Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(313)

Side by Side Diff: net/cert/ct_log_verifier_unittest.cc

Issue 2182533002: Adds a VerifyAuditProof method to CTLogVerifier (Closed) Base URL: https://chromium.googlesource.com/chromium/src.git@master
Patch Set: More extensive refactoring Created 4 years, 2 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View unified diff | Download patch
OLDNEW
1 // Copyright 2013 The Chromium Authors. All rights reserved. 1 // Copyright 2013 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be 2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file. 3 // found in the LICENSE file.
4 4
5 #include "net/cert/ct_log_verifier.h" 5 #include "net/cert/ct_log_verifier.h"
6 6
7 #include <stdint.h> 7 #include <stdint.h>
8 8
9 #include <memory> 9 #include <memory>
10 #include <string> 10 #include <string>
11 #include <vector> 11 #include <vector>
12 12
13 #include "base/macros.h"
13 #include "base/strings/string_number_conversions.h" 14 #include "base/strings/string_number_conversions.h"
14 #include "base/time/time.h" 15 #include "base/time/time.h"
15 #include "crypto/secure_hash.h" 16 #include "crypto/secure_hash.h"
16 #include "net/base/hash_value.h" 17 #include "net/base/hash_value.h"
17 #include "net/cert/ct_log_verifier_util.h" 18 #include "net/cert/ct_log_verifier_util.h"
19 #include "net/cert/merkle_audit_proof.h"
18 #include "net/cert/merkle_consistency_proof.h" 20 #include "net/cert/merkle_consistency_proof.h"
19 #include "net/cert/signed_certificate_timestamp.h" 21 #include "net/cert/signed_certificate_timestamp.h"
20 #include "net/cert/signed_tree_head.h" 22 #include "net/cert/signed_tree_head.h"
21 #include "net/test/ct_test_util.h" 23 #include "net/test/ct_test_util.h"
22 #include "testing/gtest/include/gtest/gtest.h" 24 #include "testing/gtest/include/gtest/gtest.h"
23 25
24 namespace net { 26 namespace net {
25 27
26 namespace { 28 namespace {
27 29
28 // Calculate the power of two nearest to, but less than, |n|. 30 // Calculate the power of two nearest to, but less than, |n|.
29 // |n| must be at least 2. 31 // |n| must be at least 2.
30 uint64_t CalculateNearestPowerOfTwo(uint64_t n) { 32 size_t CalculateNearestPowerOfTwo(size_t n) {
31 DCHECK_GT(n, 1u); 33 DCHECK_GT(n, 1u);
32 34
33 uint64_t ret = UINT64_C(1) << 63; 35 size_t ret = size_t(1) << (sizeof(size_t) * 8 - 1);
34 while (ret >= n) 36 while (ret >= n)
35 ret >>= 1; 37 ret >>= 1;
36 38
37 return ret; 39 return ret;
38 } 40 }
39 41
40 // A single consistency proof. Contains the old and new tree sizes
41 // (snapshot1 and snapshot2), the length of the proof (proof_length) and
42 // at most 3 proof nodes (all test proofs will be for a tree of size 8).
43 struct ProofTestVector {
44 uint64_t snapshot1;
45 uint64_t snapshot2;
46 size_t proof_length;
47 const char* const proof[3];
48 };
49
50 // All test data replicated from 42 // All test data replicated from
51 // https://github.com/google/certificate-transparency/blob/c41b090ecc14ddd6b3531 dc7e5ce36b21e253fdd/cpp/merkletree/merkle_tree_test.cc 43 // https://github.com/google/certificate-transparency/blob/c41b090ecc14ddd6b3531 dc7e5ce36b21e253fdd/cpp/merkletree/merkle_tree_test.cc
52 // A hash of the empty string. 44
53 const uint8_t kSHA256EmptyTreeHash[32] = { 45 // The SHA-256 hash of an empty Merkle tree.
46 const uint8_t kEmptyTreeHash[32] = {
54 0xe3, 0xb0, 0xc4, 0x42, 0x98, 0xfc, 0x1c, 0x14, 0x9a, 0xfb, 0xf4, 47 0xe3, 0xb0, 0xc4, 0x42, 0x98, 0xfc, 0x1c, 0x14, 0x9a, 0xfb, 0xf4,
55 0xc8, 0x99, 0x6f, 0xb9, 0x24, 0x27, 0xae, 0x41, 0xe4, 0x64, 0x9b, 48 0xc8, 0x99, 0x6f, 0xb9, 0x24, 0x27, 0xae, 0x41, 0xe4, 0x64, 0x9b,
56 0x93, 0x4c, 0xa4, 0x95, 0x99, 0x1b, 0x78, 0x52, 0xb8, 0x55}; 49 0x93, 0x4c, 0xa4, 0x95, 0x99, 0x1b, 0x78, 0x52, 0xb8, 0x55};
57 50
58 // Root hashes from building the sample tree of size 8 leaf-by-leaf. 51 std::string GetEmptyTreeHash() {
59 // The first entry is the root at size 0, the last is the root at size 8. 52 return std::string(std::begin(kEmptyTreeHash), std::end(kEmptyTreeHash));
60 const char* const kSHA256Roots[8] = { 53 }
54
55 // SHA-256 Merkle leaf hashes for the sample tree that all of the other test
56 // data relates to (8 leaves).
57 const char* const kLeafHashes[8] = {
58 "6e340b9cffb37a989ca544e6bb780a2c78901d3fb33738768511a30617afa01d",
59 "96a296d224f285c67bee93c30f8a309157f0daa35dc5b87e410b78630a09cfc7",
60 "0298d122906dcfc10892cb53a73992fc5b9f493ea4c9badb27b791b4127a7fe7",
61 "07506a85fd9dd2f120eb694f86011e5bb4662e5c415a62917033d4a9624487e7",
62 "bc1a0643b12e4d2d7c77918f44e0f4f79a838b6cf9ec5b5c283e1f4d88599e6b",
63 "4271a26be0d8a84f0bd54c8c302e7cb3a3b5d1fa6780a40bcce2873477dab658",
64 "b08693ec2e721597130641e8211e7eedccb4c26413963eee6c1e2ed16ffb1a5f",
65 "46f6ffadd3d06a09ff3c5860d2755c8b9819db7df44251788c7d8e3180de8eb1"};
66
67 // SHA-256 Merkle root hashes from building the sample tree leaf-by-leaf.
