Index: net/quic/crypto/strike_register.cc |
diff --git a/net/quic/crypto/strike_register.cc b/net/quic/crypto/strike_register.cc |
deleted file mode 100644 |
index 9cea0f11f8c765503d5dfe595d3df409940be3f3..0000000000000000000000000000000000000000 |
--- a/net/quic/crypto/strike_register.cc |
+++ /dev/null |
@@ -1,519 +0,0 @@ |
-// Copyright (c) 2013 The Chromium Authors. All rights reserved. |
-// Use of this source code is governed by a BSD-style license that can be |
-// found in the LICENSE file. |
- |
-#include "net/quic/crypto/strike_register.h" |
- |
-#include <algorithm> |
-#include <limits> |
- |
-#include "base/logging.h" |
- |
-using std::pair; |
-using std::set; |
-using std::vector; |
- |
-namespace net { |
- |
-namespace { |
- |
-uint32_t GetInitialHorizon(uint32_t current_time_internal, |
- uint32_t window_secs, |
- StrikeRegister::StartupType startup) { |
- if (startup == StrikeRegister::DENY_REQUESTS_AT_STARTUP) { |
- // The horizon is initially set |window_secs| into the future because, if |
- // we just crashed, then we may have accepted nonces in the span |
- // [current_time...current_time+window_secs] and so we conservatively |
- // reject the whole timespan unless |startup| tells us otherwise. |
- return current_time_internal + window_secs + 1; |
- } else { // startup == StrikeRegister::NO_STARTUP_PERIOD_NEEDED |
- // The orbit can be assumed to be globally unique. Use a horizon |
- // in the past. |
- return 0; |
- } |
-} |
- |
-} // namespace |
- |
-// static |
-const uint32_t StrikeRegister::kExternalNodeSize = 24; |
-// static |
-const uint32_t StrikeRegister::kNil = (1u << 31) | 1; |
-// static |
-const uint32_t StrikeRegister::kExternalFlag = 1 << 23; |
- |
-// InternalNode represents a non-leaf node in the critbit tree. See the comment |
-// in the .h file for details. |
-class StrikeRegister::InternalNode { |
- public: |
- void SetChild(unsigned direction, uint32_t child) { |
- data_[direction] = (data_[direction] & 0xff) | (child << 8); |
- } |
- |
- void SetCritByte(uint8_t critbyte) { |
- data_[0] = (data_[0] & 0xffffff00) | critbyte; |
- } |
- |
- void SetOtherBits(uint8_t otherbits) { |
- data_[1] = (data_[1] & 0xffffff00) | otherbits; |
- } |
- |
- void SetNextPtr(uint32_t next) { data_[0] = next; } |
- |
- uint32_t next() const { return data_[0]; } |
- |
- uint32_t child(unsigned n) const { return data_[n] >> 8; } |
- |
- uint8_t critbyte() const { return static_cast<uint8_t>(data_[0]); } |
- |
- uint8_t otherbits() const { return static_cast<uint8_t>(data_[1]); } |
- |
- // These bytes are organised thus: |
- // <24 bits> left child |
- // <8 bits> crit-byte |
- // <24 bits> right child |
- // <8 bits> other-bits |
- uint32_t data_[2]; |
-}; |
- |
-// kCreationTimeFromInternalEpoch contains the number of seconds between the |
-// start of the internal epoch and the creation time. This allows us |
-// to consider times that are before the creation time. |
-static const uint32_t kCreationTimeFromInternalEpoch = 63115200; // 2 years. |
- |
-void StrikeRegister::ValidateStrikeRegisterConfig(unsigned max_entries) { |
- // We only have 23 bits of index available. |
- CHECK_LT(max_entries, 1u << 23); |
- CHECK_GT(max_entries, 1u); // There must be at least two entries. |
- CHECK_EQ(sizeof(InternalNode), 8u); // in case of compiler changes. |
-} |
- |
-StrikeRegister::StrikeRegister(unsigned max_entries, |
- uint32_t current_time, |
- uint32_t window_secs, |
- const uint8_t orbit[8], |
- StartupType startup) |
- : max_entries_(max_entries), |
- window_secs_(window_secs), |
- internal_epoch_(current_time > kCreationTimeFromInternalEpoch |
