Chromium Code Reviews| OLD | NEW |
|---|---|
| 1 /* | 1 /* |
| 2 * Copyright 2012 Google Inc. | 2 * Copyright 2012 Google Inc. |
| 3 * | 3 * |
| 4 * Use of this source code is governed by a BSD-style license that can be | 4 * Use of this source code is governed by a BSD-style license that can be |
| 5 * found in the LICENSE file. | 5 * found in the LICENSE file. |
| 6 */ | 6 */ |
| 7 | 7 |
| 8 #include "SkWriteBuffer.h" | 8 #include "SkWriteBuffer.h" |
| 9 #include "SkBitmap.h" | 9 #include "SkBitmap.h" |
| 10 #include "SkData.h" | 10 #include "SkData.h" |
| 11 #include "SkDeduper.h" | |
| 11 #include "SkPixelRef.h" | 12 #include "SkPixelRef.h" |
| 12 #include "SkPtrRecorder.h" | 13 #include "SkPtrRecorder.h" |
| 13 #include "SkStream.h" | 14 #include "SkStream.h" |
| 14 #include "SkTypeface.h" | 15 #include "SkTypeface.h" |
| 15 | 16 |
| 17 bool SkWriteBuffer::newWriteImage(const SkImage* image) { | |
| 18 if (fDeduper) { | |
| 19 this->write32(fDeduper->findOrDefineImage(const_cast<SkImage*>(image))); | |
| 20 return true; | |
| 21 } | |
| 22 return false; | |
| 23 } | |
| 24 | |
| 25 bool SkWriteBuffer::newWriteTypeface(SkTypeface* typeface) { | |
| 26 if (fDeduper) { | |
| 27 this->write32(fDeduper->findOrDefineTypeface(typeface)); | |
| 28 return true; | |
| 29 } | |
| 30 return false; | |
| 31 } | |
| 32 | |
| 33 //////////////////////////////////////////////////////////////////////////////// /////////////////// | |
| 34 | |
| 16 SkBinaryWriteBuffer::SkBinaryWriteBuffer(uint32_t flags) | 35 SkBinaryWriteBuffer::SkBinaryWriteBuffer(uint32_t flags) |
| 17 : fFlags(flags) | 36 : fFlags(flags) |
| 18 , fFactorySet(nullptr) | 37 , fFactorySet(nullptr) |
| 19 , fTFSet(nullptr) { | 38 , fTFSet(nullptr) { |
| 20 } | 39 } |
| 21 | 40 |
| 22 SkBinaryWriteBuffer::SkBinaryWriteBuffer(void* storage, size_t storageSize, uint 32_t flags) | 41 SkBinaryWriteBuffer::SkBinaryWriteBuffer(void* storage, size_t storageSize, uint 32_t flags) |
| 23 : fFlags(flags) | 42 : fFlags(flags) |
| 24 , fFactorySet(nullptr) | 43 , fFactorySet(nullptr) |
| 25 , fWriter(storage, storageSize) | 44 , fWriter(storage, storageSize) |
| (...skipping 140 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... | |
| 166 return; | 185 return; |
| 167 } | 186 } |
| 168 } | 187 } |
| 169 } | 188 } |
| 170 | 189 |
| 171 this->writeUInt(0); // signal raw pixels | 190 this->writeUInt(0); // signal raw pixels |
| 172 SkBitmap::WriteRawPixels(this, bitmap); | 191 SkBitmap::WriteRawPixels(this, bitmap); |
| 173 } | 192 } |
| 174 | 193 |
| 175 void SkBinaryWriteBuffer::writeImage(const SkImage* image) { | 194 void SkBinaryWriteBuffer::writeImage(const SkImage* image) { |
| 195 if (this->newWriteImage(image)) { | |
|
mtklein_C
2016/09/12 19:47:58
Doesn't really seem like newWriteImage() and newWr
reed1
2016/09/12 21:35:23
Done.