68 // The first entry is the root when the tree contains 1 leaf, and the last is
69 // the root when the tree contains all 8 leaves.
70 const char* const kRootHashes[8] = {
61 "6e340b9cffb37a989ca544e6bb780a2c78901d3fb33738768511a30617afa01d", 71 "6e340b9cffb37a989ca544e6bb780a2c78901d3fb33738768511a30617afa01d",
62 "fac54203e7cc696cf0dfcb42c92a1d9dbaf70ad9e621f4bd8d98662f00e3c125", 72 "fac54203e7cc696cf0dfcb42c92a1d9dbaf70ad9e621f4bd8d98662f00e3c125",
63 "aeb6bcfe274b70a14fb067a5e5578264db0fa9b51af5e0ba159158f329e06e77", 73 "aeb6bcfe274b70a14fb067a5e5578264db0fa9b51af5e0ba159158f329e06e77",
64 "d37ee418976dd95753c1c73862b9398fa2a2cf9b4ff0fdfe8b30cd95209614b7", 74 "d37ee418976dd95753c1c73862b9398fa2a2cf9b4ff0fdfe8b30cd95209614b7",
65 "4e3bbb1f7b478dcfe71fb631631519a3bca12c9aefca1612bfce4c13a86264d4", 75 "4e3bbb1f7b478dcfe71fb631631519a3bca12c9aefca1612bfce4c13a86264d4",
66 "76e67dadbcdf1e10e1b74ddc608abd2f98dfb16fbce75277b5232a127f2087ef", 76 "76e67dadbcdf1e10e1b74ddc608abd2f98dfb16fbce75277b5232a127f2087ef",
67 "ddb89be403809e325750d3d263cd78929c2942b7942a34b77e122c9594a74c8c", 77 "ddb89be403809e325750d3d263cd78929c2942b7942a34b77e122c9594a74c8c",
68 "5dc9da79a70659a9ad559cb701ded9a2ab9d823aad2f4960cfe370eff4604328"}; 78 "5dc9da79a70659a9ad559cb701ded9a2ab9d823aad2f4960cfe370eff4604328"};
69 79
70 // A collection of consistency proofs between various sub-trees of the tree 80 // A single consistency proof. Contains at most 3 proof nodes (all test proofs
71 // defined by |kSHA256Roots|. 81 // will be for a tree of size 8).
72 const ProofTestVector kSHA256Proofs[4] = { 82 struct ConsistencyProofTestVector {
83 size_t old_tree_size;
84 size_t new_tree_size;
85 size_t proof_length;
86 const char* const proof[3];
87 };
88
89 // A collection of consistency proofs between various sub-trees of the sample
90 // tree.
91 const ConsistencyProofTestVector kConsistencyProofs[] = {
73 // Empty consistency proof between trees of the same size (1). 92 // Empty consistency proof between trees of the same size (1).
74 {1, 1, 0, {"", "", ""}}, 93 {1, 1, 0, {"", "", ""}},
75 // Consistency proof between tree of size 1 and tree of size 8, with 3 94 // Consistency proof between tree of size 1 and tree of size 8, with 3
76 // nodes in the proof. 95 // nodes in the proof.
77 {1, 96 {1,
78 8, 97 8,
79 3, 98 3,
80 {"96a296d224f285c67bee93c30f8a309157f0daa35dc5b87e410b78630a09cfc7", 99 {"96a296d224f285c67bee93c30f8a309157f0daa35dc5b87e410b78630a09cfc7",
81 "5f083f0a1a33ca076a95279832580db3e0ef4584bdff1f54c8a360f50de3031e", 100 "5f083f0a1a33ca076a95279832580db3e0ef4584bdff1f54c8a360f50de3031e",
82 "6b47aaf29ee3c2af9af889bc1fb9254dabd31177f16232dd6aab035ca39bf6e4"}}, 101 "6b47aaf29ee3c2af9af889bc1fb9254dabd31177f16232dd6aab035ca39bf6e4"}},
83 // Consistency proof between tree of size 6 and tree of size 8, with 3 102 // Consistency proof between tree of size 6 and tree of size 8, with 3
84 // nodes in the proof. 103 // nodes in the proof.
85 {6, 104 {6,
86 8, 105 8,
87 3, 106 3,
88 {"0ebc5d3437fbe2db158b9f126a1d118e308181031d0a949f8dededebc558ef6a", 107 {"0ebc5d3437fbe2db158b9f126a1d118e308181031d0a949f8dededebc558ef6a",
89 "ca854ea128ed050b41b35ffc1b87b8eb2bde461e9e3b5596ece6b9d5975a0ae0", 108 "ca854ea128ed050b41b35ffc1b87b8eb2bde461e9e3b5596ece6b9d5975a0ae0",
90 "d37ee418976dd95753c1c73862b9398fa2a2cf9b4ff0fdfe8b30cd95209614b7"}}, 109 "d37ee418976dd95753c1c73862b9398fa2a2cf9b4ff0fdfe8b30cd95209614b7"}},
91 // Consistency proof between tree of size 2 and tree of size 5, with 2 110 // Consistency proof between tree of size 2 and tree of size 5, with 2
92 // nodes in the proof. 111 // nodes in the proof.
93 {2, 112 {2,
94 5, 113 5,
95 2, 114 2,
96 {"5f083f0a1a33ca076a95279832580db3e0ef4584bdff1f54c8a360f50de3031e", 115 {"5f083f0a1a33ca076a95279832580db3e0ef4584bdff1f54c8a360f50de3031e",
97 "bc1a0643b12e4d2d7c77918f44e0f4f79a838b6cf9ec5b5c283e1f4d88599e6b", ""}}}; 116 "bc1a0643b12e4d2d7c77918f44e0f4f79a838b6cf9ec5b5c283e1f4d88599e6b", ""}}};
98 117
118 // A single audit proof. Contains at most 3 proof nodes (all test proofs will be
119 // for a tree of size 8).
120 struct AuditProofTestVector {
121 size_t leaf;
122 size_t tree_size;
123 size_t proof_length;
124 const char* const proof[3];
125 };
126
127 // A collection of audit proofs for various leaves and sub-trees of the tree
128 // defined by |kRootHashes|.
