Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(542)

Side by Side Diff: net/quic/interval_set.h

Issue 2193073003: Move shared files in net/quic/ into net/quic/core/ (Closed) Base URL: https://chromium.googlesource.com/chromium/src.git@master
Patch Set: io_thread_unittest.cc Created 4 years, 4 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View unified diff | Download patch
« no previous file with comments | « net/quic/interval.h ('k') | net/quic/interval_set_test.cc » ('j') | no next file with comments »
Toggle Intra-line Diffs ('i') | Expand Comments ('e') | Collapse Comments ('c') | Show Comments Hide Comments ('s')
OLDNEW
(Empty)
1 // Copyright 2015 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 //
5 // IntervalSet<T> is a data structure used to represent a sorted set of
6 // non-empty, non-adjacent, and mutually disjoint intervals. Mutations to an
7 // interval set preserve these properties, altering the set as needed. For
8 // example, adding [2, 3) to a set containing only [1, 2) would result in the
9 // set containing the single interval [1, 3).
10 //
11 // Supported operations include testing whether an Interval is contained in the
12 // IntervalSet, comparing two IntervalSets, and performing IntervalSet union,
13 // intersection, and difference.
14 //
15 // IntervalSet maintains the minimum number of entries needed to represent the
16 // set of underlying intervals. When the IntervalSet is modified (e.g. due to an
17 // Add operation), other interval entries may be coalesced, removed, or
18 // otherwise modified in order to maintain this invariant. The intervals are
19 // maintained in sorted order, by ascending min() value.
20 //
21 // The reader is cautioned to beware of the terminology used here: this library
22 // uses the terms "min" and "max" rather than "begin" and "end" as is
23 // conventional for the STL. The terminology [min, max) refers to the half-open
24 // interval which (if the interval is not empty) contains min but does not
25 // contain max. An interval is considered empty if min >= max.
26 //
27 // T is required to be default- and copy-constructible, to have an assignment
28 // operator, a difference operator (operator-()), and the full complement of
29 // comparison operators (<, <=, ==, !=, >=, >). These requirements are inherited
30 // from Interval<T>.
31 //
32 // IntervalSet has constant-time move operations.
33 //
34 // This class is thread-compatible if T is thread-compatible. (See
35 // go/thread-compatible).
36 //
37 // Examples:
38 // IntervalSet<int> intervals;
39 // intervals.Add(Interval<int>(10, 20));
40 // intervals.Add(Interval<int>(30, 40));
41 // // intervals contains [10,20) and [30,40).
42 // intervals.Add(Interval<int>(15, 35));
43 // // intervals has been coalesced. It now contains the single range [10,40).
44 // EXPECT_EQ(1, intervals.Size());
45 // EXPECT_TRUE(intervals.Contains(Interval<int>(10, 40)));
46 //
47 // intervals.Difference(Interval<int>(10, 20));
48 // // intervals should now contain the single range [20, 40).
49 // EXPECT_EQ(1, intervals.Size());
50 // EXPECT_TRUE(intervals.Contains(Interval<int>(20, 40)));
51
52 #ifndef NET_QUIC_INTERVAL_SET_H_
53 #define NET_QUIC_INTERVAL_SET_H_
54
55 #include <stddef.h>
56
57 #include <algorithm>
58 #include <set>
59 #include <string>
60 #include <utility>
61 #include <vector>
62
63 #include "base/logging.h"
64 #include "net/quic/interval.h"
65
66 namespace net {
67
68 template <typename T>
69 class IntervalSet {
70 private:
71 struct IntervalComparator {
72 bool operator()(const Interval<T>& a, const Interval<T>& b) const;
73 };
74 typedef std::set<Interval<T>, IntervalComparator> Set;
75
76 public:
77 typedef typename Set::value_type value_type;
78 typedef typename Set::const_iterator const_iterator;
79 typedef typename Set::const_reverse_iterator const_reverse_iterator;
80
81 // Instantiates an empty IntervalSet.
82 IntervalSet() {}
83
84 // Instantiates an IntervalSet containing exactly one initial half-open
85 // interval [min, max), unless the given interval is empty, in which case the
86 // IntervalSet will be empty.
87 explicit IntervalSet(const Interval<T>& interval) { Add(interval); }
88
89 // Instantiates an IntervalSet containing the half-open interval [min, max).
90 IntervalSet(const T& min, const T& max) { Add(min, max); }
91
92 // TODO(rtenneti): Implement after suupport for std::initializer_list.
