Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(578)

Side by Side Diff: net/quic/congestion_control/cubic_bytes.cc

Issue 2193073003: Move shared files in net/quic/ into net/quic/core/ (Closed) Base URL: https://chromium.googlesource.com/chromium/src.git@master
Patch Set: io_thread_unittest.cc Created 4 years, 4 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View unified diff | Download patch
OLDNEW
(Empty)
1 // Copyright (c) 2015 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 #include "net/quic/congestion_control/cubic_bytes.h"
6
7 #include <stdint.h>
8 #include <algorithm>
9 #include <cmath>
10
11 #include "base/logging.h"
12 #include "net/quic/quic_protocol.h"
13
14 using std::max;
15
16 namespace net {
17
18 namespace {
19
20 // Constants based on TCP defaults.
21 // The following constants are in 2^10 fractions of a second instead of ms to
22 // allow a 10 shift right to divide.
23 const int kCubeScale = 40; // 1024*1024^3 (first 1024 is from 0.100^3)
24 // where 0.100 is 100 ms which is the scaling
25 // round trip time.
26 const int kCubeCongestionWindowScale = 410;
27 // The cube factor for packets in bytes.
28 const uint64_t kCubeFactor =
29 (UINT64_C(1) << kCubeScale) / kCubeCongestionWindowScale / kDefaultTCPMSS;
30
31 const uint32_t kDefaultNumConnections = 2;
32 const float kBeta = 0.7f; // Default Cubic backoff factor.
33 // Additional backoff factor when loss occurs in the concave part of the Cubic
34 // curve. This additional backoff factor is expected to give up bandwidth to
35 // new concurrent flows and speed up convergence.
36 const float kBetaLastMax = 0.85f;
37
38 } // namespace
39
40 CubicBytes::CubicBytes(const QuicClock* clock)
41 : clock_(clock),
42 num_connections_(kDefaultNumConnections),
43 epoch_(QuicTime::Zero()),
44 last_update_time_(QuicTime::Zero()) {
45 Reset();
46 }
47
48 void CubicBytes::SetNumConnections(int num_connections) {
49 num_connections_ = num_connections;
50 }
51
52 float CubicBytes::Alpha() const {
53 // TCPFriendly alpha is described in Section 3.3 of the CUBIC paper. Note that
54 // beta here is a cwnd multiplier, and is equal to 1-beta from the paper.
55 // We derive the equivalent alpha for an N-connection emulation as:
56 const float beta = Beta();
57 return 3 * num_connections_ * num_connections_ * (1 - beta) / (1 + beta);
58 }
59
60 float CubicBytes::Beta() const {
61 // kNConnectionBeta is the backoff factor after loss for our N-connection
62 // emulation, which emulates the effective backoff of an ensemble of N
63 // TCP-Reno connections on a single loss event. The effective multiplier is
64 // computed as:
65 return (num_connections_ - 1 + kBeta) / num_connections_;
66 }
67
68 void CubicBytes::Reset() {
69 epoch_ = QuicTime::Zero(); // Reset time.
70 last_update_time_ = QuicTime::Zero(); // Reset time.
71 last_congestion_window_ = 0;
72 last_max_congestion_window_ = 0;
73 acked_bytes_count_ = 0;
74 estimated_tcp_congestion_window_ = 0;
75 origin_point_congestion_window_ = 0;
76 time_to_origin_point_ = 0;
77 last_target_congestion_window_ = 0;
78 }
79
80 void CubicBytes::OnApplicationLimited() {
81 // When sender is not using the available congestion window, the window does
82 // not grow. But to be RTT-independent, Cubic assumes that the sender has been
83 // using the entire window during the time since the beginning of the current
84 // "epoch" (the end of the last loss recovery period). Since
85 // application-limited periods break this assumption, we reset the epoch when
86 // in such a period. This reset effectively freezes congestion window growth
87 // through application-limited periods and allows Cubic growth to continue
88 // when the entire window is being used.
