OLD | NEW |
| (Empty) |
1 // Copyright 2015 The Chromium Authors. All rights reserved. | |
2 // Use of this source code is governed by a BSD-style license that can be | |
3 // found in the LICENSE file. | |
4 // | |
5 // IntervalSet<T> is a data structure used to represent a sorted set of | |
6 // non-empty, non-adjacent, and mutually disjoint intervals. Mutations to an | |
7 // interval set preserve these properties, altering the set as needed. For | |
8 // example, adding [2, 3) to a set containing only [1, 2) would result in the | |
9 // set containing the single interval [1, 3). | |
10 // | |
11 // Supported operations include testing whether an Interval is contained in the | |
12 // IntervalSet, comparing two IntervalSets, and performing IntervalSet union, | |
13 // intersection, and difference. | |
14 // | |
15 // IntervalSet maintains the minimum number of entries needed to represent the | |
16 // set of underlying intervals. When the IntervalSet is modified (e.g. due to an | |
17 // Add operation), other interval entries may be coalesced, removed, or | |
18 // otherwise modified in order to maintain this invariant. The intervals are | |
19 // maintained in sorted order, by ascending min() value. | |
20 // | |
21 // The reader is cautioned to beware of the terminology used here: this library | |
22 // uses the terms "min" and "max" rather than "begin" and "end" as is | |
23 // conventional for the STL. The terminology [min, max) refers to the half-open | |
24 // interval which (if the interval is not empty) contains min but does not | |
25 // contain max. An interval is considered empty if min >= max. | |
26 // | |
27 // T is required to be default- and copy-constructible, to have an assignment | |
28 // operator, a difference operator (operator-()), and the full complement of | |
29 // comparison operators (<, <=, ==, !=, >=, >). These requirements are inherited | |
30 // from Interval<T>. | |
31 // | |
32 // IntervalSet has constant-time move operations. | |
33 // | |
34 // This class is thread-compatible if T is thread-compatible. (See | |
35 // go/thread-compatible). | |
36 // | |
37 // Examples: | |
38 // IntervalSet<int> intervals; | |
39 // intervals.Add(Interval<int>(10, 20)); | |
40 // intervals.Add(Interval<int>(30, 40)); | |
41 // // intervals contains [10,20) and [30,40). | |
42 // intervals.Add(Interval<int>(15, 35)); | |
43 // // intervals has been coalesced. It now contains the single range [10,40). | |
44 // EXPECT_EQ(1, intervals.Size()); | |
45 // EXPECT_TRUE(intervals.Contains(Interval<int>(10, 40))); | |
46 // | |
47 // intervals.Difference(Interval<int>(10, 20)); | |
48 // // intervals should now contain the single range [20, 40). | |
49 // EXPECT_EQ(1, intervals.Size()); | |
50 // EXPECT_TRUE(intervals.Contains(Interval<int>(20, 40))); | |
51 | |
52 #ifndef NET_QUIC_INTERVAL_SET_H_ | |
53 #define NET_QUIC_INTERVAL_SET_H_ | |
54 | |
55 #include <stddef.h> | |
56 | |
57 #include <algorithm> | |
58 #include <set> | |
59 #include <string> | |
60 #include <utility> | |
61 #include <vector> | |
62 | |
63 #include "base/logging.h" | |
64 #include "net/quic/interval.h" | |
65 | |
66 namespace net { | |
67 | |
68 template <typename T> | |
69 class IntervalSet { | |
70 private: | |
71 struct IntervalComparator { | |
72 bool operator()(const Interval<T>& a, const Interval<T>& b) const; | |
73 }; | |
74 typedef std::set<Interval<T>, IntervalComparator> Set; | |
75 | |
76 public: | |
77 typedef typename Set::value_type value_type; | |
78 typedef typename Set::const_iterator const_iterator; | |
79 typedef typename Set::const_reverse_iterator const_reverse_iterator; | |
80 | |
81 // Instantiates an empty IntervalSet. | |
82 IntervalSet() {} | |
83 | |
84 // Instantiates an IntervalSet containing exactly one initial half-open | |
85 // interval [min, max), unless the given interval is empty, in which case the | |
86 // IntervalSet will be empty. | |
87 explicit IntervalSet(const Interval<T>& interval) { Add(interval); } | |
88 | |
89 // Instantiates an IntervalSet containing the half-open interval [min, max). | |
90 IntervalSet(const T& min, const T& max) { Add(min, max); } | |
91 | |
92 // TODO(rtenneti): Implement after suupport for std::initializer_list. | |
93 #if 0 | |
94 IntervalSet(std::initializer_list<value_type> il) { assign(il); } | |
95 #endif | |
96 | |
97 // Clears this IntervalSet. | |
98 void Clear() { intervals_.clear(); } | |
99 | |
100 // Returns the number of disjoint intervals contained in this IntervalSet. | |
101 size_t Size() const { return intervals_.size(); } | |
102 | |
103 // Returns the smallest interval that contains all intervals in this | |
104 // IntervalSet, or the empty interval if the set is empty. | |
105 Interval<T> SpanningInterval() const; | |
106 | |
107 // Adds "interval" to this IntervalSet. Adding the empty interval has no | |
108 // effect. | |