93 #if 0
94 IntervalSet(std::initializer_list<value_type> il) { assign(il); }
95 #endif
96
97 // Clears this IntervalSet.
98 void Clear() { intervals_.clear(); }
99
100 // Returns the number of disjoint intervals contained in this IntervalSet.
101 size_t Size() const { return intervals_.size(); }
102
103 // Returns the smallest interval that contains all intervals in this
104 // IntervalSet, or the empty interval if the set is empty.
105 Interval<T> SpanningInterval() const;
106
107 // Adds "interval" to this IntervalSet. Adding the empty interval has no
108 // effect.
109 void Add(const Interval<T>& interval);
110
111 // Adds the interval [min, max) to this IntervalSet. Adding the empty interval
112 // has no effect.
113 void Add(const T& min, const T& max) { Add(Interval<T>(min, max)); }
114
115 // DEPRECATED(kosak). Use Union() instead. This method merges all of the
116 // values contained in "other" into this IntervalSet.
117 void Add(const IntervalSet& other);
118
119 // Returns true if this IntervalSet represents exactly the same set of
120 // intervals as the ones represented by "other".
121 bool Equals(const IntervalSet& other) const;
122
123 // Returns true if this IntervalSet is empty.
124 bool Empty() const { return intervals_.empty(); }
125
126 // Returns true if any interval in this IntervalSet contains the indicated
127 // value.
128 bool Contains(const T& value) const;
129
130 // Returns true if there is some interval in this IntervalSet that wholly
131 // contains the given interval. An interval O "wholly contains" a non-empty
132 // interval I if O.Contains(p) is true for every p in I. This is the same
133 // definition used by Interval<T>::Contains(). This method returns false on
134 // the empty interval, due to a (perhaps unintuitive) convention inherited
135 // from Interval<T>.
136 // Example:
137 // Assume an IntervalSet containing the entries { [10,20), [30,40) }.
138 // Contains(Interval(15, 16)) returns true, because [10,20) contains
139 // [15,16). However, Contains(Interval(15, 35)) returns false.
140 bool Contains(const Interval<T>& interval) const;
141
142 // Returns true if for each interval in "other", there is some (possibly
143 // different) interval in this IntervalSet which wholly contains it. See
144 // Contains(const Interval<T>& interval) for the meaning of "wholly contains".
145 // Perhaps unintuitively, this method returns false if "other" is the empty
146 // set. The algorithmic complexity of this method is O(other.Size() *
147 // log(this->Size())), which is not efficient. The method could be rewritten
148 // to run in O(other.Size() + this->Size()).
149 bool Contains(const IntervalSet<T>& other) const;
150
151 // Returns true if there is some interval in this IntervalSet that wholly
152 // contains the interval [min, max). See Contains(const Interval<T>&).
153 bool Contains(const T& min, const T& max) const {
154 return Contains(Interval<T>(min, max));
155 }
156
157 // Returns true if for some interval in "other", there is some interval in
158 // this IntervalSet that intersects with it. See Interval<T>::Intersects()
159 // for the definition of interval intersection.
160 bool Intersects(const IntervalSet& other) const;
161
162 // Returns an iterator to the Interval<T> in the IntervalSet that contains the
163 // given value. In other words, returns an iterator to the unique interval
164 // [min, max) in the IntervalSet that has the property min <= value < max. If
165 // there is no such interval, this method returns end().
166 const_iterator Find(const T& value) const;
167
168 // Returns an iterator to the Interval<T> in the IntervalSet that wholly
169 // contains the given interval. In other words, returns an iterator to the
170 // unique interval outer in the IntervalSet that has the property that
171 // outer.Contains(interval). If there is no such interval, or if interval is
172 // empty, returns end().
173 const_iterator Find(const Interval<T>& interval) const;
174
175 // Returns an iterator to the Interval<T> in the IntervalSet that wholly
176 // contains [min, max). In other words, returns an iterator to the unique
177 // interval outer in the IntervalSet that has the property that
178 // outer.Contains(Interval<T>(min, max)). If there is no such interval, or if
179 // interval is empty, returns end().
180 const_iterator Find(const T& min, const T& max) const {
181 return Find(Interval<T>(min, max));
182 }
183
184 // Returns true if every value within the passed interval is not Contained
185 // within the IntervalSet.
186 bool IsDisjoint(const Interval<T>& interval) const;
187
188 // Merges all the values contained in "other" into this IntervalSet.