- ? current_time - kCreationTimeFromInternalEpoch |
- : 0), |
- horizon_(GetInitialHorizon(ExternalTimeToInternal(current_time), |
- window_secs, |
- startup)) { |
- memcpy(orbit_, orbit, sizeof(orbit_)); |
- |
- ValidateStrikeRegisterConfig(max_entries); |
- internal_nodes_ = new InternalNode[max_entries]; |
- external_nodes_.reset(new uint8_t[kExternalNodeSize * max_entries]); |
- |
- Reset(); |
-} |
- |
-StrikeRegister::~StrikeRegister() { |
- delete[] internal_nodes_; |
-} |
- |
-void StrikeRegister::Reset() { |
- // Thread a free list through all of the internal nodes. |
- internal_node_free_head_ = 0; |
- for (unsigned i = 0; i < max_entries_ - 1; i++) { |
- internal_nodes_[i].SetNextPtr(i + 1); |
- } |
- internal_nodes_[max_entries_ - 1].SetNextPtr(kNil); |
- |
- // Also thread a free list through the external nodes. |
- external_node_free_head_ = 0; |
- for (unsigned i = 0; i < max_entries_ - 1; i++) { |
- external_node_next_ptr(i) = i + 1; |
- } |
- external_node_next_ptr(max_entries_ - 1) = kNil; |
- |
- // This is the root of the tree. |
- internal_node_head_ = kNil; |
-} |
- |
-InsertStatus StrikeRegister::Insert(const uint8_t nonce[32], |
- uint32_t current_time_external) { |
- // Make space for the insertion if the strike register is full. |
- while (external_node_free_head_ == kNil || internal_node_free_head_ == kNil) { |
- DropOldestNode(); |
- } |
- |
- const uint32_t current_time = ExternalTimeToInternal(current_time_external); |
- |
- // Check to see if the orbit is correct. |
- if (memcmp(nonce + sizeof(current_time), orbit_, sizeof(orbit_))) { |
- return NONCE_INVALID_ORBIT_FAILURE; |
- } |
- |
- const uint32_t nonce_time = ExternalTimeToInternal(TimeFromBytes(nonce)); |
- |
- // Check that the timestamp is in the valid range. |
- pair<uint32_t, uint32_t> valid_range = |
- StrikeRegister::GetValidRange(current_time); |
- if (nonce_time < valid_range.first || nonce_time > valid_range.second) { |
- return NONCE_INVALID_TIME_FAILURE; |
- } |
- |
- // We strip the orbit out of the nonce. |
- uint8_t value[24]; |
- memcpy(value, nonce, sizeof(nonce_time)); |
- memcpy(value + sizeof(nonce_time), |
- nonce + sizeof(nonce_time) + sizeof(orbit_), |
- sizeof(value) - sizeof(nonce_time)); |
- |
- // Find the best match to |value| in the crit-bit tree. The best match is |
- // simply the value which /could/ match |value|, if any does, so we still |
- // need a memcmp to check. |
- uint32_t best_match_index = BestMatch(value); |
- if (best_match_index == kNil) { |
- // Empty tree. Just insert the new value at the root. |
- uint32_t index = GetFreeExternalNode(); |
- memcpy(external_node(index), value, sizeof(value)); |
- internal_node_head_ = (index | kExternalFlag) << 8; |
- DCHECK_LE(horizon_, nonce_time); |
- return NONCE_OK; |
- } |
- |
- const uint8_t* best_match = external_node(best_match_index); |
- if (memcmp(best_match, value, sizeof(value)) == 0) { |
- // We found the value in the tree. |
- return NONCE_NOT_UNIQUE_FAILURE; |
- } |
- |
- // We are going to insert a new entry into the tree, so get the nodes now. |
- uint32_t internal_node_index = GetFreeInternalNode(); |
- uint32_t external_node_index = GetFreeExternalNode(); |
- |
- // If we just evicted the best match, then we have to try and match again. |
- // We know that we didn't just empty the tree because we require that |
- // max_entries_ >= 2. Also, we know that it doesn't match because, if it |
- // did, it would have been returned previously. |
- if (external_node_index == best_match_index) { |
- best_match_index = BestMatch(value); |
- best_match = external_node(best_match_index); |
- } |
- |
- // Now we need to find the first bit where we differ from |best_match|. |