109 void Add(const Interval<T>& interval); | |
110 | |
111 // Adds the interval [min, max) to this IntervalSet. Adding the empty interval | |
112 // has no effect. | |
113 void Add(const T& min, const T& max) { Add(Interval<T>(min, max)); } | |
114 | |
115 // DEPRECATED(kosak). Use Union() instead. This method merges all of the | |
116 // values contained in "other" into this IntervalSet. | |
117 void Add(const IntervalSet& other); | |
118 | |
119 // Returns true if this IntervalSet represents exactly the same set of | |
120 // intervals as the ones represented by "other". | |
121 bool Equals(const IntervalSet& other) const; | |
122 | |
123 // Returns true if this IntervalSet is empty. | |
124 bool Empty() const { return intervals_.empty(); } | |
125 | |
126 // Returns true if any interval in this IntervalSet contains the indicated | |
127 // value. | |
128 bool Contains(const T& value) const; | |
129 | |
130 // Returns true if there is some interval in this IntervalSet that wholly | |
131 // contains the given interval. An interval O "wholly contains" a non-empty | |
132 // interval I if O.Contains(p) is true for every p in I. This is the same | |
133 // definition used by Interval<T>::Contains(). This method returns false on | |
134 // the empty interval, due to a (perhaps unintuitive) convention inherited | |
135 // from Interval<T>. | |
136 // Example: | |
137 // Assume an IntervalSet containing the entries { [10,20), [30,40) }. | |
138 // Contains(Interval(15, 16)) returns true, because [10,20) contains | |
139 // [15,16). However, Contains(Interval(15, 35)) returns false. | |
140 bool Contains(const Interval<T>& interval) const; | |
141 | |
142 // Returns true if for each interval in "other", there is some (possibly | |
143 // different) interval in this IntervalSet which wholly contains it. See | |
144 // Contains(const Interval<T>& interval) for the meaning of "wholly contains". | |
145 // Perhaps unintuitively, this method returns false if "other" is the empty | |
146 // set. The algorithmic complexity of this method is O(other.Size() * | |
147 // log(this->Size())), which is not efficient. The method could be rewritten | |
148 // to run in O(other.Size() + this->Size()). | |
149 bool Contains(const IntervalSet<T>& other) const; | |
150 | |
151 // Returns true if there is some interval in this IntervalSet that wholly | |
152 // contains the interval [min, max). See Contains(const Interval<T>&). | |
153 bool Contains(const T& min, const T& max) const { | |
154 return Contains(Interval<T>(min, max)); | |
155 } | |
156 | |
157 // Returns true if for some interval in "other", there is some interval in | |
158 // this IntervalSet that intersects with it. See Interval<T>::Intersects() | |
159 // for the definition of interval intersection. | |
160 bool Intersects(const IntervalSet& other) const; | |
161 | |
162 // Returns an iterator to the Interval<T> in the IntervalSet that contains the | |
163 // given value. In other words, returns an iterator to the unique interval | |
164 // [min, max) in the IntervalSet that has the property min <= value < max. If | |
165 // there is no such interval, this method returns end(). | |
166 const_iterator Find(const T& value) const; | |
167 | |
168 // Returns an iterator to the Interval<T> in the IntervalSet that wholly | |
169 // contains the given interval. In other words, returns an iterator to the | |
170 // unique interval outer in the IntervalSet that has the property that | |
171 // outer.Contains(interval). If there is no such interval, or if interval is | |
172 // empty, returns end(). | |
173 const_iterator Find(const Interval<T>& interval) const; | |
174 | |
175 // Returns an iterator to the Interval<T> in the IntervalSet that wholly | |
176 // contains [min, max). In other words, returns an iterator to the unique | |
177 // interval outer in the IntervalSet that has the property that | |
178 // outer.Contains(Interval<T>(min, max)). If there is no such interval, or if | |
179 // interval is empty, returns end(). | |
180 const_iterator Find(const T& min, const T& max) const { | |
181 return Find(Interval<T>(min, max)); | |
182 } | |
183 | |
184 // Returns true if every value within the passed interval is not Contained | |
185 // within the IntervalSet. | |
186 bool IsDisjoint(const Interval<T>& interval) const; | |
187 | |
188 // Merges all the values contained in "other" into this IntervalSet. | |
189 void Union(const IntervalSet& other); | |
190 | |
191 // Modifies this IntervalSet so that it contains only those values that are | |
192 // currently present both in *this and in the IntervalSet "other". | |
193 void Intersection(const IntervalSet& other); | |
194 | |
195 // Mutates this IntervalSet so that it contains only those values that are | |
196 // currently in *this but not in "interval". | |
197 void Difference(const Interval<T>& interval); | |