189 void Union(const IntervalSet& other);
190
191 // Modifies this IntervalSet so that it contains only those values that are
192 // currently present both in *this and in the IntervalSet "other".
193 void Intersection(const IntervalSet& other);
194
195 // Mutates this IntervalSet so that it contains only those values that are
196 // currently in *this but not in "interval".
197 void Difference(const Interval<T>& interval);
198
199 // Mutates this IntervalSet so that it contains only those values that are
200 // currently in *this but not in the interval [min, max).
201 void Difference(const T& min, const T& max);
202
203 // Mutates this IntervalSet so that it contains only those values that are
204 // currently in *this but not in the IntervalSet "other".
205 void Difference(const IntervalSet& other);
206
207 // Mutates this IntervalSet so that it contains only those values that are
208 // in [min, max) but not currently in *this.
209 void Complement(const T& min, const T& max);
210
211 // IntervalSet's begin() iterator. The invariants of IntervalSet guarantee
212 // that for each entry e in the set, e.min() < e.max() (because the entries
213 // are non-empty) and for each entry f that appears later in the set,
214 // e.max() < f.min() (because the entries are ordered, pairwise-disjoint, and
215 // non-adjacent). Modifications to this IntervalSet invalidate these
216 // iterators.
217 const_iterator begin() const { return intervals_.begin(); }
218
219 // IntervalSet's end() iterator.
220 const_iterator end() const { return intervals_.end(); }
221
222 // IntervalSet's rbegin() and rend() iterators. Iterator invalidation
223 // semantics are the same as those for begin() / end().
224 const_reverse_iterator rbegin() const { return intervals_.rbegin(); }
225
226 const_reverse_iterator rend() const { return intervals_.rend(); }
227
228 // Appends the intervals in this IntervalSet to the end of *out.
229 void Get(std::vector<Interval<T>>* out) const {
230 out->insert(out->end(), begin(), end());
231 }
232
233 // Copies the intervals in this IntervalSet to the given output iterator.
234 template <typename Iter>
235 Iter Get(Iter out_iter) const {
236 return std::copy(begin(), end(), out_iter);
237 }
238
239 template <typename Iter>
240 void assign(Iter first, Iter last) {
241 Clear();
242 for (; first != last; ++first)
243 Add(*first);
244 }
245
246 // TODO(rtenneti): Implement after suupport for std::initializer_list.
247 #if 0
248 void assign(std::initializer_list<value_type> il) {
249 assign(il.begin(), il.end());
250 }
251 #endif
252
253 // Returns a human-readable representation of this set. This will typically be
254 // (though is not guaranteed to be) of the form
255 // "[a1, b1) [a2, b2) ... [an, bn)"
256 // where the intervals are in the same order as given by traversal from
257 // begin() to end(). This representation is intended for human consumption;
258 // computer programs should not rely on the output being in exactly this form.
259 std::string ToString() const;
260
261 // Equality for IntervalSet<T>. Delegates to Equals().
262 bool operator==(const IntervalSet& other) const { return Equals(other); }
263
264 // Inequality for IntervalSet<T>. Delegates to Equals() (and returns its
265 // negation).
266 bool operator!=(const IntervalSet& other) const { return !Equals(other); }
267
268 // TODO(rtenneti): Implement after suupport for std::initializer_list.
269 #if 0
270 IntervalSet& operator=(std::initializer_list<value_type> il) {
271 assign(il.begin(), il.end());
272 return *this;
273 }
274 #endif
275
276 // Swap this IntervalSet with *other. This is a constant-time operation.
277 void Swap(IntervalSet<T>* other) { intervals_.swap(other->intervals_); }
278
279 private:
280 // Removes overlapping ranges and coalesces adjacent intervals as needed.
281 void Compact(const typename Set::iterator& begin,
282 const typename Set::iterator& end);
283
284 // Returns true if this set is valid (i.e. all intervals in it are non-empty,
285 // non-adjacent, and mutually disjoint). Currently this is used as an
286 // integrity check by the Intersection() and Difference() methods, but is only
287 // invoked for debug builds (via DCHECK).
288 bool Valid() const;
289
290 // Finds the first interval that potentially intersects 'other'.
291 const_iterator FindIntersectionCandidate(const IntervalSet& other) const;
292
293 // Finds the first interval that potentially intersects 'interval'.
294 const_iterator FindIntersectionCandidate(const Interval<T>& interval) const;
295
296 // Helper for Intersection() and Difference(): Finds the next pair of
297 // intervals from 'x' and 'y' that intersect. 'mine' is an iterator
298 // over x->intervals_. 'theirs' is an iterator over y.intervals_. 'mine'
299 // and 'theirs' are advanced until an intersecting pair is found.