- uint8_t differing_byte; |
- uint8_t new_other_bits; |
- for (differing_byte = 0; differing_byte < arraysize(value); |
- differing_byte++) { |
- new_other_bits = value[differing_byte] ^ best_match[differing_byte]; |
- if (new_other_bits) { |
- break; |
- } |
- } |
- |
- // Once we have the XOR the of first differing byte in new_other_bits we need |
- // to find the most significant differing bit. We could do this with a simple |
- // for loop, testing bits 7..0. Instead we fold the bits so that we end up |
- // with a byte where all the bits below the most significant one, are set. |
- new_other_bits |= new_other_bits >> 1; |
- new_other_bits |= new_other_bits >> 2; |
- new_other_bits |= new_other_bits >> 4; |
- // Now this bit trick results in all the bits set, except the original |
- // most-significant one. |
- new_other_bits = (new_other_bits & ~(new_other_bits >> 1)) ^ 255; |
- |
- // Consider the effect of ORing against |new_other_bits|. If |value| did not |
- // have the critical bit set, the result is the same as |new_other_bits|. If |
- // it did, the result is all ones. |
- |
- unsigned newdirection; |
- if ((new_other_bits | value[differing_byte]) == 0xff) { |
- newdirection = 1; |
- } else { |
- newdirection = 0; |
- } |
- |
- memcpy(external_node(external_node_index), value, sizeof(value)); |
- InternalNode* inode = &internal_nodes_[internal_node_index]; |
- |
- inode->SetChild(newdirection, external_node_index | kExternalFlag); |
- inode->SetCritByte(differing_byte); |
- inode->SetOtherBits(new_other_bits); |
- |
- // |where_index| is a pointer to the uint32_t which needs to be updated in |
- // order to insert the new internal node into the tree. The internal nodes |
- // store the child indexes in the top 24-bits of a 32-bit word and, to keep |
- // the code simple, we define that |internal_node_head_| is organised the |
- // same way. |
- DCHECK_EQ(internal_node_head_ & 0xff, 0u); |
- uint32_t* where_index = &internal_node_head_; |
- while (((*where_index >> 8) & kExternalFlag) == 0) { |
- InternalNode* node = &internal_nodes_[*where_index >> 8]; |
- if (node->critbyte() > differing_byte) { |
- break; |
- } |
- if (node->critbyte() == differing_byte && |
- node->otherbits() > new_other_bits) { |
- break; |
- } |
- if (node->critbyte() == differing_byte && |
- node->otherbits() == new_other_bits) { |
- CHECK(false); |
- } |
- |
- uint8_t c = value[node->critbyte()]; |
- const int direction = |
- (1 + static_cast<unsigned>(node->otherbits() | c)) >> 8; |
- where_index = &node->data_[direction]; |
- } |
- |
- inode->SetChild(newdirection ^ 1, *where_index >> 8); |
- *where_index = (*where_index & 0xff) | (internal_node_index << 8); |
- |
- DCHECK_LE(horizon_, nonce_time); |
- return NONCE_OK; |
-} |
- |
-const uint8_t* StrikeRegister::orbit() const { |
- return orbit_; |
-} |
- |
-uint32_t StrikeRegister::GetCurrentValidWindowSecs( |
- uint32_t current_time_external) const { |
- uint32_t current_time = ExternalTimeToInternal(current_time_external); |
- pair<uint32_t, uint32_t> valid_range = |
- StrikeRegister::GetValidRange(current_time); |
- if (valid_range.second >= valid_range.first) { |
- return valid_range.second - current_time + 1; |
- } else { |
- return 0; |
- } |
-} |
- |
-void StrikeRegister::Validate() { |
- set<uint32_t> free_internal_nodes; |
- for (uint32_t i = internal_node_free_head_; i != kNil; |
- i = internal_nodes_[i].next()) { |
- CHECK_LT(i, max_entries_); |
- CHECK_EQ(free_internal_nodes.count(i), 0u); |
- free_internal_nodes.insert(i); |
- } |
- |
- set<uint32_t> free_external_nodes; |
- for (uint32_t i = external_node_free_head_; i != kNil; |