198 | |
199 // Mutates this IntervalSet so that it contains only those values that are | |
200 // currently in *this but not in the interval [min, max). | |
201 void Difference(const T& min, const T& max); | |
202 | |
203 // Mutates this IntervalSet so that it contains only those values that are | |
204 // currently in *this but not in the IntervalSet "other". | |
205 void Difference(const IntervalSet& other); | |
206 | |
207 // Mutates this IntervalSet so that it contains only those values that are | |
208 // in [min, max) but not currently in *this. | |
209 void Complement(const T& min, const T& max); | |
210 | |
211 // IntervalSet's begin() iterator. The invariants of IntervalSet guarantee | |
212 // that for each entry e in the set, e.min() < e.max() (because the entries | |
213 // are non-empty) and for each entry f that appears later in the set, | |
214 // e.max() < f.min() (because the entries are ordered, pairwise-disjoint, and | |
215 // non-adjacent). Modifications to this IntervalSet invalidate these | |
216 // iterators. | |
217 const_iterator begin() const { return intervals_.begin(); } | |
218 | |
219 // IntervalSet's end() iterator. | |
220 const_iterator end() const { return intervals_.end(); } | |
221 | |
222 // IntervalSet's rbegin() and rend() iterators. Iterator invalidation | |
223 // semantics are the same as those for begin() / end(). | |
224 const_reverse_iterator rbegin() const { return intervals_.rbegin(); } | |
225 | |
226 const_reverse_iterator rend() const { return intervals_.rend(); } | |
227 | |
228 // Appends the intervals in this IntervalSet to the end of *out. | |
229 void Get(std::vector<Interval<T>>* out) const { | |
230 out->insert(out->end(), begin(), end()); | |
231 } | |
232 | |
233 // Copies the intervals in this IntervalSet to the given output iterator. | |
234 template <typename Iter> | |
235 Iter Get(Iter out_iter) const { | |
236 return std::copy(begin(), end(), out_iter); | |
237 } | |
238 | |
239 template <typename Iter> | |
240 void assign(Iter first, Iter last) { | |
241 Clear(); | |
242 for (; first != last; ++first) | |
243 Add(*first); | |
244 } | |
245 | |
246 // TODO(rtenneti): Implement after suupport for std::initializer_list. | |
247 #if 0 | |
248 void assign(std::initializer_list<value_type> il) { | |
249 assign(il.begin(), il.end()); | |
250 } | |
251 #endif | |
252 | |
253 // Returns a human-readable representation of this set. This will typically be | |
254 // (though is not guaranteed to be) of the form | |
255 // "[a1, b1) [a2, b2) ... [an, bn)" | |
256 // where the intervals are in the same order as given by traversal from | |
257 // begin() to end(). This representation is intended for human consumption; | |
258 // computer programs should not rely on the output being in exactly this form. | |
259 std::string ToString() const; | |
260 | |
261 // Equality for IntervalSet<T>. Delegates to Equals(). | |
262 bool operator==(const IntervalSet& other) const { return Equals(other); } | |
263 | |
264 // Inequality for IntervalSet<T>. Delegates to Equals() (and returns its | |
265 // negation). | |
266 bool operator!=(const IntervalSet& other) const { return !Equals(other); } | |
267 | |
268 // TODO(rtenneti): Implement after suupport for std::initializer_list. | |
269 #if 0 | |
270 IntervalSet& operator=(std::initializer_list<value_type> il) { | |
271 assign(il.begin(), il.end()); | |
272 return *this; | |
273 } | |
274 #endif | |
275 | |
276 // Swap this IntervalSet with *other. This is a constant-time operation. | |
277 void Swap(IntervalSet<T>* other) { intervals_.swap(other->intervals_); } | |
278 | |
279 private: | |
280 // Removes overlapping ranges and coalesces adjacent intervals as needed. | |
281 void Compact(const typename Set::iterator& begin, | |
282 const typename Set::iterator& end); | |
283 | |
284 // Returns true if this set is valid (i.e. all intervals in it are non-empty, | |
285 // non-adjacent, and mutually disjoint). Currently this is used as an | |
286 // integrity check by the Intersection() and Difference() methods, but is only | |
287 // invoked for debug builds (via DCHECK). | |
288 bool Valid() const; | |
289 | |
290 // Finds the first interval that potentially intersects 'other'. | |
291 const_iterator FindIntersectionCandidate(const IntervalSet& other) const; | |
292 | |
293 // Finds the first interval that potentially intersects 'interval'. | |
294 const_iterator FindIntersectionCandidate(const Interval<T>& interval) const; | |
295 | |
296 // Helper for Intersection() and Difference(): Finds the next pair of | |
297 // intervals from 'x' and 'y' that intersect. 'mine' is an iterator | |
298 // over x->intervals_. 'theirs' is an iterator over y.intervals_. 'mine' | |
299 // and 'theirs' are advanced until an intersecting pair is found. | |
300 // Non-intersecting intervals (aka "holes") from x->intervals_ can be | |