300 // Non-intersecting intervals (aka "holes") from x->intervals_ can be
301 // optionally erased by "on_hole".
302 template <typename X, typename Func>
303 static bool FindNextIntersectingPairImpl(X* x,
304 const IntervalSet& y,
305 const_iterator* mine,
306 const_iterator* theirs,
307 Func on_hole);
308
309 // The variant of the above method that doesn't mutate this IntervalSet.
310 bool FindNextIntersectingPair(const IntervalSet& other,
311 const_iterator* mine,
312 const_iterator* theirs) const {
313 return FindNextIntersectingPairImpl(
314 this, other, mine, theirs,
315 [](const IntervalSet*, const_iterator, const_iterator) {});
316 }
317
318 // The variant of the above method that mutates this IntervalSet by erasing
319 // holes.
320 bool FindNextIntersectingPairAndEraseHoles(const IntervalSet& other,
321 const_iterator* mine,
322 const_iterator* theirs) {
323 return FindNextIntersectingPairImpl(
324 this, other, mine, theirs,
325 [](IntervalSet* x, const_iterator from, const_iterator to) {
326 x->intervals_.erase(from, to);
327 });
328 }
329
330 // The representation for the intervals. The intervals in this set are
331 // non-empty, pairwise-disjoint, non-adjacent and ordered in ascending order
332 // by min().
333 Set intervals_;
334 };
335
336 template <typename T>
337 std::ostream& operator<<(std::ostream& out, const IntervalSet<T>& seq);
338
339 template <typename T>
340 void swap(IntervalSet<T>& x, IntervalSet<T>& y);
341
342 //==============================================================================
343 // Implementation details: Clients can stop reading here.
344
345 template <typename T>
346 Interval<T> IntervalSet<T>::SpanningInterval() const {
347 Interval<T> result;
348 if (!intervals_.empty()) {
349 result.SetMin(intervals_.begin()->min());
350 result.SetMax(intervals_.rbegin()->max());
351 }
352 return result;
353 }
354
355 template <typename T>
356 void IntervalSet<T>::Add(const Interval<T>& interval) {
357 if (interval.Empty())
358 return;
359 std::pair<typename Set::iterator, bool> ins = intervals_.insert(interval);
360 if (!ins.second) {
361 // This interval already exists.
362 return;
363 }
364 // Determine the minimal range that will have to be compacted. We know that
365 // the IntervalSet was valid before the addition of the interval, so only
366 // need to start with the interval itself (although Compact takes an open
367 // range so begin needs to be the interval to the left). We don't know how
368 // many ranges this interval may cover, so we need to find the appropriate
369 // interval to end with on the right.
370 typename Set::iterator begin = ins.first;
371 if (begin != intervals_.begin())
372 --begin;
373 const Interval<T> target_end(interval.max(), interval.max());
374 const typename Set::iterator end = intervals_.upper_bound(target_end);
375 Compact(begin, end);
376 }
377
378 template <typename T>
379 void IntervalSet<T>::Add(const IntervalSet& other) {
380 for (const_iterator it = other.begin(); it != other.end(); ++it) {
381 Add(*it);
382 }
383 }
384
385 template <typename T>
386 bool IntervalSet<T>::Equals(const IntervalSet& other) const {
387 if (intervals_.size() != other.intervals_.size())
388 return false;
389 for (typename Set::iterator i = intervals_.begin(),
390 j = other.intervals_.begin();
391 i != intervals_.end(); ++i, ++j) {
392 // Simple member-wise equality, since all intervals are non-empty.
393 if (i->min() != j->min() || i->max() != j->max())
394 return false;
395 }
396 return true;
397 }
398
399 template <typename T>
400 bool IntervalSet<T>::Contains(const T& value) const {
401 Interval<T> tmp(value, value);
402 // Find the first interval with min() > value, then move back one step
403 const_iterator it = intervals_.upper_bound(tmp);
404 if (it == intervals_.begin())
405 return false;
406 --it;
407 return it->Contains(value);
408 }
409
410 template <typename T>
411 bool IntervalSet<T>::Contains(const Interval<T>& interval) const {
412 // Find the first interval with min() > value, then move back one step.