89 epoch_ = QuicTime::Zero();
90 }
91
92 QuicByteCount CubicBytes::CongestionWindowAfterPacketLoss(
93 QuicByteCount current_congestion_window) {
94 if (current_congestion_window < last_max_congestion_window_) {
95 // We never reached the old max, so assume we are competing with another
96 // flow. Use our extra back off factor to allow the other flow to go up.
97 last_max_congestion_window_ =
98 static_cast<int>(kBetaLastMax * current_congestion_window);
99 } else {
100 last_max_congestion_window_ = current_congestion_window;
101 }
102 epoch_ = QuicTime::Zero(); // Reset time.
103 return static_cast<int>(current_congestion_window * Beta());
104 }
105
106 QuicByteCount CubicBytes::CongestionWindowAfterAck(
107 QuicByteCount acked_bytes,
108 QuicByteCount current_congestion_window,
109 QuicTime::Delta delay_min) {
110 acked_bytes_count_ += acked_bytes;
111 QuicTime current_time = clock_->ApproximateNow();
112
113 // Cubic is "independent" of RTT, the update is limited by the time elapsed.
114 if (last_congestion_window_ == current_congestion_window &&
115 (current_time - last_update_time_ <= MaxCubicTimeInterval())) {
116 return max(last_target_congestion_window_,
117 estimated_tcp_congestion_window_);
118 }
119 last_congestion_window_ = current_congestion_window;
120 last_update_time_ = current_time;
121
122 if (!epoch_.IsInitialized()) {
123 // First ACK after a loss event.
124 DVLOG(1) << "Start of epoch";
125 epoch_ = current_time; // Start of epoch.
126 acked_bytes_count_ = acked_bytes; // Reset count.
127 // Reset estimated_tcp_congestion_window_ to be in sync with cubic.
128 estimated_tcp_congestion_window_ = current_congestion_window;
129 if (last_max_congestion_window_ <= current_congestion_window) {
130 time_to_origin_point_ = 0;
131 origin_point_congestion_window_ = current_congestion_window;
132 } else {
133 time_to_origin_point_ = static_cast<uint32_t>(
134 cbrt(kCubeFactor *
135 (last_max_congestion_window_ - current_congestion_window)));
136 origin_point_congestion_window_ = last_max_congestion_window_;
137 }
138 }
139 // Change the time unit from microseconds to 2^10 fractions per second. Take
140 // the round trip time in account. This is done to allow us to use shift as a
141 // divide operator.
142 int64_t elapsed_time =
143 ((current_time + delay_min - epoch_).ToMicroseconds() << 10) /
144 kNumMicrosPerSecond;
145
146 int64_t offset = time_to_origin_point_ - elapsed_time;
147 QuicByteCount delta_congestion_window =
148 ((kCubeCongestionWindowScale * offset * offset * offset) >> kCubeScale) *
149 kDefaultTCPMSS;
150
151 QuicByteCount target_congestion_window =
152 origin_point_congestion_window_ - delta_congestion_window;
153
154 DCHECK_LT(0u, estimated_tcp_congestion_window_);
155 // Increase the window by Alpha * 1 MSS of bytes every time we ack an
156 // estimated tcp window of bytes.
157 estimated_tcp_congestion_window_ += acked_bytes_count_ *
158 (Alpha() * kDefaultTCPMSS) /
159 estimated_tcp_congestion_window_;
160 acked_bytes_count_ = 0;
161
162 // We have a new cubic congestion window.
163 last_target_congestion_window_ = target_congestion_window;
164
165 // Compute target congestion_window based on cubic target and estimated TCP
166 // congestion_window, use highest (fastest).
167 if (target_congestion_window < estimated_tcp_congestion_window_) {
168 target_congestion_window = estimated_tcp_congestion_window_;
169 }
170
171 DVLOG(1) << "Final target congestion_window: " << target_congestion_window;
172 return target_congestion_window;
173 }
174
175 } // namespace net
OLDNEW
« no previous file with comments | « net/quic/congestion_control/cubic_bytes.h ('k') | net/quic/congestion_control/cubic_bytes_test.cc » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698