301 // optionally erased by "on_hole". | |
302 template <typename X, typename Func> | |
303 static bool FindNextIntersectingPairImpl(X* x, | |
304 const IntervalSet& y, | |
305 const_iterator* mine, | |
306 const_iterator* theirs, | |
307 Func on_hole); | |
308 | |
309 // The variant of the above method that doesn't mutate this IntervalSet. | |
310 bool FindNextIntersectingPair(const IntervalSet& other, | |
311 const_iterator* mine, | |
312 const_iterator* theirs) const { | |
313 return FindNextIntersectingPairImpl( | |
314 this, other, mine, theirs, | |
315 [](const IntervalSet*, const_iterator, const_iterator) {}); | |
316 } | |
317 | |
318 // The variant of the above method that mutates this IntervalSet by erasing | |
319 // holes. | |
320 bool FindNextIntersectingPairAndEraseHoles(const IntervalSet& other, | |
321 const_iterator* mine, | |
322 const_iterator* theirs) { | |
323 return FindNextIntersectingPairImpl( | |
324 this, other, mine, theirs, | |
325 [](IntervalSet* x, const_iterator from, const_iterator to) { | |
326 x->intervals_.erase(from, to); | |
327 }); | |
328 } | |
329 | |
330 // The representation for the intervals. The intervals in this set are | |
331 // non-empty, pairwise-disjoint, non-adjacent and ordered in ascending order | |
332 // by min(). | |
333 Set intervals_; | |
334 }; | |
335 | |
336 template <typename T> | |
337 std::ostream& operator<<(std::ostream& out, const IntervalSet<T>& seq); | |
338 | |
339 template <typename T> | |
340 void swap(IntervalSet<T>& x, IntervalSet<T>& y); | |
341 | |
342 //============================================================================== | |
343 // Implementation details: Clients can stop reading here. | |
344 | |
345 template <typename T> | |
346 Interval<T> IntervalSet<T>::SpanningInterval() const { | |
347 Interval<T> result; | |
348 if (!intervals_.empty()) { | |
349 result.SetMin(intervals_.begin()->min()); | |
350 result.SetMax(intervals_.rbegin()->max()); | |
351 } | |
352 return result; | |
353 } | |
354 | |
355 template <typename T> | |
356 void IntervalSet<T>::Add(const Interval<T>& interval) { | |
357 if (interval.Empty()) | |
358 return; | |
359 std::pair<typename Set::iterator, bool> ins = intervals_.insert(interval); | |
360 if (!ins.second) { | |
361 // This interval already exists. | |
362 return; | |
363 } | |
364 // Determine the minimal range that will have to be compacted. We know that | |
365 // the IntervalSet was valid before the addition of the interval, so only | |
366 // need to start with the interval itself (although Compact takes an open | |
367 // range so begin needs to be the interval to the left). We don't know how | |
368 // many ranges this interval may cover, so we need to find the appropriate | |
369 // interval to end with on the right. | |
370 typename Set::iterator begin = ins.first; | |
371 if (begin != intervals_.begin()) | |
372 --begin; | |
373 const Interval<T> target_end(interval.max(), interval.max()); | |
374 const typename Set::iterator end = intervals_.upper_bound(target_end); | |
375 Compact(begin, end); | |
376 } | |
377 | |
378 template <typename T> | |
379 void IntervalSet<T>::Add(const IntervalSet& other) { | |
380 for (const_iterator it = other.begin(); it != other.end(); ++it) { | |
381 Add(*it); | |
382 } | |
383 } | |
384 | |
385 template <typename T> | |
386 bool IntervalSet<T>::Equals(const IntervalSet& other) const { | |
387 if (intervals_.size() != other.intervals_.size()) | |
388 return false; | |
389 for (typename Set::iterator i = intervals_.begin(), | |
390 j = other.intervals_.begin(); | |
391 i != intervals_.end(); ++i, ++j) { | |
392 // Simple member-wise equality, since all intervals are non-empty. | |
393 if (i->min() != j->min() || i->max() != j->max()) | |
394 return false; | |
395 } | |
396 return true; | |
397 } | |
398 | |
399 template <typename T> | |
400 bool IntervalSet<T>::Contains(const T& value) const { | |
401 Interval<T> tmp(value, value); | |
402 // Find the first interval with min() > value, then move back one step | |
403 const_iterator it = intervals_.upper_bound(tmp); | |
404 if (it == intervals_.begin()) | |
405 return false; | |
406 --it; | |
407 return it->Contains(value); | |
408 } | |
409 | |
410 template <typename T> | |
411 bool IntervalSet<T>::Contains(const Interval<T>& interval) const { | |
412 // Find the first interval with min() > value, then move back one step. | |
413 const_iterator it = intervals_.upper_bound(interval); | |
414 if (it == intervals_.begin()) | |
415 return false; | |
416 --it; | |
417 return it->Contains(interval); | |
418 } | |
419 | |
420 template <typename T> | |
421 bool IntervalSet<T>::Contains(const IntervalSet<T>& other) const { | |
422 if (!SpanningInterval().Contains(other.SpanningInterval())) { | |
423 return false; | |
424 } | |
425 | |
426 for (const_iterator i = other.begin(); i != other.end(); ++i) { | |