413 const_iterator it = intervals_.upper_bound(interval);
414 if (it == intervals_.begin())
415 return false;
416 --it;
417 return it->Contains(interval);
418 }
419
420 template <typename T>
421 bool IntervalSet<T>::Contains(const IntervalSet<T>& other) const {
422 if (!SpanningInterval().Contains(other.SpanningInterval())) {
423 return false;
424 }
425
426 for (const_iterator i = other.begin(); i != other.end(); ++i) {
427 // If we don't contain the interval, can return false now.
428 if (!Contains(*i)) {
429 return false;
430 }
431 }
432 return true;
433 }
434
435 // This method finds the interval that Contains() "value", if such an interval
436 // exists in the IntervalSet. The way this is done is to locate the "candidate
437 // interval", the only interval that could *possibly* contain value, and test it
438 // using Contains(). The candidate interval is the interval with the largest
439 // min() having min() <= value.
440 //
441 // Determining the candidate interval takes a couple of steps. First, since the
442 // underlying std::set stores intervals, not values, we need to create a "probe
443 // interval" suitable for use as a search key. The probe interval used is
444 // [value, value). Now we can restate the problem as finding the largest
445 // interval in the IntervalSet that is <= the probe interval.
446 //
447 // This restatement only works if the set's comparator behaves in a certain way.
448 // In particular it needs to order first by ascending min(), and then by
449 // descending max(). The comparator used by this library is defined in exactly
450 // this way. To see why descending max() is required, consider the following
451 // example. Assume an IntervalSet containing these intervals:
452 //
453 // [0, 5) [10, 20) [50, 60)
454 //
455 // Consider searching for the value 15. The probe interval [15, 15) is created,
456 // and [10, 20) is identified as the largest interval in the set <= the probe
457 // interval. This is the correct interval needed for the Contains() test, which
458 // will then return true.
459 //
460 // Now consider searching for the value 30. The probe interval [30, 30) is
461 // created, and again [10, 20] is identified as the largest interval <= the
462 // probe interval. This is again the correct interval needed for the Contains()
463 // test, which in this case returns false.
464 //
465 // Finally, consider searching for the value 10. The probe interval [10, 10) is
466 // created. Here the ordering relationship between [10, 10) and [10, 20) becomes
467 // vitally important. If [10, 10) were to come before [10, 20), then [0, 5)
468 // would be the largest interval <= the probe, leading to the wrong choice of
469 // interval for the Contains() test. Therefore [10, 10) needs to come after
470 // [10, 20). The simplest way to make this work in the general case is to order
471 // by ascending min() but descending max(). In this ordering, the empty interval
472 // is larger than any non-empty interval with the same min(). The comparator
473 // used by this library is careful to induce this ordering.
474 //
475 // Another detail involves the choice of which std::set method to use to try to
476 // find the candidate interval. The most appropriate entry point is
477 // set::upper_bound(), which finds the smallest interval which is > the probe
478 // interval. The semantics of upper_bound() are slightly different from what we
479 // want (namely, to find the largest interval which is <= the probe interval)
480 // but they are close enough; the interval found by upper_bound() will always be
481 // one step past the interval we are looking for (if it exists) or at begin()
482 // (if it does not). Getting to the proper interval is a simple matter of
483 // decrementing the iterator.
484 template <typename T>
485 typename IntervalSet<T>::const_iterator IntervalSet<T>::Find(
486 const T& value) const {
487 Interval<T> tmp(value, value);
488 const_iterator it = intervals_.upper_bound(tmp);
489 if (it == intervals_.begin())
490 return intervals_.end();
491 --it;
492 if (it->Contains(value))
493 return it;
494 else
495 return intervals_.end();
496 }
497
498 // This method finds the interval that Contains() the interval "probe", if such
499 // an interval exists in the IntervalSet. The way this is done is to locate the
500 // "candidate interval", the only interval that could *possibly* contain
501 // "probe", and test it using Contains(). The candidate interval is the largest
502 // interval that is <= the probe interval.
503 //
504 // The search for the candidate interval only works if the comparator used
505 // behaves in a certain way. In particular it needs to order first by ascending
506 // min(), and then by descending max(). The comparator used by this library is
507 // defined in exactly this way. To see why descending max() is required,
508 // consider the following example. Assume an IntervalSet containing these
509 // intervals:
510 //
511 // [0, 5) [10, 20) [50, 60)
512 //
513 // Consider searching for the probe [15, 17). [10, 20) is the largest interval
514 // in the set which is <= the probe interval. This is the correct interval
515 // needed for the Contains() test, which will then return true, because [10, 20)
516 // contains [15, 17).