129 const AuditProofTestVector kAuditProofs[] = {
130 {0, 1, 0, {"", "", ""}},
131 {0,
132 8,
133 3,
134 {"96a296d224f285c67bee93c30f8a309157f0daa35dc5b87e410b78630a09cfc7",
135 "5f083f0a1a33ca076a95279832580db3e0ef4584bdff1f54c8a360f50de3031e",
136 "6b47aaf29ee3c2af9af889bc1fb9254dabd31177f16232dd6aab035ca39bf6e4"}},
137 {5,
138 8,
139 3,
140 {"bc1a0643b12e4d2d7c77918f44e0f4f79a838b6cf9ec5b5c283e1f4d88599e6b",
141 "ca854ea128ed050b41b35ffc1b87b8eb2bde461e9e3b5596ece6b9d5975a0ae0",
142 "d37ee418976dd95753c1c73862b9398fa2a2cf9b4ff0fdfe8b30cd95209614b7"}},
143 {2,
144 3,
145 1,
146 {"fac54203e7cc696cf0dfcb42c92a1d9dbaf70ad9e621f4bd8d98662f00e3c125", "",
147 ""}},
148 {1,
149 5,
150 3,
151 {"6e340b9cffb37a989ca544e6bb780a2c78901d3fb33738768511a30617afa01d",
152 "5f083f0a1a33ca076a95279832580db3e0ef4584bdff1f54c8a360f50de3031e",
153 "bc1a0643b12e4d2d7c77918f44e0f4f79a838b6cf9ec5b5c283e1f4d88599e6b"}}};
154
99 // Decodes a hexadecimal string into the binary data it represents. 155 // Decodes a hexadecimal string into the binary data it represents.
100 std::string HexToBytes(const std::string& hex_data) { 156 std::string HexToBytes(const std::string& hex_data) {
101 std::vector<uint8_t> output; 157 std::vector<uint8_t> output;
102 std::string result; 158 std::string result;
103 if (base::HexStringToBytes(hex_data, &output)) 159 if (base::HexStringToBytes(hex_data, &output))
104 result.assign(output.begin(), output.end()); 160 result.assign(output.begin(), output.end());
105 return result; 161 return result;
106 } 162 }
107 163
108 std::string GetEmptyTreeHash() { 164 // Constructs a consistency/audit proof from a test vector.
109 return std::string(std::begin(kSHA256EmptyTreeHash), 165 template <typename T>
110 std::end(kSHA256EmptyTreeHash)); 166 std::vector<std::string> GetProof(const T& test_vector) {
111 } 167 std::vector<std::string> proof(test_vector.proof_length);
112 168 std::transform(test_vector.proof,
113 // Creates a ct::MerkleConsistencyProof and returns the result of 169 test_vector.proof + test_vector.proof_length, proof.begin(),
114 // calling log->VerifyConsistencyProof with that proof and snapshots. 170 &HexToBytes);
115 bool VerifyConsistencyProof(scoped_refptr<const CTLogVerifier> log, 171
116 uint64_t old_tree_size, 172 return proof;
173 }
174
175 // Creates a ct::MerkleConsistencyProof from its arguments and returns the
176 // result of passing this to log.VerifyConsistencyProof().
177 bool VerifyConsistencyProof(const CTLogVerifier& log,
178 size_t old_tree_size,
117 const std::string& old_tree_root, 179 const std::string& old_tree_root,
118 uint64_t new_tree_size, 180 size_t new_tree_size,
119 const std::string& new_tree_root, 181 const std::string& new_tree_root,
120 const std::vector<std::string>& proof) { 182 const std::vector<std::string>& proof) {
121 return log->VerifyConsistencyProof( 183 return log.VerifyConsistencyProof(
122 ct::MerkleConsistencyProof(log->key_id(), proof, old_tree_size, 184 ct::MerkleConsistencyProof(log.key_id(), proof, old_tree_size,
123 new_tree_size), 185 new_tree_size),
124 old_tree_root, new_tree_root); 186 old_tree_root, new_tree_root);
125 } 187 }
126 188
189 // Creates a ct::MerkleAuditProof from its arguments and returns the result of
190 // passing this to log.VerifyAuditProof().
191 bool VerifyAuditProof(const CTLogVerifier& log,
192 size_t leaf,
193 size_t tree_size,
194 const std::vector<std::string>& proof,
195 const std::string& tree_root,
196 const std::string& leaf_hash) {
197 return log.VerifyAuditProof(ct::MerkleAuditProof(leaf, tree_size, proof),
198 tree_root, leaf_hash);
199 }
200
127 class CTLogVerifierTest : public ::testing::Test { 201 class CTLogVerifierTest : public ::testing::Test {
128 public: 202 public:
129 CTLogVerifierTest() {}
130
131 void SetUp() override { 203 void SetUp() override {
132 log_ = CTLogVerifier::Create(ct::GetTestPublicKey(), "testlog", 204 log_ = CTLogVerifier::Create(ct::GetTestPublicKey(), "testlog",
133 "https://ct.example.com", "ct.example.com"); 205 "https://ct.example.com", "ct.example.com");
134 206
135 ASSERT_TRUE(log_); 207 ASSERT_TRUE(log_);
136 ASSERT_EQ(ct::GetTestPublicKeyId(), log_->key_id()); 208 EXPECT_EQ(ct::GetTestPublicKeyId(), log_->key_id());
137 ASSERT_EQ("ct.example.com", log_->dns_domain()); 209 EXPECT_EQ("ct.example.com", log_->dns_domain());
138 }
139
140 // Given a consistency proof between two snapshots of the tree, asserts that
141 // it verifies and no other combination of snapshots and proof nodes verifies.
142 void VerifierConsistencyCheck(int snapshot1,
143 int snapshot2,
144 const std::string& root1,
145 const std::string& root2,
146 const std::vector<std::string>& proof) {
147 // Verify the original consistency proof.
148 EXPECT_TRUE(
149 VerifyConsistencyProof(log_, snapshot1, root1, snapshot2, root2, proof))
150 << " " << snapshot1 << " " << snapshot2;
151
152 if (proof.empty()) {
153 // For simplicity test only non-trivial proofs that have root1 != root2
154 // snapshot1 != 0 and snapshot1 != snapshot2.