427 // If we don't contain the interval, can return false now. | |
428 if (!Contains(*i)) { | |
429 return false; | |
430 } | |
431 } | |
432 return true; | |
433 } | |
434 | |
435 // This method finds the interval that Contains() "value", if such an interval | |
436 // exists in the IntervalSet. The way this is done is to locate the "candidate | |
437 // interval", the only interval that could *possibly* contain value, and test it | |
438 // using Contains(). The candidate interval is the interval with the largest | |
439 // min() having min() <= value. | |
440 // | |
441 // Determining the candidate interval takes a couple of steps. First, since the | |
442 // underlying std::set stores intervals, not values, we need to create a "probe | |
443 // interval" suitable for use as a search key. The probe interval used is | |
444 // [value, value). Now we can restate the problem as finding the largest | |
445 // interval in the IntervalSet that is <= the probe interval. | |
446 // | |
447 // This restatement only works if the set's comparator behaves in a certain way. | |
448 // In particular it needs to order first by ascending min(), and then by | |
449 // descending max(). The comparator used by this library is defined in exactly | |
450 // this way. To see why descending max() is required, consider the following | |
451 // example. Assume an IntervalSet containing these intervals: | |
452 // | |
453 // [0, 5) [10, 20) [50, 60) | |
454 // | |
455 // Consider searching for the value 15. The probe interval [15, 15) is created, | |
456 // and [10, 20) is identified as the largest interval in the set <= the probe | |
457 // interval. This is the correct interval needed for the Contains() test, which | |
458 // will then return true. | |
459 // | |
460 // Now consider searching for the value 30. The probe interval [30, 30) is | |
461 // created, and again [10, 20] is identified as the largest interval <= the | |
462 // probe interval. This is again the correct interval needed for the Contains() | |
463 // test, which in this case returns false. | |
464 // | |
465 // Finally, consider searching for the value 10. The probe interval [10, 10) is | |
466 // created. Here the ordering relationship between [10, 10) and [10, 20) becomes | |
467 // vitally important. If [10, 10) were to come before [10, 20), then [0, 5) | |
468 // would be the largest interval <= the probe, leading to the wrong choice of | |
469 // interval for the Contains() test. Therefore [10, 10) needs to come after | |
470 // [10, 20). The simplest way to make this work in the general case is to order | |
471 // by ascending min() but descending max(). In this ordering, the empty interval | |
472 // is larger than any non-empty interval with the same min(). The comparator | |
473 // used by this library is careful to induce this ordering. | |
474 // | |
475 // Another detail involves the choice of which std::set method to use to try to | |
476 // find the candidate interval. The most appropriate entry point is | |
477 // set::upper_bound(), which finds the smallest interval which is > the probe | |
478 // interval. The semantics of upper_bound() are slightly different from what we | |
479 // want (namely, to find the largest interval which is <= the probe interval) | |
480 // but they are close enough; the interval found by upper_bound() will always be | |
481 // one step past the interval we are looking for (if it exists) or at begin() | |
482 // (if it does not). Getting to the proper interval is a simple matter of | |
483 // decrementing the iterator. | |
484 template <typename T> | |
485 typename IntervalSet<T>::const_iterator IntervalSet<T>::Find( | |
486 const T& value) const { | |
487 Interval<T> tmp(value, value); | |
488 const_iterator it = intervals_.upper_bound(tmp); | |
489 if (it == intervals_.begin()) | |
490 return intervals_.end(); | |
491 --it; | |
492 if (it->Contains(value)) | |
493 return it; | |
494 else | |
495 return intervals_.end(); | |
496 } | |
497 | |
498 // This method finds the interval that Contains() the interval "probe", if such | |
499 // an interval exists in the IntervalSet. The way this is done is to locate the | |
500 // "candidate interval", the only interval that could *possibly* contain | |
501 // "probe", and test it using Contains(). The candidate interval is the largest | |
502 // interval that is <= the probe interval. | |
503 // | |
504 // The search for the candidate interval only works if the comparator used | |
505 // behaves in a certain way. In particular it needs to order first by ascending | |
506 // min(), and then by descending max(). The comparator used by this library is | |
507 // defined in exactly this way. To see why descending max() is required, | |
508 // consider the following example. Assume an IntervalSet containing these | |
509 // intervals: | |
510 // | |
511 // [0, 5) [10, 20) [50, 60) | |