517 //
518 // Now consider searching for the probe [30, 32). Again [10, 20] is the largest
519 // interval <= the probe interval. This is again the correct interval needed for
520 // the Contains() test, which in this case returns false, because [10, 20) does
521 // not contain [30, 32).
522 //
523 // Finally, consider searching for the probe [10, 12). Here the ordering
524 // relationship between [10, 12) and [10, 20) becomes vitally important. If
525 // [10, 12) were to come before [10, 20), then [0, 5) would be the largest
526 // interval <= the probe, leading to the wrong choice of interval for the
527 // Contains() test. Therefore [10, 12) needs to come after [10, 20). The
528 // simplest way to make this work in the general case is to order by ascending
529 // min() but descending max(). In this ordering, given two intervals with the
530 // same min(), the wider one goes before the narrower one. The comparator used
531 // by this library is careful to induce this ordering.
532 //
533 // Another detail involves the choice of which std::set method to use to try to
534 // find the candidate interval. The most appropriate entry point is
535 // set::upper_bound(), which finds the smallest interval which is > the probe
536 // interval. The semantics of upper_bound() are slightly different from what we
537 // want (namely, to find the largest interval which is <= the probe interval)
538 // but they are close enough; the interval found by upper_bound() will always be
539 // one step past the interval we are looking for (if it exists) or at begin()
540 // (if it does not). Getting to the proper interval is a simple matter of
541 // decrementing the iterator.
542 template <typename T>
543 typename IntervalSet<T>::const_iterator IntervalSet<T>::Find(
544 const Interval<T>& probe) const {
545 const_iterator it = intervals_.upper_bound(probe);
546 if (it == intervals_.begin())
547 return intervals_.end();
548 --it;
549 if (it->Contains(probe))
550 return it;
551 else
552 return intervals_.end();
553 }
554
555 template <typename T>
556 bool IntervalSet<T>::IsDisjoint(const Interval<T>& interval) const {
557 Interval<T> tmp(interval.min(), interval.min());
558 // Find the first interval with min() > interval.min()
559 const_iterator it = intervals_.upper_bound(tmp);
560 if (it != intervals_.end() && interval.max() > it->min())
561 return false;
562 if (it == intervals_.begin())
563 return true;
564 --it;
565 return it->max() <= interval.min();
566 }
567
568 template <typename T>
569 void IntervalSet<T>::Union(const IntervalSet& other) {
570 intervals_.insert(other.begin(), other.end());
571 Compact(intervals_.begin(), intervals_.end());
572 }
573
574 template <typename T>
575 typename IntervalSet<T>::const_iterator
576 IntervalSet<T>::FindIntersectionCandidate(const IntervalSet& other) const {
577 return FindIntersectionCandidate(*other.intervals_.begin());
578 }
579
580 template <typename T>
581 typename IntervalSet<T>::const_iterator
582 IntervalSet<T>::FindIntersectionCandidate(const Interval<T>& interval) const {
583 // Use upper_bound to efficiently find the first interval in intervals_
584 // where min() is greater than interval.min(). If the result
585 // isn't the beginning of intervals_ then move backwards one interval since
586 // the interval before it is the first candidate where max() may be
587 // greater than interval.min().
588 // In other words, no interval before that can possibly intersect with any
589 // of other.intervals_.
590 const_iterator mine = intervals_.upper_bound(interval);
591 if (mine != intervals_.begin()) {
592 --mine;
593 }
594 return mine;
595 }
596
597 template <typename T>
598 template <typename X, typename Func>
599 bool IntervalSet<T>::FindNextIntersectingPairImpl(X* x,
600 const IntervalSet& y,
601 const_iterator* mine,
602 const_iterator* theirs,
603 Func on_hole) {
604 CHECK(x != nullptr);
605 if ((*mine == x->intervals_.end()) || (*theirs == y.intervals_.end())) {
606 return false;
607 }
608 while (!(**mine).Intersects(**theirs)) {
609 const_iterator erase_first = *mine;
610 // Skip over intervals in 'mine' that don't reach 'theirs'.
611 while (*mine != x->intervals_.end() && (**mine).max() <= (**theirs).min()) {
612 ++(*mine);
613 }
614 on_hole(x, erase_first, *mine);
615 // We're done if the end of intervals_ is reached.
616 if (*mine == x->intervals_.end()) {
617 return false;
618 }
619 // Skip over intervals 'theirs' that don't reach 'mine'.