| |
| 196 return; | |
| 197 } | |
| 198 | |
| 176 this->writeInt(image->width()); | 199 this->writeInt(image->width()); |
| 177 this->writeInt(image->height()); | 200 this->writeInt(image->height()); |
| 178 | 201 |
| 179 sk_sp<SkData> encoded(image->encode(this->getPixelSerializer())); | 202 sk_sp<SkData> encoded(image->encode(this->getPixelSerializer())); |
| 180 if (encoded && encoded->size() > 0) { | 203 if (encoded && encoded->size() > 0) { |
| 181 write_encoded_bitmap(this, encoded.get(), SkIPoint::Make(0, 0)); | 204 write_encoded_bitmap(this, encoded.get(), SkIPoint::Make(0, 0)); |
| 182 return; | 205 return; |
| 183 } | 206 } |
| 184 | 207 |
| 185 SkBitmap bm; | 208 SkBitmap bm; |
| 186 if (image->asLegacyBitmap(&bm, SkImage::kRO_LegacyBitmapMode)) { | 209 if (image->asLegacyBitmap(&bm, SkImage::kRO_LegacyBitmapMode)) { |
| 187 this->writeUInt(1); // signal raw pixels. | 210 this->writeUInt(1); // signal raw pixels. |
| 188 SkBitmap::WriteRawPixels(this, bm); | 211 SkBitmap::WriteRawPixels(this, bm); |
| 189 return; | 212 return; |
| 190 } | 213 } |
| 191 | 214 |
| 192 this->writeUInt(0); // signal no pixels (in place of the size of the encoded data) | 215 this->writeUInt(0); // signal no pixels (in place of the size of the encoded data) |
| 193 } | 216 } |
| 194 | 217 |
| 195 void SkBinaryWriteBuffer::writeTypeface(SkTypeface* obj) { | 218 void SkBinaryWriteBuffer::writeTypeface(SkTypeface* obj) { |
| 219 if (this->newWriteTypeface(obj)) { | |
| 220 return; | |
| 221 } | |
| 222 | |
| 196 if (nullptr == obj || nullptr == fTFSet) { | 223 if (nullptr == obj || nullptr == fTFSet) { |
| 197 fWriter.write32(0); | 224 fWriter.write32(0); |
| 198 } else { | 225 } else { |
| 199 fWriter.write32(fTFSet->add(obj)); | 226 fWriter.write32(fTFSet->add(obj)); |
| 200 } | 227 } |
| 201 } | 228 } |
| 202 | 229 |
| 203 void SkBinaryWriteBuffer::writePaint(const SkPaint& paint) { | 230 void SkBinaryWriteBuffer::writePaint(const SkPaint& paint) { |
| 204 paint.flatten(*this); | 231 paint.flatten(*this); |
| 205 } | 232 } |
| 206 | 233 |
| 207 SkFactorySet* SkBinaryWriteBuffer::setFactoryRecorder(SkFactorySet* rec) { | 234 SkFactorySet* SkBinaryWriteBuffer::setFactoryRecorder(SkFactorySet* rec) { |
| 208 SkRefCnt_SafeAssign(fFactorySet, rec); | 235 SkRefCnt_SafeAssign(fFactorySet, rec); |
| 209 return rec; | 236 return rec; |
| 210 } | 237 } |
| 211 | 238 |
| 212 SkRefCntSet* SkBinaryWriteBuffer::setTypefaceRecorder(SkRefCntSet* rec) { | 239 SkRefCntSet* SkBinaryWriteBuffer::setTypefaceRecorder(SkRefCntSet* rec) { |
| 213 SkRefCnt_SafeAssign(fTFSet, rec); | 240 SkRefCnt_SafeAssign(fTFSet, rec); |
| 214 return rec; | 241 return rec; |
| 215 } | 242 } |
| 216 | 243 |
| 217 void SkBinaryWriteBuffer::setPixelSerializer(SkPixelSerializer* serializer) { | 244 void SkBinaryWriteBuffer::setPixelSerializer(SkPixelSerializer* serializer) { |
| 218 fPixelSerializer.reset(serializer); | 245 fPixelSerializer.reset(serializer); |
| 219 if (serializer) { | 246 if (serializer) { |
| 220 serializer->ref(); | 247 serializer->ref(); |
| 221 } | 248 } |
| 222 } | 249 } |
| 223 | 250 |
| 224 void SkBinaryWriteBuffer::writeFlattenable(const SkFlattenable* flattenable) { | 251 void SkBinaryWriteBuffer::writeFlattenable(const SkFlattenable* flattenable) { |
| 225 /* | |
| 226 * The first 32 bits tell us... | |
| 227 * 0: failure to write the flattenable | |
| 228 * >0: index (1-based) into fFactorySet or fFlattenableDict or | |
| 229 * the first character of a string | |
| 230 */ | |
| 231 if (nullptr == flattenable) { | 252 if (nullptr == flattenable) { |
| 232 this->write32(0); | 253 this->write32(0); |
| 233 return; | 254 return; |
| 234 } | 255 } |
| 235 | 256 |
| 236 /* | 257 if (fDeduper) { |
| 237 * We can write 1 of 2 versions of the flattenable: | 258 this->write32(fDeduper->findOrDefineFactory(const_cast<SkFlattenable*>(f lattenable))); |
| 238 * 1. index into fFactorySet : This assumes the writer will later | |
| 239 * resolve the function-ptrs into strings for its reader. SkPicture | |
| 240 * does exactly this, by writing a table of names (matching the indices ) | |
| 241 * up front in its serialized form. | |
| 242 * 2. string name of the flattenable or index into fFlattenableDict: We | |
| 243 * store the string to allow the reader to specify its own factories | |
| 244 * after write time. In order to improve compression, if we have | |
| 245 * already written the string, we write its index instead. | |
| 246 */ | |
| 247 if (fFactorySet) { | |
| 248 SkFlattenable::Factory factory = flattenable->getFactory(); | |
| 249 SkASSERT(factory); | |
| 250 this->write32(fFactorySet->add(factory)); | |
| 251 } else { | 259 } else { |
| 252 const char* name = flattenable->getTypeName(); | 260 /* |
| 253 SkASSERT(name); | 261 * We can write 1 of 2 versions of the flattenable: |
| 254 SkString key(name); | 262 * 1. index into fFactorySet : This assumes the writer will later |
| 255 if (uint32_t* indexPtr = fFlattenableDict.find(key)) { | 263 * resolve the function-ptrs into strings for its reader. SkPicture |
| 256 // We will write the index as a 32-bit int. We want the first byte | 264 * does exactly this, by writing a table of names (matching the ind ices) |
| 257 // that we send to be zero - this will act as a sentinel that we | 265 * up front in its serialized form. |
| 258 // have an index (not a string). This means that we will send the | 266 * 2. string name of the flattenable or index into fFlattenableDict: We |
| 259 // the index shifted left by 8. The remaining 24-bits should be | 267 * store the string to allow the reader to specify its own factorie s |
| 260 // plenty to store the index. Note that this strategy depends on | 268 * after write time. In order to improve compression, if we have |
| 261 // being little endian. | 269 * already written the string, we write its index instead. |
| 262 SkASSERT(0 == *indexPtr >> 24); | 270 */ |
| 263 this->write32(*indexPtr << 8); | 271 if (fFactorySet) { |
| 272 SkFlattenable::Factory factory = flattenable->getFactory(); | |
| 273 SkASSERT(factory); | |
| 274 this->write32(fFactorySet->add(factory)); | |
| 264 } else { | 275 } else { |
| 265 // Otherwise write the string. Clients should not use the empty | 276 const char* name = flattenable->getTypeName(); |
| 266 // string as a name, or we will have a problem. | 277 SkASSERT(name); |
| 267 SkASSERT(strcmp("", name)); | 278 SkString key(name); |
| 268 this->writeString(name); | 279 if (uint32_t* indexPtr = fFlattenableDict.find(key)) { |
| 280 // We will write the index as a 32-bit int. We want the first b yte | |
| 281 // that we send to be zero - this will act as a sentinel that we | |
| 282 // have an index (not a string). This means that we will send t he | |
| 283 // the index shifted left by 8. The remaining 24-bits should be | |
| 284 // plenty to store the index. Note that this strategy depends o n | |
| 285 // being little endian. | |
| 286 SkASSERT(0 == *indexPtr >> 24); | |
| 287 this->write32(*indexPtr << 8); | |
| 288 } else { | |
| 289 // Otherwise write the string. Clients should not use the empty | |
| 290 // string as a name, or we will have a problem. | |
| 291 SkASSERT(strcmp("", name)); | |
| 292 this->writeString(name); | |
| 269 | 293 |
| 270 // Add key to dictionary. | 294 // Add key to dictionary. |
| 271 fFlattenableDict.set(key, fFlattenableDict.count() + 1); | 295 fFlattenableDict.set(key, fFlattenableDict.count() + 1); |
| 296 } | |
| 272 } | 297 } |
| 273 } | 298 } |
| 274 | 299 |
| 275 // make room for the size of the flattened object | 300 // make room for the size of the flattened object |
| 276 (void)fWriter.reserve(sizeof(uint32_t)); | 301 (void)fWriter.reserve(sizeof(uint32_t)); |
| 277 // record the current size, so we can subtract after the object writes. | 302 // record the current size, so we can subtract after the object writes. |
| 278 size_t offset = fWriter.bytesWritten(); | 303 size_t offset = fWriter.bytesWritten(); |
| 279 // now flatten the object | 304 // now flatten the object |
| 280 flattenable->flatten(*this); | 305 flattenable->flatten(*this); |
| 281 size_t objSize = fWriter.bytesWritten() - offset; | 306 size_t objSize = fWriter.bytesWritten() - offset; |
| 282 // record the obj's size | 307 // record the obj's size |
| 283 fWriter.overwriteTAt(offset - sizeof(uint32_t), SkToU32(objSize)); | 308 fWriter.overwriteTAt(offset - sizeof(uint32_t), SkToU32(objSize)); |
| 284 } | 309 } |
| OLD | NEW |