512 // | |
513 // Consider searching for the probe [15, 17). [10, 20) is the largest interval | |
514 // in the set which is <= the probe interval. This is the correct interval | |
515 // needed for the Contains() test, which will then return true, because [10, 20) | |
516 // contains [15, 17). | |
517 // | |
518 // Now consider searching for the probe [30, 32). Again [10, 20] is the largest | |
519 // interval <= the probe interval. This is again the correct interval needed for | |
520 // the Contains() test, which in this case returns false, because [10, 20) does | |
521 // not contain [30, 32). | |
522 // | |
523 // Finally, consider searching for the probe [10, 12). Here the ordering | |
524 // relationship between [10, 12) and [10, 20) becomes vitally important. If | |
525 // [10, 12) were to come before [10, 20), then [0, 5) would be the largest | |
526 // interval <= the probe, leading to the wrong choice of interval for the | |
527 // Contains() test. Therefore [10, 12) needs to come after [10, 20). The | |
528 // simplest way to make this work in the general case is to order by ascending | |
529 // min() but descending max(). In this ordering, given two intervals with the | |
530 // same min(), the wider one goes before the narrower one. The comparator used | |
531 // by this library is careful to induce this ordering. | |
532 // | |
533 // Another detail involves the choice of which std::set method to use to try to | |
534 // find the candidate interval. The most appropriate entry point is | |
535 // set::upper_bound(), which finds the smallest interval which is > the probe | |
536 // interval. The semantics of upper_bound() are slightly different from what we | |
537 // want (namely, to find the largest interval which is <= the probe interval) | |
538 // but they are close enough; the interval found by upper_bound() will always be | |
539 // one step past the interval we are looking for (if it exists) or at begin() | |
540 // (if it does not). Getting to the proper interval is a simple matter of | |
541 // decrementing the iterator. | |
542 template <typename T> | |
543 typename IntervalSet<T>::const_iterator IntervalSet<T>::Find( | |
544 const Interval<T>& probe) const { | |
545 const_iterator it = intervals_.upper_bound(probe); | |
546 if (it == intervals_.begin()) | |
547 return intervals_.end(); | |
548 --it; | |
549 if (it->Contains(probe)) | |
550 return it; | |
551 else | |
552 return intervals_.end(); | |
553 } | |
554 | |
555 template <typename T> | |
556 bool IntervalSet<T>::IsDisjoint(const Interval<T>& interval) const { | |
557 Interval<T> tmp(interval.min(), interval.min()); | |
558 // Find the first interval with min() > interval.min() | |
559 const_iterator it = intervals_.upper_bound(tmp); | |
560 if (it != intervals_.end() && interval.max() > it->min()) | |
561 return false; | |
562 if (it == intervals_.begin()) | |
563 return true; | |
564 --it; | |
565 return it->max() <= interval.min(); | |
566 } | |
567 | |
568 template <typename T> | |
569 void IntervalSet<T>::Union(const IntervalSet& other) { | |
570 intervals_.insert(other.begin(), other.end()); | |
571 Compact(intervals_.begin(), intervals_.end()); | |
572 } | |
573 | |
574 template <typename T> | |
575 typename IntervalSet<T>::const_iterator | |
576 IntervalSet<T>::FindIntersectionCandidate(const IntervalSet& other) const { | |
577 return FindIntersectionCandidate(*other.intervals_.begin()); | |
578 } | |
579 | |
580 template <typename T> | |
581 typename IntervalSet<T>::const_iterator | |
582 IntervalSet<T>::FindIntersectionCandidate(const Interval<T>& interval) const { | |
583 // Use upper_bound to efficiently find the first interval in intervals_ | |
584 // where min() is greater than interval.min(). If the result | |
585 // isn't the beginning of intervals_ then move backwards one interval since | |
586 // the interval before it is the first candidate where max() may be | |
587 // greater than interval.min(). | |
588 // In other words, no interval before that can possibly intersect with any | |
589 // of other.intervals_. | |
590 const_iterator mine = intervals_.upper_bound(interval); | |
591 if (mine != intervals_.begin()) { | |
592 --mine; | |
593 } | |
594 return mine; | |
595 } | |
596 | |
597 template <typename T> | |
598 template <typename X, typename Func> | |
599 bool IntervalSet<T>::FindNextIntersectingPairImpl(X* x, | |
600 const IntervalSet& y, | |
601 const_iterator* mine, | |
602 const_iterator* theirs, | |
603 Func on_hole) { | |
604 CHECK(x != nullptr); | |
605 if ((*mine == x->intervals_.end()) || (*theirs == y.intervals_.end())) { | |
606 return false; | |
607 } | |
608 while (!(**mine).Intersects(**theirs)) { | |
609 const_iterator erase_first = *mine; | |
610 // Skip over intervals in 'mine' that don't reach 'theirs'. | |
611 while (*mine != x->intervals_.end() && (**mine).max() <= (**theirs).min()) { | |
612 ++(*mine); | |
613 } | |
614 on_hole(x, erase_first, *mine); | |
615 // We're done if the end of intervals_ is reached. | |
616 if (*mine == x->intervals_.end()) { | |
617 return false; | |
618 } | |
619 // Skip over intervals 'theirs' that don't reach 'mine'. | |
620 while (*theirs != y.intervals_.end() && | |
621 (**theirs).max() <= (**mine).min()) { | |
622 ++(*theirs); | |
623 } | |
624 // If the end of other.intervals_ is reached, we're done. | |
625 if (*theirs == y.intervals_.end()) { | |
626 on_hole(x, *mine, x->intervals_.end()); | |
627 return false; | |
628 } | |
629 } | |
630 return true; | |
631 } | |
632 | |
633 template <typename T> | |
634 void IntervalSet<T>::Intersection(const IntervalSet& other) { | |
635 if (!SpanningInterval().Intersects(other.SpanningInterval())) { | |
636 intervals_.clear(); | |
637 return; | |
638 } | |
639 | |
640 const_iterator mine = FindIntersectionCandidate(other); | |
641 // Remove any intervals that cannot possibly intersect with other.intervals_. | |
642 intervals_.erase(intervals_.begin(), mine); | |
643 const_iterator theirs = other.FindIntersectionCandidate(*this); | |
644 | |
645 while (FindNextIntersectingPairAndEraseHoles(other, &mine, &theirs)) { | |
646 // OK, *mine and *theirs intersect. Now, we find the largest | |
647 // span of intervals in other (starting at theirs) - say [a..b] | |
648 // - that intersect *mine, and we replace *mine with (*mine | |
649 // intersect x) for all x in [a..b] Note that subsequent | |
650 // intervals in this can't intersect any intervals in [a..b) -- | |
651 // they may only intersect b or subsequent intervals in other. | |
652 Interval<T> i(*mine); | |
653 intervals_.erase(mine); | |
654 mine = intervals_.end(); | |
655 Interval<T> intersection; | |
656 while (theirs != other.intervals_.end() && | |
657 i.Intersects(*theirs, &intersection)) { | |
658 std::pair<typename Set::iterator, bool> ins = | |
659 intervals_.insert(intersection); | |
660 DCHECK(ins.second); | |
661 mine = ins.first; | |
662 ++theirs; | |
663 } | |
664 DCHECK(mine != intervals_.end()); | |
665 --theirs; | |
666 ++mine; | |
667 } | |
668 DCHECK(Valid()); | |
669 } | |
670 | |
671 template <typename T> | |
672 bool IntervalSet<T>::Intersects(const IntervalSet& other) const { | |
673 if (!SpanningInterval().Intersects(other.SpanningInterval())) { | |
674 return false; | |
675 } | |
676 | |
677 const_iterator mine = FindIntersectionCandidate(other); | |
678 if (mine == intervals_.end()) { | |
679 return false; | |
680 } | |
681 const_iterator theirs = other.FindIntersectionCandidate(*mine); | |
682 | |
683 return FindNextIntersectingPair(other, &mine, &theirs); | |
684 } | |
685 | |
686 template <typename T> | |
687 void IntervalSet<T>::Difference(const Interval<T>& interval) { | |
688 if (!SpanningInterval().Intersects(interval)) { | |
689 return; | |
690 } | |
691 Difference(IntervalSet<T>(interval)); | |
692 } | |
693 | |
694 template <typename T> | |
695 void IntervalSet<T>::Difference(const T& min, const T& max) { | |
696 Difference(Interval<T>(min, max)); | |
697 } | |
698 | |
699 template <typename T> | |
700 void IntervalSet<T>::Difference(const IntervalSet& other) { | |
701 if (!SpanningInterval().Intersects(other.SpanningInterval())) { | |
702 return; | |
703 } | |
704 | |
705 const_iterator mine = FindIntersectionCandidate(other); | |
706 // If no interval in mine reaches the first interval of theirs then we're | |
707 // done. | |
708 if (mine == intervals_.end()) { | |
709 return; | |
710 } | |
711 const_iterator theirs = other.FindIntersectionCandidate(*this); | |
712 | |
713 while (FindNextIntersectingPair(other, &mine, &theirs)) { | |
714 // At this point *mine and *theirs overlap. Remove mine from | |
715 // intervals_ and replace it with the possibly two intervals that are | |
716 // the difference between mine and theirs. | |
717 Interval<T> i(*mine); | |
718 intervals_.erase(mine++); | |
719 Interval<T> lo; | |
720 Interval<T> hi; | |
721 i.Difference(*theirs, &lo, &hi); | |
722 | |
723 if (!lo.Empty()) { | |
724 // We have a low end. This can't intersect anything else. | |
725 std::pair<typename Set::iterator, bool> ins = intervals_.insert(lo); | |
726 DCHECK(ins.second); | |
727 } | |
728 | |
729 if (!hi.Empty()) { | |
730 std::pair<typename Set::iterator, bool> ins = intervals_.insert(hi); | |
731 DCHECK(ins.second); | |
732 mine = ins.first; | |
733 } | |
734 } | |
735 DCHECK(Valid()); | |
736 } | |
737 | |
738 template <typename T> | |
739 void IntervalSet<T>::Complement(const T& min, const T& max) { | |
740 IntervalSet<T> span(min, max); | |
741 span.Difference(*this); | |
742 intervals_.swap(span.intervals_); | |
743 } | |
744 | |
745 template <typename T> | |
746 std::string IntervalSet<T>::ToString() const { | |
747 std::ostringstream os; | |
748 os << *this; | |
749 return os.str(); | |
750 } | |