620 while (*theirs != y.intervals_.end() &&
621 (**theirs).max() <= (**mine).min()) {
622 ++(*theirs);
623 }
624 // If the end of other.intervals_ is reached, we're done.
625 if (*theirs == y.intervals_.end()) {
626 on_hole(x, *mine, x->intervals_.end());
627 return false;
628 }
629 }
630 return true;
631 }
632
633 template <typename T>
634 void IntervalSet<T>::Intersection(const IntervalSet& other) {
635 if (!SpanningInterval().Intersects(other.SpanningInterval())) {
636 intervals_.clear();
637 return;
638 }
639
640 const_iterator mine = FindIntersectionCandidate(other);
641 // Remove any intervals that cannot possibly intersect with other.intervals_.
642 intervals_.erase(intervals_.begin(), mine);
643 const_iterator theirs = other.FindIntersectionCandidate(*this);
644
645 while (FindNextIntersectingPairAndEraseHoles(other, &mine, &theirs)) {
646 // OK, *mine and *theirs intersect. Now, we find the largest
647 // span of intervals in other (starting at theirs) - say [a..b]
648 // - that intersect *mine, and we replace *mine with (*mine
649 // intersect x) for all x in [a..b] Note that subsequent
650 // intervals in this can't intersect any intervals in [a..b) --
651 // they may only intersect b or subsequent intervals in other.
652 Interval<T> i(*mine);
653 intervals_.erase(mine);
654 mine = intervals_.end();
655 Interval<T> intersection;
656 while (theirs != other.intervals_.end() &&
657 i.Intersects(*theirs, &intersection)) {
658 std::pair<typename Set::iterator, bool> ins =
659 intervals_.insert(intersection);
660 DCHECK(ins.second);
661 mine = ins.first;
662 ++theirs;
663 }
664 DCHECK(mine != intervals_.end());
665 --theirs;
666 ++mine;
667 }
668 DCHECK(Valid());
669 }
670
671 template <typename T>
672 bool IntervalSet<T>::Intersects(const IntervalSet& other) const {
673 if (!SpanningInterval().Intersects(other.SpanningInterval())) {
674 return false;
675 }
676
677 const_iterator mine = FindIntersectionCandidate(other);
678 if (mine == intervals_.end()) {
679 return false;
680 }
681 const_iterator theirs = other.FindIntersectionCandidate(*mine);
682
683 return FindNextIntersectingPair(other, &mine, &theirs);
684 }
685
686 template <typename T>
687 void IntervalSet<T>::Difference(const Interval<T>& interval) {
688 if (!SpanningInterval().Intersects(interval)) {
689 return;
690 }
691 Difference(IntervalSet<T>(interval));
692 }
693
694 template <typename T>
695 void IntervalSet<T>::Difference(const T& min, const T& max) {
696 Difference(Interval<T>(min, max));
697 }
698
699 template <typename T>
700 void IntervalSet<T>::Difference(const IntervalSet& other) {
701 if (!SpanningInterval().Intersects(other.SpanningInterval())) {
702 return;
703 }
704
705 const_iterator mine = FindIntersectionCandidate(other);
706 // If no interval in mine reaches the first interval of theirs then we're
707 // done.
708 if (mine == intervals_.end()) {
709 return;
710 }
711 const_iterator theirs = other.FindIntersectionCandidate(*this);
712
713 while (FindNextIntersectingPair(other, &mine, &theirs)) {
714 // At this point *mine and *theirs overlap. Remove mine from
715 // intervals_ and replace it with the possibly two intervals that are
716 // the difference between mine and theirs.
717 Interval<T> i(*mine);
718 intervals_.erase(mine++);
719 Interval<T> lo;
720 Interval<T> hi;
721 i.Difference(*theirs, &lo, &hi);
722
723 if (!lo.Empty()) {
724 // We have a low end. This can't intersect anything else.
725 std::pair<typename Set::iterator, bool> ins = intervals_.insert(lo);
726 DCHECK(ins.second);
727 }
728
729 if (!hi.Empty()) {
730 std::pair<typename Set::iterator, bool> ins = intervals_.insert(hi);
731 DCHECK(ins.second);
732 mine = ins.first;
733 }
734 }
735 DCHECK(Valid());
736 }
737
738 template <typename T>
739 void IntervalSet<T>::Complement(const T& min, const T& max) {
740 IntervalSet<T> span(min, max);
741 span.Difference(*this);
742 intervals_.swap(span.intervals_);
743 }
744
745 template <typename T>
746 std::string IntervalSet<T>::ToString() const {
747 std::ostringstream os;
748 os << *this;
749 return os.str();
750 }
751
752 // This method compacts the IntervalSet, merging pairs of overlapping intervals
753 // into a single interval. In the steady state, the IntervalSet does not contain
754 // any such pairs. However, the way the Union() and Add() methods work is to
755 // temporarily put the IntervalSet into such a state and then to call Compact()
756 // to "fix it up" so that it is no longer in that state.
757 //
758 // Compact() needs the interval set to allow two intervals [a,b) and [a,c)
759 // (having the same min() but different max()) to briefly coexist in the set at
760 // the same time, and be adjacent to each other, so that they can be efficiently
761 // located and merged into a single interval. This state would be impossible
762 // with a comparator which only looked at min(), as such a comparator would
763 // consider such pairs equal. Fortunately, the comparator used by IntervalSet
764 // does exactly what is needed, ordering first by ascending min(), then by
765 // descending max().
766 template <typename T>
767 void IntervalSet<T>::Compact(const typename Set::iterator& begin,
768 const typename Set::iterator& end) {
769 if (begin == end)
770 return;
771 typename Set::iterator next = begin;
772 typename Set::iterator prev = begin;
773 typename Set::iterator it = begin;
774 ++it;
775 ++next;
776 while (it != end) {
777 ++next;
778 if (prev->max() >= it->min()) {
779 // Overlapping / coalesced range; merge the two intervals.
780 T min = prev->min();
781 T max = std::max(prev->max(), it->max());
782 Interval<T> i(min, max);
783 intervals_.erase(prev);
784 intervals_.erase(it);
785 std::pair<typename Set::iterator, bool> ins = intervals_.insert(i);
786 DCHECK(ins.second);
787 prev = ins.first;
788 } else {
789 prev = it;
790 }
791 it = next;
792 }
793 }
794
795 template <typename T>
796 bool IntervalSet<T>::Valid() const {
797 const_iterator prev = end();
798 for (const_iterator it = begin(); it != end(); ++it) {
799 // invalid or empty interval.
800 if (it->min() >= it->max())
801 return false;
802 // Not sorted, not disjoint, or adjacent.
803 if (prev != end() && prev->max() >= it->min())
804 return false;
805 prev = it;
806 }
807 return true;
808 }
809
810 template <typename T>
811 inline std::ostream& operator<<(std::ostream& out, const IntervalSet<T>& seq) {
812 // TODO(rtenneti): Implement << method of IntervalSet.
813 #if 0
814 util::gtl::LogRangeToStream(out, seq.begin(), seq.end(),
815 util::gtl::LogLegacy());
816 #endif // 0
817 return out;
818 }
819
820 template <typename T>
821 void swap(IntervalSet<T>& x, IntervalSet<T>& y) {
822 x.Swap(&y);
823 }
824
825 // This comparator orders intervals first by ascending min() and then by
826 // descending max(). Readers who are satisified with that explanation can stop
827 // reading here. The remainder of this comment is for the benefit of future
828 // maintainers of this library.
829 //
830 // The reason for this ordering is that this comparator has to serve two
831 // masters. First, it has to maintain the intervals in its internal set in the
832 // order that clients expect to see them. Clients see these intervals via the
833 // iterators provided by begin()/end() or as a result of invoking Get(). For
834 // this reason, the comparator orders intervals by ascending min().
835 //
836 // If client iteration were the only consideration, then ordering by ascending
837 // min() would be good enough. This is because the intervals in the IntervalSet
838 // are non-empty, non-adjacent, and mutually disjoint; such intervals happen to
839 // always have disjoint min() values, so such a comparator would never even have
840 // to look at max() in order to work correctly for this class.
841 //
842 // However, in addition to ordering by ascending min(), this comparator also has
843 // a second responsibility: satisfying the special needs of this library's
844 // peculiar internal implementation. These needs require the comparator to order
845 // first by ascending min() and then by descending max(). The best way to
846 // understand why this is so is to check out the comments associated with the
847 // Find() and Compact() methods.
848 template <typename T>
849 inline bool IntervalSet<T>::IntervalComparator::operator()(
850 const Interval<T>& a,
851 const Interval<T>& b) const {
852 return (a.min() < b.min() || (a.min() == b.min() && a.max() > b.max()));
853 }
854
855 } // namespace net
856
857 #endif // NET_QUIC_INTERVAL_SET_H_
OLDNEW
« no previous file with comments | « net/quic/interval.h ('k') | net/quic/interval_set_test.cc » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698