155 return;
156 }
157
158 // Wrong snapshot index: The proof checking code should not accept
159 // as a valid proof a proof for a tree size different than the original
160 // size it was produced for.
161 // Test that this is not the case for off-by-one changes.
162 EXPECT_FALSE(VerifyConsistencyProof(log_, snapshot1 - 1, root1, snapshot2,
163 root2, proof));
164 EXPECT_FALSE(VerifyConsistencyProof(log_, snapshot1 + 1, root1, snapshot2,
165 root2, proof));
166 EXPECT_FALSE(VerifyConsistencyProof(log_, snapshot1 ^ 2, root1, snapshot2,
167 root2, proof));
168
169 // Test that the proof is not accepted for trees with wrong tree height.
170 EXPECT_FALSE(VerifyConsistencyProof(log_, snapshot1, root1, snapshot2 * 2,
171 root2, proof));
172 EXPECT_FALSE(VerifyConsistencyProof(log_, snapshot1, root1, snapshot2 / 2,
173 root2, proof));
174
175 // Test that providing the wrong input root fails checking an
176 // otherwise-valid proof.
177 const std::string wrong_root("WrongRoot");
178 EXPECT_FALSE(VerifyConsistencyProof(log_, snapshot1, root1, snapshot2,
179 wrong_root, proof));
180 EXPECT_FALSE(VerifyConsistencyProof(log_, snapshot1, wrong_root, snapshot2,
181 root2, proof));
182 // Test that swapping roots fails checking an otherwise-valid proof (that
183 // the right root is used for each calculation).
184 EXPECT_FALSE(VerifyConsistencyProof(log_, snapshot1, root2, snapshot2,
185 root1, proof));
186
187 // Variations of wrong proofs, all of which should be rejected.
188 std::vector<std::string> wrong_proof;
189 // Empty proof.
190 EXPECT_FALSE(VerifyConsistencyProof(log_, snapshot1, root1, snapshot2,
191 root2, wrong_proof));
192
193 // Modify a single element in the proof.
194 for (size_t j = 0; j < proof.size(); ++j) {
195 wrong_proof = proof;
196 wrong_proof[j] = GetEmptyTreeHash();
197 EXPECT_FALSE(VerifyConsistencyProof(log_, snapshot1, root1, snapshot2,
198 root2, wrong_proof));
199 }
200
201 // Add garbage at the end of the proof.
202 wrong_proof = proof;
203 wrong_proof.push_back(std::string());
204 EXPECT_FALSE(VerifyConsistencyProof(log_, snapshot1, root1, snapshot2,
205 root2, wrong_proof));
206 wrong_proof.pop_back();
207
208 wrong_proof.push_back(proof.back());
209 EXPECT_FALSE(VerifyConsistencyProof(log_, snapshot1, root1, snapshot2,
210 root2, wrong_proof));
211 wrong_proof.pop_back();
212
213 // Remove a node from the end.
214 wrong_proof.pop_back();
215 EXPECT_FALSE(VerifyConsistencyProof(log_, snapshot1, root1, snapshot2,
216 root2, wrong_proof));
217
218 // Add garbage in the beginning of the proof.
219 wrong_proof.clear();
220 wrong_proof.push_back(std::string());
221 wrong_proof.insert(wrong_proof.end(), proof.begin(), proof.end());
222 EXPECT_FALSE(VerifyConsistencyProof(log_, snapshot1, root1, snapshot2,
223 root2, wrong_proof));
224
225 wrong_proof[0] = proof[0];
226 EXPECT_FALSE(VerifyConsistencyProof(log_, snapshot1, root1, snapshot2,
227 root2, wrong_proof));
228 } 210 }
229 211
230 protected: 212 protected:
231 scoped_refptr<const CTLogVerifier> log_; 213 scoped_refptr<const CTLogVerifier> log_;
232 }; 214 };
233 215
216 // Given an audit proof for a leaf in a Merkle tree, asserts that it verifies
217 // and no other combination of leaves, tree sizes and proof nodes verifies.
218 void CheckVerifyAuditProof(const CTLogVerifier& log,
219 size_t leaf,
220 size_t tree_size,
221 const std::vector<std::string>& proof,
222 const std::string& root_hash,
223 const std::string& leaf_hash) {
224 EXPECT_TRUE(
225 VerifyAuditProof(log, leaf, tree_size, proof, root_hash, leaf_hash))
226 << "proof for leaf " << leaf << " did not pass verification";
227 EXPECT_FALSE(
228 VerifyAuditProof(log, leaf - 1, tree_size, proof, root_hash, leaf_hash))
229 << "proof passed verification with wrong leaf index";
230 EXPECT_FALSE(
231 VerifyAuditProof(log, leaf + 1, tree_size, proof, root_hash, leaf_hash))
232 << "proof passed verification with wrong leaf index";
233 EXPECT_FALSE(
234 VerifyAuditProof(log, leaf ^ 2, tree_size, proof, root_hash, leaf_hash))
235 << "proof passed verification with wrong leaf index";
236 EXPECT_FALSE(
237 VerifyAuditProof(log, leaf, tree_size * 2, proof, root_hash, leaf_hash))
238 << "proof passed verification with wrong tree height";
239 EXPECT_FALSE(
240 VerifyAuditProof(log, leaf, tree_size / 2, proof, root_hash, leaf_hash))
241 << "proof passed verification with wrong tree height";
242 EXPECT_FALSE(VerifyAuditProof(log, leaf, tree_size, proof, GetEmptyTreeHash(),
243 leaf_hash))
244 << "proof passed verification with wrong root hash";
245
246 std::vector<std::string> wrong_proof;
247
248 // Modify a single element on the proof.
249 for (size_t j = 0; j < proof.size(); ++j) {
250 wrong_proof = proof;
251 wrong_proof[j] = GetEmptyTreeHash();
252 EXPECT_FALSE(VerifyAuditProof(log, leaf, tree_size, wrong_proof, root_hash,
253 leaf_hash))
254 << "proof passed verification with one wrong node (node " << j << ")";
255 }
256
257 wrong_proof = proof;
258 wrong_proof.push_back(std::string());
259 EXPECT_FALSE(
260 VerifyAuditProof(log, leaf, tree_size, wrong_proof, root_hash, leaf_hash))
261 << "proof passed verification with an empty node appended";
262
263 wrong_proof.back() = root_hash;
264 EXPECT_FALSE(
265 VerifyAuditProof(log, leaf, tree_size, wrong_proof, root_hash, leaf_hash))
266 << "proof passed verification with an incorrect node appended";
267 wrong_proof.pop_back();
268
269 if (!wrong_proof.empty()) {
270 wrong_proof.pop_back();
271 EXPECT_FALSE(VerifyAuditProof(log, leaf, tree_size, wrong_proof, root_hash,
272 leaf_hash))
273 << "proof passed verification with the last node missing";
274 }
275
276 wrong_proof.clear();
277 wrong_proof.push_back(std::string());
278 wrong_proof.insert(wrong_proof.end(), proof.begin(), proof.end());
279 EXPECT_FALSE(
280 VerifyAuditProof(log, leaf, tree_size, wrong_proof, root_hash, leaf_hash))
281 << "proof passed verification with an empty node prepended";
282
283 wrong_proof[0] = root_hash;
284 EXPECT_FALSE(
285 VerifyAuditProof(log, leaf, tree_size, wrong_proof, root_hash, leaf_hash))
286 << "proof passed verification with an incorrect node prepended";
287 }
288
289 // Given a consistency proof between two tree_sizes of the tree, asserts that
290 // it verifies and no other combination of tree_sizes and proof nodes
291 // verifies.
292 void CheckVerifyConsistencyProof(const CTLogVerifier& log,
293 int old_tree_size,
294 int new_tree_size,
295 const std::string& old_root,
296 const std::string& new_root,
297 const std::vector<std::string>& proof) {
298 // Verify the original consistency proof.
299 EXPECT_TRUE(VerifyConsistencyProof(log, old_tree_size, old_root,
300 new_tree_size, new_root, proof))
301 << "proof between trees of size " << old_tree_size << " and "
302 << new_tree_size << " did not pass verification";
303
304 if (proof.empty()) {
305 // For simplicity test only non-trivial proofs that have old_root !=
306 // new_root
307 // old_tree_size != 0 and old_tree_size != new_tree_size.
308 return;
309 }
310
311 // Wrong tree size: The proof checking code should not accept as a valid proof
312 // a proof for a tree size different than the original size it was produced
313 // for. Test that this is not the case for off-by-one changes.
314 EXPECT_FALSE(VerifyConsistencyProof(log, old_tree_size - 1, old_root,
315 new_tree_size, new_root, proof))
316 << "proof passed verification with old tree size - 1";
317 EXPECT_FALSE(VerifyConsistencyProof(log, old_tree_size + 1, old_root,
318 new_tree_size, new_root, proof))
319 << "proof passed verification with old tree size + 1";
320 EXPECT_FALSE(VerifyConsistencyProof(log, old_tree_size ^ 2, old_root,
321 new_tree_size, new_root, proof))
322 << "proof passed verification with old tree size ^ 2";
323
324 EXPECT_FALSE(VerifyConsistencyProof(log, old_tree_size, old_root,
325 new_tree_size * 2, new_root, proof))
326 << "proof passed verification with new tree height + 1";
327 EXPECT_FALSE(VerifyConsistencyProof(log, old_tree_size, old_root,
328 new_tree_size / 2, new_root, proof))
329 << "proof passed verification with new tree height - 1";
330
331 const std::string wrong_root("WrongRoot");
332 EXPECT_FALSE(VerifyConsistencyProof(log, old_tree_size, old_root,
333 new_tree_size, wrong_root, proof))
334 << "proof passed verification with wrong old root";
335 EXPECT_FALSE(VerifyConsistencyProof(log, old_tree_size, wrong_root,
336 new_tree_size, new_root, proof))
337 << "proof passed verification with wrong new root";
338 EXPECT_FALSE(VerifyConsistencyProof(log, old_tree_size, new_root,
339 new_tree_size, old_root, proof))
340 << "proof passed verification with old and new root swapped";
341
342 // Variations of wrong proofs, all of which should be rejected.
343 std::vector<std::string> wrong_proof;
344 EXPECT_FALSE(VerifyConsistencyProof(log, old_tree_size, old_root,
345 new_tree_size, new_root, wrong_proof))
346 << "empty proof passed verification";
347
348 // Modify a single element in the proof.
349 for (size_t j = 0; j < proof.size(); ++j) {
350 wrong_proof = proof;
351 wrong_proof[j] = GetEmptyTreeHash();
352 EXPECT_FALSE(VerifyConsistencyProof(log, old_tree_size, old_root,
353 new_tree_size, new_root, wrong_proof))
354 << "proof passed verification with incorrect node (node " << j << ")";
355 }
356
357 wrong_proof = proof;
358 wrong_proof.push_back(std::string());
359 EXPECT_FALSE(VerifyConsistencyProof(log, old_tree_size, old_root,
360 new_tree_size, new_root, wrong_proof))
361 << "proof passed verification with empty node appended";
362
363 wrong_proof.back() = proof.back();
364 EXPECT_FALSE(VerifyConsistencyProof(log, old_tree_size, old_root,
365 new_tree_size, new_root, wrong_proof))
366 << "proof passed verification with last node duplicated";
367 wrong_proof.pop_back();
368
369 wrong_proof.pop_back();
370 EXPECT_FALSE(VerifyConsistencyProof(log, old_tree_size, old_root,
371 new_tree_size, new_root, wrong_proof))
372 << "proof passed verification with last node missing";
373
374 wrong_proof.clear();
375 wrong_proof.push_back(std::string());
376 wrong_proof.insert(wrong_proof.end(), proof.begin(), proof.end());
377 EXPECT_FALSE(VerifyConsistencyProof(log, old_tree_size, old_root,
378 new_tree_size, new_root, wrong_proof))
379 << "proof passed verification with empty node prepended";
380
381 wrong_proof[0] = proof[0];
382 EXPECT_FALSE(VerifyConsistencyProof(log, old_tree_size, old_root,
383 new_tree_size, new_root, wrong_proof))
384 << "proof passed verification with first node duplicated";
385 }
386
234 TEST_F(CTLogVerifierTest, VerifiesCertSCT) { 387 TEST_F(CTLogVerifierTest, VerifiesCertSCT) {
235 ct::LogEntry cert_entry; 388 ct::LogEntry cert_entry;
236 ct::GetX509CertLogEntry(&cert_entry); 389 ct::GetX509CertLogEntry(&cert_entry);
237 390
238 scoped_refptr<ct::SignedCertificateTimestamp> cert_sct; 391 scoped_refptr<ct::SignedCertificateTimestamp> cert_sct;
239 ct::GetX509CertSCT(&cert_sct); 392 ct::GetX509CertSCT(&cert_sct);
240 393
241 EXPECT_TRUE(log_->Verify(cert_entry, *cert_sct.get())); 394 EXPECT_TRUE(log_->Verify(cert_entry, *cert_sct.get()));
242 } 395 }
243 396
(...skipping 64 matching lines...) Expand 10 before | Expand all | Expand 10 after
308 std::string key = ct::GetTestPublicKey(); 461 std::string key = ct::GetTestPublicKey();
309 key += "extra"; 462 key += "extra";
310 463
311 scoped_refptr<const CTLogVerifier> log = CTLogVerifier::Create( 464 scoped_refptr<const CTLogVerifier> log = CTLogVerifier::Create(
312 key, "testlog", "https://ct.example.com", "ct.example.com"); 465 key, "testlog", "https://ct.example.com", "ct.example.com");
313 EXPECT_FALSE(log); 466 EXPECT_FALSE(log);
314 } 467 }
315 468
316 TEST_F(CTLogVerifierTest, VerifiesConsistencyProofEdgeCases_EmptyProof) { 469 TEST_F(CTLogVerifierTest, VerifiesConsistencyProofEdgeCases_EmptyProof) {
317 std::vector<std::string> empty_proof; 470 std::vector<std::string> empty_proof;
318 std::string root1(GetEmptyTreeHash()), root2(GetEmptyTreeHash()); 471 std::string old_root(GetEmptyTreeHash()), new_root(GetEmptyTreeHash());
319 472
320 // Snapshots that are always consistent, because they are either 473 // tree_sizes that are always consistent, because they are either
321 // from an empty tree to a non-empty one or for trees of the same 474 // from an empty tree to a non-empty one or for trees of the same
322 // size. 475 // size.
323 EXPECT_TRUE(VerifyConsistencyProof(log_, 0, root1, 0, root2, empty_proof)); 476 EXPECT_TRUE(
324 EXPECT_TRUE(VerifyConsistencyProof(log_, 0, root1, 1, root2, empty_proof)); 477 VerifyConsistencyProof(*log_, 0, old_root, 0, new_root, empty_proof));
325 EXPECT_TRUE(VerifyConsistencyProof(log_, 1, root1, 1, root2, empty_proof)); 478 EXPECT_TRUE(
479 VerifyConsistencyProof(*log_, 0, old_root, 1, new_root, empty_proof));
480 EXPECT_TRUE(
481 VerifyConsistencyProof(*log_, 1, old_root, 1, new_root, empty_proof));
326 482
327 // Invalid consistency proofs. 483 // Invalid consistency proofs.
328 // Time travel to the past. 484 // Time travel to the past.
329 EXPECT_FALSE(VerifyConsistencyProof(log_, 1, root1, 0, root2, empty_proof)); 485 EXPECT_FALSE(
330 EXPECT_FALSE(VerifyConsistencyProof(log_, 2, root1, 1, root2, empty_proof)); 486 VerifyConsistencyProof(*log_, 1, old_root, 0, new_root, empty_proof));
487 EXPECT_FALSE(
488 VerifyConsistencyProof(*log_, 2, old_root, 1, new_root, empty_proof));
331 // Proof between two trees of different size can never be empty. 489 // Proof between two trees of different size can never be empty.
332 EXPECT_FALSE(VerifyConsistencyProof(log_, 1, root1, 2, root2, empty_proof)); 490 EXPECT_FALSE(
491 VerifyConsistencyProof(*log_, 1, old_root, 2, new_root, empty_proof));
333 } 492 }
334 493
335 TEST_F(CTLogVerifierTest, VerifiesConsistencyProofEdgeCases_MismatchingRoots) { 494 TEST_F(CTLogVerifierTest, VerifiesConsistencyProofEdgeCases_MismatchingRoots) {
495 const std::string old_root(GetEmptyTreeHash());
496 std::string new_root;
336 std::vector<std::string> empty_proof; 497 std::vector<std::string> empty_proof;
337 std::string root2;
338 const std::string empty_tree_hash(GetEmptyTreeHash());
339 498
340 // Roots don't match. 499 // Roots don't match.
341 EXPECT_FALSE( 500 EXPECT_FALSE(
342 VerifyConsistencyProof(log_, 0, empty_tree_hash, 0, root2, empty_proof)); 501 VerifyConsistencyProof(*log_, 0, old_root, 0, new_root, empty_proof));
343 EXPECT_FALSE( 502 EXPECT_FALSE(
344 VerifyConsistencyProof(log_, 1, empty_tree_hash, 1, root2, empty_proof)); 503 VerifyConsistencyProof(*log_, 1, old_root, 1, new_root, empty_proof));
345 } 504 }
346 505
347 TEST_F(CTLogVerifierTest, 506 TEST_F(CTLogVerifierTest,
348 VerifiesConsistencyProofEdgeCases_MatchingRootsNonEmptyProof) { 507 VerifiesConsistencyProofEdgeCases_MatchingRootsNonEmptyProof) {
349 const std::string empty_tree_hash(GetEmptyTreeHash()); 508 const std::string empty_tree_hash(GetEmptyTreeHash());
350 509
351 std::vector<std::string> proof; 510 std::vector<std::string> proof;
352 proof.push_back(empty_tree_hash); 511 proof.push_back(empty_tree_hash);
353 512
354 // Roots match and the tree size is either the same or the old tree size is 0, 513 // Roots match and the tree size is either the same or the old tree size is 0,
355 // but the proof is not empty (the verification code should not accept 514 // but the proof is not empty (the verification code should not accept
356 // proofs with redundant nodes in this case). 515 // proofs with redundant nodes in this case).
357 proof.push_back(empty_tree_hash); 516 proof.push_back(empty_tree_hash);
358 EXPECT_FALSE(VerifyConsistencyProof(log_, 0, empty_tree_hash, 0, 517 EXPECT_FALSE(VerifyConsistencyProof(*log_, 0, empty_tree_hash, 0,
359 empty_tree_hash, proof)); 518 empty_tree_hash, proof));
360 EXPECT_FALSE(VerifyConsistencyProof(log_, 0, empty_tree_hash, 1, 519 EXPECT_FALSE(VerifyConsistencyProof(*log_, 0, empty_tree_hash, 1,
361 empty_tree_hash, proof)); 520 empty_tree_hash, proof));
362 EXPECT_FALSE(VerifyConsistencyProof(log_, 1, empty_tree_hash, 1, 521 EXPECT_FALSE(VerifyConsistencyProof(*log_, 1, empty_tree_hash, 1,
363 empty_tree_hash, proof)); 522 empty_tree_hash, proof));
364 } 523 }
365 524
366 TEST_F(CTLogVerifierTest, VerifiesValidConsistencyProofs) { 525 class CTLogVerifierConsistencyProofTest
526 : public CTLogVerifierTest,
527 public ::testing::WithParamInterface<size_t /* proof index */> {};
528
529 TEST_P(CTLogVerifierConsistencyProofTest, VerifiesValidConsistencyProof) {
530 const ConsistencyProofTestVector& test_vector =
531 kConsistencyProofs[GetParam()];
532 const std::vector<std::string> proof = GetProof(test_vector);
533
534 const char* const old_root = kRootHashes[test_vector.old_tree_size - 1];
535 const char* const new_root = kRootHashes[test_vector.new_tree_size - 1];
536 CheckVerifyConsistencyProof(*log_, test_vector.old_tree_size,
537 test_vector.new_tree_size, HexToBytes(old_root),
538 HexToBytes(new_root), proof);
539 }
540
541 INSTANTIATE_TEST_CASE_P(KnownGoodProofs,
542 CTLogVerifierConsistencyProofTest,
543 ::testing::Range(size_t(0),
544 arraysize(kConsistencyProofs)));
545
546 TEST_F(CTLogVerifierTest, VerifiesAuditProofEdgeCases_InvalidLeafIndex) {
367 std::vector<std::string> proof; 547 std::vector<std::string> proof;
368 std::string root1, root2; 548 EXPECT_FALSE(
369 549 VerifyAuditProof(*log_, 1, 0, proof, std::string(), std::string()));
370 // Known good proofs. 550 EXPECT_FALSE(
371 for (size_t i = 0; i < arraysize(kSHA256Proofs); ++i) { 551 VerifyAuditProof(*log_, 2, 1, proof, std::string(), std::string()));
372 SCOPED_TRACE(i); 552
373 proof.clear(); 553 const std::string empty_hash = GetEmptyTreeHash();
374 for (size_t j = 0; j < kSHA256Proofs[i].proof_length; ++j) { 554 EXPECT_FALSE(VerifyAuditProof(*log_, 1, 0, proof, empty_hash, std::string()));
375 const char* const v = kSHA256Proofs[i].proof[j]; 555 EXPECT_FALSE(VerifyAuditProof(*log_, 2, 1, proof, empty_hash, std::string()));
376 proof.push_back(HexToBytes(v)); 556 }
557
558 // Functions that implement algorithms from RFC6962 necessary for constructing
559 // Merkle trees and proofs. This allows tests to generate a variety of trees
560 // for exhaustive testing.
561 namespace rfc6962 {
562
563 // Calculates the hash of a leaf in a Merkle tree, given its content.
564 // See RFC6962, section 2.1.
565 std::string HashLeaf(const std::string& leaf) {
566 const char kLeafPrefix[] = {'\x00'};
567
568 SHA256HashValue sha256;
569 memset(sha256.data, 0, sizeof(sha256.data));
570
571 std::unique_ptr<crypto::SecureHash> hash(
572 crypto::SecureHash::Create(crypto::SecureHash::SHA256));
573 hash->Update(kLeafPrefix, 1);
574 hash->Update(leaf.data(), leaf.size());
575 hash->Finish(sha256.data, sizeof(sha256.data));
576
577 return std::string(reinterpret_cast<const char*>(sha256.data),
578 sizeof(sha256.data));
579 }
580
581 // Calculates the root hash of a Merkle tree, given its leaf data and size.
582 // See RFC6962, section 2.1.
583 std::string HashTree(std::string leaves[], size_t tree_size) {
584 if (tree_size == 0)
585 return GetEmptyTreeHash();
586 if (tree_size == 1)
587 return HashLeaf(leaves[0]);
588
589 // Find the index of the last leaf in the left sub-tree.
590 const size_t split = CalculateNearestPowerOfTwo(tree_size);
591
592 // Hash the left and right sub-trees, then hash the results.
593 return ct::internal::HashNodes(HashTree(leaves, split),
594 HashTree(&leaves[split], tree_size - split));
595 }
596
597 // Returns a Merkle audit proof for the leaf with index |leaf_index|.
598 // The tree consists of |leaves[0]| to |leaves[tree_size-1]|.
599 // If |leaf_index| is >= |tree_size|, an empty proof will be returned.
600 // See RFC6962, section 2.1.1, for more details.
601 std::vector<std::string> CreateAuditProof(std::string leaves[],
602 size_t tree_size,
603 size_t leaf_index) {
604 std::vector<std::string> proof;
605 if (leaf_index >= tree_size)
606 return proof;
607 if (tree_size == 1)
608 return proof;
609
610 // Find the index of the first leaf in the right sub-tree.
611 const size_t split = CalculateNearestPowerOfTwo(tree_size);
612
613 // Recurse down the correct branch of the tree (left or right) to reach the
614 // leaf with |leaf_index|. Add the hash of the branch not taken at each step
615 // on the way up to build the proof.
616 if (leaf_index < split) {
617 proof = CreateAuditProof(leaves, split, leaf_index);
618 proof.push_back(HashTree(&leaves[split], tree_size - split));
619 } else {
620 proof =
621 CreateAuditProof(&leaves[split], tree_size - split, leaf_index - split);
622 proof.push_back(HashTree(leaves, split));
623 }
624
625 return proof;
626 }
627
628 // Returns a Merkle consistency proof between two Merkle trees.
629 // The old tree contains |leaves[0]| to |leaves[old_tree_size-1]|.
630 // The new tree contains |leaves[0]| to |leaves[new_tree_size-1]|.
631 // Call with |contains_old_tree| = true.
632 // See RFC6962, section 2.1.2, for more details.
633 std::vector<std::string> CreateConsistencyProof(std::string leaves[],
634 size_t new_tree_size,
635 size_t old_tree_size,
636 bool contains_old_tree = true) {
637 std::vector<std::string> proof;
638 if (old_tree_size == 0 || old_tree_size > new_tree_size)
639 return proof;
640 if (old_tree_size == new_tree_size) {
641 // Consistency proof for two equal subtrees is empty.
642 if (!contains_old_tree) {
643 // Record the hash of this subtree unless it's the root for which
644 // the proof was originally requested. (This happens when the old tree is
645 // balanced).
646 proof.push_back(HashTree(leaves, old_tree_size));
377 } 647 }
378 const uint64_t snapshot1 = kSHA256Proofs[i].snapshot1; 648 return proof;
379 const uint64_t snapshot2 = kSHA256Proofs[i].snapshot2; 649 }
380 const char* const old_root = kSHA256Roots[snapshot1 - 1]; 650
381 const char* const new_root = kSHA256Roots[snapshot2 - 1]; 651 // Find the index of the last leaf in the left sub-tree.
382 VerifierConsistencyCheck(snapshot1, snapshot2, HexToBytes(old_root), 652 const size_t split = CalculateNearestPowerOfTwo(new_tree_size);
383 HexToBytes(new_root), proof); 653
384 } 654 if (old_tree_size <= split) {
385 } 655 // Root of the old tree is in the left subtree of the new tree.
386
387 const char kLeafPrefix[] = {'\x00'};
388
389 // Reference implementation of RFC6962.
390 // This allows generation of arbitrary-sized Merkle trees and consistency
391 // proofs between them for testing the consistency proof validation
392 // code.
393 class TreeHasher {
394 public:
395 static std::string HashLeaf(const std::string& leaf) {
396 SHA256HashValue sha256;
397 memset(sha256.data, 0, sizeof(sha256.data));
398
399 std::unique_ptr<crypto::SecureHash> hash(
400 crypto::SecureHash::Create(crypto::SecureHash::SHA256));
401 hash->Update(kLeafPrefix, 1);
402 hash->Update(leaf.data(), leaf.size());
403 hash->Finish(sha256.data, sizeof(sha256.data));
404
405 return std::string(reinterpret_cast<const char*>(sha256.data),
406 sizeof(sha256.data));
407 }
408 };
409
410 // Reference implementation of Merkle hash, for cross-checking.
411 // Recursively calculates the hash of the root given the leaf data
412 // specified in |inputs|.
413 std::string ReferenceMerkleTreeHash(std::string* inputs, uint64_t input_size) {
414 if (!input_size)
415 return GetEmptyTreeHash();
416 if (input_size == 1)
417 return TreeHasher::HashLeaf(inputs[0]);
418
419 const uint64_t split = CalculateNearestPowerOfTwo(input_size);
420
421 return ct::internal::HashNodes(
422 ReferenceMerkleTreeHash(&inputs[0], split),
423 ReferenceMerkleTreeHash(&inputs[split], input_size - split));
424 }
425
426 // Reference implementation of snapshot consistency. Returns a
427 // consistency proof between two snapshots of the tree designated
428 // by |inputs|.
429 // Call with have_root1 = true.
430 std::vector<std::string> ReferenceSnapshotConsistency(std::string* inputs,
431 uint64_t snapshot2,
432 uint64_t snapshot1,
433 bool have_root1) {
434 std::vector<std::string> proof;
435 if (snapshot1 == 0 || snapshot1 > snapshot2)
436 return proof;
437 if (snapshot1 == snapshot2) {
438 // Consistency proof for two equal subtrees is empty.
439 if (!have_root1) {
440 // Record the hash of this subtree unless it's the root for which
441 // the proof was originally requested. (This happens when the snapshot1
442 // tree is balanced.)
443 proof.push_back(ReferenceMerkleTreeHash(inputs, snapshot1));
444 }
445 return proof;
446 }
447
448 // 0 < snapshot1 < snapshot2
449 const uint64_t split = CalculateNearestPowerOfTwo(snapshot2);
450
451 std::vector<std::string> subproof;
452 if (snapshot1 <= split) {
453 // Root of snapshot1 is in the left subtree of snapshot2.
454 // Prove that the left subtrees are consistent. 656 // Prove that the left subtrees are consistent.
455 subproof = 657 proof =
456 ReferenceSnapshotConsistency(inputs, split, snapshot1, have_root1); 658 CreateConsistencyProof(leaves, split, old_tree_size, contains_old_tree);
457 proof.insert(proof.end(), subproof.begin(), subproof.end()); 659 // Record the hash of the right subtree (only present in the new tree).
458 // Record the hash of the right subtree (only present in snapshot2). 660 proof.push_back(HashTree(&leaves[split], new_tree_size - split));
459 proof.push_back(ReferenceMerkleTreeHash(&inputs[split], snapshot2 - split));
460 } else { 661 } else {
461 // Snapshot1 root is at the same level as snapshot2 root. 662 // The old tree root is at the same level as the new tree root.
462 // Prove that the right subtrees are consistent. The right subtree 663 // Prove that the right subtrees are consistent. The right subtree
463 // doesn't contain the root of snapshot1, so set have_root1 = false. 664 // doesn't contain the root of the old tree, so set contains_old_tree =
464 subproof = ReferenceSnapshotConsistency(&inputs[split], snapshot2 - split, 665 // false.
465 snapshot1 - split, false); 666 proof = CreateConsistencyProof(&leaves[split], new_tree_size - split,
466 proof.insert(proof.end(), subproof.begin(), subproof.end()); 667 old_tree_size - split,
668 /* contains_old_tree = */ false);
467 // Record the hash of the left subtree (equal in both trees). 669 // