by a set of
|
| - fields (which are themselves key-value pairs). Fields can be passed to the
|
| - set() or increment() methods to modify a particular value, or passed to the
|
| - constructor in which case they will be used as the defaults for this Metric.
|
| -
|
| - The unit of measurement for Metric data can be specified with MetricsDataUnits
|
| - when a Metric object is created:
|
| - e.g., MetricsDataUnits.SECONDS, MetricsDataUnits.BYTES, and etc..,
|
| - A full list of supported units can be found in the following protobuf file
|
| - : infra_libs/ts_mon/protos/metrics.proto
|
| -
|
| - Do not directly instantiate an object of this class.
|
| - Use the concrete child classes instead:
|
| - * StringMetric for metrics with string value
|
| - * BooleanMetric for metrics with boolean values
|
| - * CounterMetric for metrics with monotonically increasing integer values
|
| - * GaugeMetric for metrics with arbitrarily varying integer values
|
| - * CumulativeMetric for metrics with monotonically increasing float values
|
| - * FloatMetric for metrics with arbitrarily varying float values
|
| -
|
| - See http://go/inframon-doc for help designing and using your metrics.
|
| - """
|
| -
|
| - def __init__(self, name, fields=None, description=None, units=None):
|
| - """Create an instance of a Metric.
|
| -
|
| - Args:
|
| - name (str): the file-like name of this metric
|
| - fields (dict): a set of key-value pairs to be set as default metric fields
|
| - description (string): help string for the metric. Should be enough to
|
| - know what the metric is about.
|
| - units (int): the unit used to measure data for given
|
| - metric. Please use the attributes of MetricDataUnit to find
|
| - valid integer values for this argument.
|
| - """
|
| - self._name = name.lstrip('/')
|
| - self._start_time = None
|
| - fields = fields or {}
|
| - if len(fields) > 7:
|
| - raise errors.MonitoringTooManyFieldsError(self._name, fields)
|
| - self._fields = fields
|
| - self._normalized_fields = self._normalize_fields(self._fields)
|
| - self._description = description
|
| - self._units = units
|
| -
|
| - interface.register(self)
|
| -
|
| - @property
|
| - def name(self):
|
| - return self._name
|
| -
|
| - @property
|
| - def start_time(self):
|
| - return self._start_time
|
| -
|
| - def is_cumulative(self):
|
| - raise NotImplementedError()
|
| -
|
| - def __eq__(self, other):
|
| - return (self.name == other.name and
|
| - self._fields == other._fields and
|
| - type(self) == type(other))
|
| -
|
| - def unregister(self):
|
| - interface.unregister(self)
|
| -
|
| - def serialize_to(self, collection_pb, start_time, fields, value, target):
|
| - """Generate metrics_pb2.MetricsData messages for this metric.
|
| -
|
| - Args:
|
| - collection_pb (metrics_pb2.MetricsCollection): protocol buffer into which
|
| - to add the current metric values.
|
| - start_time (int): timestamp in microseconds since UNIX epoch.
|
| - target (Target): a Target to use.
|
| - """
|
| -
|
| - metric_pb = collection_pb.data.add()
|
| - metric_pb.metric_name_prefix = interface.state.metric_name_prefix
|
| - metric_pb.name = self._name
|
| - if self._description is not None:
|
| - metric_pb.description = self._description
|
| - if self._units is not None:
|
| - metric_pb.units = self._units
|
| -
|
| - self._populate_value(metric_pb, value, start_time)
|
| - self._populate_fields(metric_pb, fields)
|
| -
|
| - target._populate_target_pb(metric_pb)
|
| -
|
| - def _populate_fields(self, metric, fields):
|
| - """Fill in the fields attribute of a metric protocol buffer.
|
| -
|
| - Args:
|
| - metric (metrics_pb2.MetricsData): a metrics protobuf to populate
|
| - fields (list of (key, value) tuples): normalized metric fields
|
| -
|
| - Raises:
|
| - MonitoringInvalidFieldTypeError: if a field has a value of unknown type
|
| - """
|
| - for key, value in fields:
|
| - field = metric.fields.add()
|
| - field.name = key
|
| - if isinstance(value, basestring):
|
| - field.type = metrics_pb2.MetricsField.STRING
|
| - field.string_value = value
|
| - elif isinstance(value, bool):
|
| - field.type = metrics_pb2.MetricsField.BOOL
|
| - field.bool_value = value
|
| - elif isinstance(value, int):
|
| - field.type = metrics_pb2.MetricsField.INT
|
| - field.int_value = value
|
| - else:
|
| - raise errors.MonitoringInvalidFieldTypeError(self._name, key, value)
|
| -
|
| - def _normalize_fields(self, fields):
|
| - """Merges the fields with the default fields and returns something hashable.
|
| -
|
| - Args:
|
| - fields (dict): A dict of fields passed by the user, or None.
|
| -
|
| - Returns:
|
| - A tuple of (key, value) tuples, ordered by key. This whole tuple is used
|
| - as the key in the self._values dict to identify the cell for a value.
|
| -
|
| - Raises:
|
| - MonitoringTooManyFieldsError: if there are more than seven metric fields
|
| - """
|
| - if fields is None:
|
| - return self._normalized_fields
|
| -
|
| - all_fields = copy.copy(self._fields)
|
| - all_fields.update(fields)
|
| -
|
| - if len(all_fields) > 7:
|
| - raise errors.MonitoringTooManyFieldsError(self._name, all_fields)
|
| -
|
| - return tuple(sorted(all_fields.iteritems()))
|
| -
|
| - def _populate_value(self, metric, value, start_time):
|
| - """Fill in the the data values of a metric protocol buffer.
|
| -
|
| - Args:
|
| - metric (metrics_pb2.MetricsData): a metrics protobuf to populate
|
| - value (see concrete class): the value of the metric to be set
|
| - start_time (int): timestamp in microseconds since UNIX epoch.
|
| - """
|
| - raise NotImplementedError()
|
| -
|
| - def set(self, value, fields=None, target_fields=None):
|
| - """Set a new value for this metric. Results in sending a new value.
|
| -
|
| - The subclass should do appropriate type checking on value and then call
|
| - self._set_and_send_value.
|
| -
|
| - Args:
|
| - value (see concrete class): the value of the metric to be set
|
| - fields (dict): additional metric fields to complement those on self
|
| - target_fields (dict): overwrite some of the default target fields
|
| - """
|
| - raise NotImplementedError()
|
| -
|
| - def get(self, fields=None, target_fields=None):
|
| - """Returns the current value for this metric.
|
| -
|
| - Subclasses should never use this to get a value, modify it and set it again.
|
| - Instead use _incr with a modify_fn.
|
| - """
|
| - return interface.state.store.get(
|
| - self.name, self._normalize_fields(fields), target_fields)
|
| -
|
| - def get_all(self):
|
| - return interface.state.store.iter_field_values(self.name)
|
| -
|
| - def reset(self):
|
| - """Clears the values of this metric. Useful in unit tests.
|
| -
|
| - It might be easier to call ts_mon.reset_for_unittest() in your setUp()
|
| - method instead of resetting every individual metric.
|
| - """
|
| -
|
| - interface.state.store.reset_for_unittest(self.name)
|
| -
|
| - def _set(self, fields, target_fields, value, enforce_ge=False):
|
| - interface.state.store.set(self.name, self._normalize_fields(fields),
|
| - target_fields, value, enforce_ge=enforce_ge)
|
| -
|
| - def _incr(self, fields, target_fields, delta, modify_fn=None):
|
| - interface.state.store.incr(self.name, self._normalize_fields(fields),
|
| - target_fields, delta, modify_fn=modify_fn)
|
| -
|
| -
|
| -class StringMetric(Metric):
|
| - """A metric whose value type is a string."""
|
| -
|
| - def _populate_value(self, metric, value, start_time):
|
| - metric.string_value = value
|
| -
|
| - def set(self, value, fields=None, target_fields=None):
|
| - if not isinstance(value, basestring):
|
| - raise errors.MonitoringInvalidValueTypeError(self._name, value)
|
| - self._set(fields, target_fields, value)
|
| -
|
| - def is_cumulative(self):
|
| - return False
|
| -
|
| -
|
| -class BooleanMetric(Metric):
|
| - """A metric whose value type is a boolean."""
|
| -
|
| - def _populate_value(self, metric, value, start_time):
|
| - metric.boolean_value = value
|
| -
|
| - def set(self, value, fields=None, target_fields=None):
|
| - if not isinstance(value, bool):
|
| - raise errors.MonitoringInvalidValueTypeError(self._name, value)
|
| - self._set(fields, target_fields, value)
|
| -
|
| - def is_cumulative(self):
|
| - return False
|
| -
|
| -
|
| -class NumericMetric(Metric): # pylint: disable=abstract-method
|
| - """Abstract base class for numeric (int or float) metrics."""
|
| - # TODO(agable): Figure out if there's a way to send units with these metrics.
|
| -
|
| - def increment(self, fields=None, target_fields=None):
|
| - self._incr(fields, target_fields, 1)
|
| -
|
| - def increment_by(self, step, fields=None, target_fields=None):
|
| - self._incr(fields, target_fields, step)
|
| -
|
| -
|
| -class CounterMetric(NumericMetric):
|
| - """A metric whose value type is a monotonically increasing integer."""
|
| -
|
| - def __init__(self, name, fields=None, start_time=None, description=None,
|
| - units=None):
|
| - super(CounterMetric, self).__init__(
|
| - name, fields=fields, description=description, units=units)
|
| - self._start_time = start_time
|
| -
|
| - def _populate_value(self, metric, value, start_time):
|
| - metric.counter = value
|
| - metric.start_timestamp_us = int(start_time * MICROSECONDS_PER_SECOND)
|
| -
|
| - def set(self, value, fields=None, target_fields=None):
|
| - if not isinstance(value, (int, long)):
|
| - raise errors.MonitoringInvalidValueTypeError(self._name, value)
|
| - self._set(fields, target_fields, value, enforce_ge=True)
|
| -
|
| - def increment_by(self, step, fields=None, target_fields=None):
|
| - if not isinstance(step, (int, long)):
|
| - raise errors.MonitoringInvalidValueTypeError(self._name, step)
|
| - self._incr(fields, target_fields, step)
|
| -
|
| - def is_cumulative(self):
|
| - return True
|
| -
|
| -
|
| -class GaugeMetric(NumericMetric):
|
| - """A metric whose value type is an integer."""
|
| -
|
| - def _populate_value(self, metric, value, start_time):
|
| - metric.gauge = value
|
| -
|
| - def set(self, value, fields=None, target_fields=None):
|
| - if not isinstance(value, (int, long)):
|
| - raise errors.MonitoringInvalidValueTypeError(self._name, value)
|
| - self._set(fields, target_fields, value)
|
| -
|
| - def is_cumulative(self):
|
| - return False
|
| -
|
| -
|
| -class CumulativeMetric(NumericMetric):
|
| - """A metric whose value type is a monotonically increasing float."""
|
| -
|
| - def __init__(self, name, fields=None, start_time=None, description=None,
|
| - units=None):
|
| - super(CumulativeMetric, self).__init__(
|
| - name, fields=fields, description=description, units=units)
|
| - self._start_time = start_time
|
| -
|
| - def _populate_value(self, metric, value, start_time):
|
| - metric.cumulative_double_value = value
|
| - metric.start_timestamp_us = int(start_time * MICROSECONDS_PER_SECOND)
|
| -
|
| - def set(self, value, fields=None, target_fields=None):
|
| - if not isinstance(value, (float, int)):
|
| - raise errors.MonitoringInvalidValueTypeError(self._name, value)
|
| - self._set(fields, target_fields, float(value), enforce_ge=True)
|
| -
|
| - def is_cumulative(self):
|
| - return True
|
| -
|
| -
|
| -class FloatMetric(NumericMetric):
|
| - """A metric whose value type is a float."""
|
| -
|
| - def _populate_value(self, metric, value, start_time):
|
| - metric.noncumulative_double_value = value
|
| -
|
| - def set(self, value, fields=None, target_fields=None):
|
| - if not isinstance(value, (float, int)):
|
| - raise errors.MonitoringInvalidValueTypeError(self._name, value)
|
| - self._set(fields, target_fields, float(value))
|
| -
|
| - def is_cumulative(self):
|
| - return False
|
| -
|
| -
|
| -class DistributionMetric(Metric):
|
| - """A metric that holds a distribution of values.
|
| -
|
| - By default buckets are chosen from a geometric progression, each bucket being
|
| - approximately 1.59 times bigger than the last. In practice this is suitable
|
| - for many kinds of data, but you may want to provide a FixedWidthBucketer or
|
| - GeometricBucketer with different parameters."""
|
| -
|
| - CANONICAL_SPEC_TYPES = {
|
| - 2: metrics_pb2.PrecomputedDistribution.CANONICAL_POWERS_OF_2,
|
| - 10**0.2: metrics_pb2.PrecomputedDistribution.CANONICAL_POWERS_OF_10_P_0_2,
|
| - 10: metrics_pb2.PrecomputedDistribution.CANONICAL_POWERS_OF_10,
|
| - }
|
| -
|
| - def __init__(self, name, is_cumulative=True, bucketer=None, fields=None,
|
| - start_time=None, description=None, units=None):
|
| - super(DistributionMetric, self).__init__(
|
| - name, fields=fields, description=description, units=units)
|
| - self._start_time = start_time
|
| -
|
| - if bucketer is None:
|
| - bucketer = distribution.GeometricBucketer()
|
| -
|
| - self._is_cumulative = is_cumulative
|
| - self.bucketer = bucketer
|
| -
|
| - def _populate_value(self, metric, value, start_time):
|
| - pb = metric.distribution
|
| -
|
| - pb.is_cumulative = self._is_cumulative
|
| - if self._is_cumulative:
|
| - metric.start_timestamp_us = int(start_time * MICROSECONDS_PER_SECOND)
|
| -
|
| - # Copy the bucketer params.
|
| - if (value.bucketer.width == 0 and
|
| - value.bucketer.growth_factor in self.CANONICAL_SPEC_TYPES):
|
| - pb.spec_type = self.CANONICAL_SPEC_TYPES[value.bucketer.growth_factor]
|
| - else:
|
| - pb.spec_type = metrics_pb2.PrecomputedDistribution.CUSTOM_PARAMETERIZED
|
| - pb.width = value.bucketer.width
|
| - pb.growth_factor = value.bucketer.growth_factor
|
| - pb.num_buckets = value.bucketer.num_finite_buckets
|
| -
|
| - # Copy the distribution bucket values. Only include the finite buckets, not
|
| - # the overflow buckets on each end.
|
| - pb.bucket.extend(self._running_zero_generator(
|
| - value.buckets.get(i, 0) for i in
|
| - xrange(1, value.bucketer.total_buckets - 1)))
|
| -
|
| - # Add the overflow buckets if present.
|
| - if value.bucketer.underflow_bucket in value.buckets:
|
| - pb.underflow = value.buckets[value.bucketer.underflow_bucket]
|
| - if value.bucketer.overflow_bucket in value.buckets:
|
| - pb.overflow = value.buckets[value.bucketer.overflow_bucket]
|
| -
|
| - if value.count != 0:
|
| - pb.mean = float(value.sum) / value.count
|
| -
|
| - @staticmethod
|
| - def _running_zero_generator(iterable):
|
| - """Compresses sequences of zeroes in the iterable into negative zero counts.
|
| -
|
| - For example an input of [1, 0, 0, 0, 2] is converted to [1, -3, 2].
|
| - """
|
| -
|
| - count = 0
|
| -
|
| - for value in iterable:
|
| - if value == 0:
|
| - count += 1
|
| - else:
|
| - if count != 0:
|
| - yield -count
|
| - count = 0
|
| - yield value
|
| -
|
| - def add(self, value, fields=None, target_fields=None):
|
| - def modify_fn(dist, value):
|
| - if dist == 0:
|
| - dist = distribution.Distribution(self.bucketer)
|
| - dist.add(value)
|
| - return dist
|
| -
|
| - self._incr(fields, target_fields, value, modify_fn=modify_fn)
|
| -
|
| - def set(self, value, fields=None, target_fields=None):
|
| - """Replaces the distribution with the given fields with another one.
|
| -
|
| - This only makes sense on non-cumulative DistributionMetrics.
|
| -
|
| - Args:
|
| - value: A infra_libs.ts_mon.Distribution.
|
| - """
|
| -
|
| - if self._is_cumulative:
|
| - raise TypeError(
|
| - 'Cannot set() a cumulative DistributionMetric (use add() instead)')
|
| -
|
| - if not isinstance(value, distribution.Distribution):
|
| - raise errors.MonitoringInvalidValueTypeError(self._name, value)
|
| -
|
| - self._set(fields, target_fields, value)
|
| -
|
| - def is_cumulative(self):
|
| - raise NotImplementedError() # Keep this class abstract.
|
| -
|
| -
|
| -class CumulativeDistributionMetric(DistributionMetric):
|
| - """A DistributionMetric with is_cumulative set to True."""
|
| -
|
| - def __init__(self, name, bucketer=None, fields=None,
|
| - description=None, units=None):
|
| - super(CumulativeDistributionMetric, self).__init__(
|
| - name,
|
| - is_cumulative=True,
|
| - bucketer=bucketer,
|
| - fields=fields,
|
| - description=description,
|
| - units=units)
|
| -
|
| - def is_cumulative(self):
|
| - return True
|
| -
|
| -
|
| -class NonCumulativeDistributionMetric(DistributionMetric):
|
| - """A DistributionMetric with is_cumulative set to False."""
|
| -
|
| - def __init__(self, name, bucketer=None, fields=None,
|
| - description=None, units=None):
|
| - super(NonCumulativeDistributionMetric, self).__init__(
|
| - name,
|
| - is_cumulative=False,
|
| - bucketer=bucketer,
|
| - fields=fields,
|
| - description=description,
|
| - units=units)
|
| -
|
| - def is_cumulative(self):
|
| - return False
|
| -
|
| -
|
| -class MetaMetricsDataUnits(type):
|
| - """Metaclass to populate the enum values of metrics_pb2.MetricsData.Units."""
|
| - def __new__(mcs, name, bases, attrs):
|
| - attrs.update(metrics_pb2.MetricsData.Units.items())
|
| - return super(MetaMetricsDataUnits, mcs).__new__(mcs, name, bases, attrs)
|
| -
|
| -
|
| -class MetricsDataUnits(object):
|
| - """An enumeration class for units of measurement for Metrics data.
|
| - See infra_libs/ts_mon/protos/metrics.proto for a full list of supported units.
|
| - """
|
| - __metaclass__ = MetaMetricsDataUnits
|
|
|