- i = external_node_next_ptr(i)) { |
- CHECK_LT(i, max_entries_); |
- CHECK_EQ(free_external_nodes.count(i), 0u); |
- free_external_nodes.insert(i); |
- } |
- |
- set<uint32_t> used_external_nodes; |
- set<uint32_t> used_internal_nodes; |
- |
- if (internal_node_head_ != kNil && |
- ((internal_node_head_ >> 8) & kExternalFlag) == 0) { |
- vector<pair<unsigned, bool>> bits; |
- ValidateTree(internal_node_head_ >> 8, -1, bits, free_internal_nodes, |
- free_external_nodes, &used_internal_nodes, |
- &used_external_nodes); |
- } |
-} |
- |
-// static |
-uint32_t StrikeRegister::TimeFromBytes(const uint8_t d[4]) { |
- return static_cast<uint32_t>(d[0]) << 24 | static_cast<uint32_t>(d[1]) << 16 | |
- static_cast<uint32_t>(d[2]) << 8 | static_cast<uint32_t>(d[3]); |
-} |
- |
-pair<uint32_t, uint32_t> StrikeRegister::GetValidRange( |
- uint32_t current_time_internal) const { |
- if (current_time_internal < horizon_) { |
- // Empty valid range. |
- return std::make_pair(std::numeric_limits<uint32_t>::max(), 0); |
- } |
- |
- uint32_t lower_bound; |
- if (current_time_internal >= window_secs_) { |
- lower_bound = std::max(horizon_, current_time_internal - window_secs_); |
- } else { |
- lower_bound = horizon_; |
- } |
- |
- // Also limit the upper range based on horizon_. This makes the |
- // strike register reject inserts that are far in the future and |
- // would consume strike register resources for a long time. This |
- // allows the strike server to degrade optimally in cases where the |
- // insert rate exceeds |max_entries_ / (2 * window_secs_)| entries |
- // per second. |
- uint32_t upper_bound = |
- current_time_internal + |
- std::min(current_time_internal - horizon_, window_secs_); |
- |
- return std::make_pair(lower_bound, upper_bound); |
-} |
- |
-uint32_t StrikeRegister::ExternalTimeToInternal(uint32_t external_time) const { |
- return external_time - internal_epoch_; |
-} |
- |
-uint32_t StrikeRegister::BestMatch(const uint8_t v[24]) const { |
- if (internal_node_head_ == kNil) { |
- return kNil; |
- } |
- |
- uint32_t next = internal_node_head_ >> 8; |
- while ((next & kExternalFlag) == 0) { |
- InternalNode* node = &internal_nodes_[next]; |
- uint8_t b = v[node->critbyte()]; |
- unsigned direction = |
- (1 + static_cast<unsigned>(node->otherbits() | b)) >> 8; |
- next = node->child(direction); |
- } |
- |
- return next & ~kExternalFlag; |
-} |
- |
-uint32_t& StrikeRegister::external_node_next_ptr(unsigned i) { |
- return *reinterpret_cast<uint32_t*>(&external_nodes_[i * kExternalNodeSize]); |
-} |
- |
-uint8_t* StrikeRegister::external_node(unsigned i) { |
- return &external_nodes_[i * kExternalNodeSize]; |
-} |
- |
-uint32_t StrikeRegister::GetFreeExternalNode() { |
- uint32_t index = external_node_free_head_; |
- DCHECK(index != kNil); |
- external_node_free_head_ = external_node_next_ptr(index); |
- return index; |
-} |
- |
-uint32_t StrikeRegister::GetFreeInternalNode() { |
- uint32_t index = internal_node_free_head_; |
- DCHECK(index != kNil); |
- internal_node_free_head_ = internal_nodes_[index].next(); |
- return index; |
-} |
- |
-void StrikeRegister::DropOldestNode() { |
- // DropOldestNode should never be called on an empty tree. |
- DCHECK(internal_node_head_ != kNil); |
- |
- // An internal node in a crit-bit tree always has exactly two children. |
- // This means that, if we are removing an external node (which is one of |
- // those children), then we also need to remove an internal node. In order |
- // to do that we keep pointers to the parent (wherep) and grandparent |
- // (whereq) when walking down the tree. |
- |
- uint32_t p = internal_node_head_ >> 8, *wherep = &internal_node_head_, |
- *whereq = nullptr; |
- while ((p & kExternalFlag) == 0) { |
- whereq = wherep; |
- InternalNode* inode = &internal_nodes_[p]; |
- // We always go left, towards the smallest element, exploiting the fact |
- // that the timestamp is big-endian and at the start of the value. |
- wherep = &inode->data_[0]; |
- p = (*wherep) >> 8; |
- } |
- |
- const uint32_t ext_index = p & ~kExternalFlag; |
- const uint8_t* ext_node = external_node(ext_index); |
- uint32_t new_horizon = ExternalTimeToInternal(TimeFromBytes(ext_node)) + 1; |
- DCHECK_LE(horizon_, new_horizon); |
- horizon_ = new_horizon; |
- |
- if (!whereq) { |
- // We are removing the last element in a tree. |
- internal_node_head_ = kNil; |
- FreeExternalNode(ext_index); |
- return; |
- } |
- |
- // |wherep| points to the left child pointer in the parent so we can add |
- // one and dereference to get the right child. |
- const uint32_t other_child = wherep[1]; |
- FreeInternalNode((*whereq) >> 8); |
- *whereq = (*whereq & 0xff) | (other_child & 0xffffff00); |
- FreeExternalNode(ext_index); |
-} |
- |
-void StrikeRegister::FreeExternalNode(uint32_t index) { |
- external_node_next_ptr(index) = external_node_free_head_; |
- external_node_free_head_ = index; |
-} |
- |
-void StrikeRegister::FreeInternalNode(uint32_t index) { |
- internal_nodes_[index].SetNextPtr(internal_node_free_head_); |
- internal_node_free_head_ = index; |
-} |
- |
-void StrikeRegister::ValidateTree(uint32_t internal_node, |
- int last_bit, |
- const vector<pair<unsigned, bool>>& bits, |
- const set<uint32_t>& free_internal_nodes, |
- const set<uint32_t>& free_external_nodes, |
- set<uint32_t>* used_internal_nodes, |
- set<uint32_t>* used_external_nodes) { |
- CHECK_LT(internal_node, max_entries_); |
- const InternalNode* i = &internal_nodes_[internal_node]; |
- unsigned bit = 0; |
- switch (i->otherbits()) { |
- case 0xff & ~(1 << 7): |
- bit = 0; |
- break; |
- case 0xff & ~(1 << 6): |
- bit = 1; |
- break; |
- case 0xff & ~(1 << 5): |
- bit = 2; |
- break; |
- case 0xff & ~(1 << 4): |
- bit = 3; |
- break; |
- case 0xff & ~(1 << 3): |
- bit = 4; |
- break; |
- case 0xff & ~(1 << 2): |
- bit = 5; |
- break; |
- case 0xff & ~(1 << 1): |
- bit = 6; |
- break; |
- case 0xff & ~1: |
- bit = 7; |
- break; |
- default: |
- CHECK(false); |
- } |
- |
- bit += 8 * i->critbyte(); |
- if (last_bit > -1) { |
- CHECK_GT(bit, static_cast<unsigned>(last_bit)); |
- } |
- |
- CHECK_EQ(free_internal_nodes.count(internal_node), 0u); |
- |
- for (unsigned child = 0; child < 2; child++) { |
- if (i->child(child) & kExternalFlag) { |
- uint32_t ext = i->child(child) & ~kExternalFlag; |
- CHECK_EQ(free_external_nodes.count(ext), 0u); |
- CHECK_EQ(used_external_nodes->count(ext), 0u); |
- used_external_nodes->insert(ext); |
- const uint8_t* bytes = external_node(ext); |
- for (const pair<unsigned, bool>& pair : bits) { |
- unsigned byte = pair.first / 8; |
- DCHECK_LE(byte, 0xffu); |
- unsigned bit_new = pair.first % 8; |
- static const uint8_t kMasks[8] = {0x80, 0x40, 0x20, 0x10, |
- 0x08, 0x04, 0x02, 0x01}; |
- CHECK_EQ((bytes[byte] & kMasks[bit_new]) != 0, pair.second); |
- } |
- } else { |
- uint32_t inter = i->child(child); |
- vector<pair<unsigned, bool>> new_bits(bits); |
- new_bits.push_back(pair<unsigned, bool>(bit, child != 0)); |
- CHECK_EQ(free_internal_nodes.count(inter), 0u); |
- CHECK_EQ(used_internal_nodes->count(inter), 0u); |
- used_internal_nodes->insert(inter); |
- ValidateTree(inter, bit, bits, free_internal_nodes, free_external_nodes, |
- used_internal_nodes, used_external_nodes); |
- } |
- } |
-} |
- |
-} // namespace net |