751 | |
752 // This method compacts the IntervalSet, merging pairs of overlapping intervals | |
753 // into a single interval. In the steady state, the IntervalSet does not contain | |
754 // any such pairs. However, the way the Union() and Add() methods work is to | |
755 // temporarily put the IntervalSet into such a state and then to call Compact() | |
756 // to "fix it up" so that it is no longer in that state. | |
757 // | |
758 // Compact() needs the interval set to allow two intervals [a,b) and [a,c) | |
759 // (having the same min() but different max()) to briefly coexist in the set at | |
760 // the same time, and be adjacent to each other, so that they can be efficiently | |
761 // located and merged into a single interval. This state would be impossible | |
762 // with a comparator which only looked at min(), as such a comparator would | |
763 // consider such pairs equal. Fortunately, the comparator used by IntervalSet | |
764 // does exactly what is needed, ordering first by ascending min(), then by | |
765 // descending max(). | |
766 template <typename T> | |
767 void IntervalSet<T>::Compact(const typename Set::iterator& begin, | |
768 const typename Set::iterator& end) { | |
769 if (begin == end) | |
770 return; | |
771 typename Set::iterator next = begin; | |
772 typename Set::iterator prev = begin; | |
773 typename Set::iterator it = begin; | |
774 ++it; | |
775 ++next; | |
776 while (it != end) { | |
777 ++next; | |
778 if (prev->max() >= it->min()) { | |
779 // Overlapping / coalesced range; merge the two intervals. | |
780 T min = prev->min(); | |
781 T max = std::max(prev->max(), it->max()); | |
782 Interval<T> i(min, max); | |
783 intervals_.erase(prev); | |
784 intervals_.erase(it); | |
785 std::pair<typename Set::iterator, bool> ins = intervals_.insert(i); | |
786 DCHECK(ins.second); | |
787 prev = ins.first; | |
788 } else { | |
789 prev = it; | |
790 } | |
791 it = next; | |
792 } | |
793 } | |
794 | |
795 template <typename T> | |
796 bool IntervalSet<T>::Valid() const { | |
797 const_iterator prev = end(); | |
798 for (const_iterator it = begin(); it != end(); ++it) { | |
799 // invalid or empty interval. | |
800 if (it->min() >= it->max()) | |
801 return false; | |
802 // Not sorted, not disjoint, or adjacent. | |
803 if (prev != end() && prev->max() >= it->min()) | |
804 return false; | |
805 prev = it; | |
806 } | |
807 return true; | |
808 } | |
809 | |
810 template <typename T> | |
811 inline std::ostream& operator<<(std::ostream& out, const IntervalSet<T>& seq) { | |
812 // TODO(rtenneti): Implement << method of IntervalSet. | |
813 #if 0 | |
814 util::gtl::LogRangeToStream(out, seq.begin(), seq.end(), | |
815 util::gtl::LogLegacy()); | |
816 #endif // 0 | |
817 return out; | |
818 } | |
819 | |
820 template <typename T> | |
821 void swap(IntervalSet<T>& x, IntervalSet<T>& y) { | |
822 x.Swap(&y); | |
823 } | |
824 | |
825 // This comparator orders intervals first by ascending min() and then by | |
826 // descending max(). Readers who are satisified with that explanation can stop | |
827 // reading here. The remainder of this comment is for the benefit of future | |
828 // maintainers of this library. | |
829 // | |
830 // The reason for this ordering is that this comparator has to serve two | |
831 // masters. First, it has to maintain the intervals in its internal set in the | |
832 // order that clients expect to see them. Clients see these intervals via the | |
833 // iterators provided by begin()/end() or as a result of invoking Get(). For | |
834 // this reason, the comparator orders intervals by ascending min(). | |
835 // | |
836 // If client iteration were the only consideration, then ordering by ascending | |
837 // min() would be good enough. This is because the intervals in the IntervalSet | |
838 // are non-empty, non-adjacent, and mutually disjoint; such intervals happen to | |
839 // always have disjoint min() values, so such a comparator would never even have | |
840 // to look at max() in order to work correctly for this class. | |
841 // | |
842 // However, in addition to ordering by ascending min(), this comparator also has | |
843 // a second responsibility: satisfying the special needs of this library's | |
844 // peculiar internal implementation. These needs require the comparator to order | |
845 // first by ascending min() and then by descending max(). The best way to | |
846 // understand why this is so is to check out the comments associated with the | |
847 // Find() and Compact() methods. | |
848 template <typename T> | |
849 inline bool IntervalSet<T>::IntervalComparator::operator()( | |
850 const Interval<T>& a, | |
851 const Interval<T>& b) const { | |
852 return (a.min() < b.min() || (a.min() == b.min() && a.max() > b.max())); | |
853 } | |
854 | |
855 } // namespace net | |
856 | |
857 #endif // NET_QUIC_INTERVAL_SET_H_ | |
OLD | NEW |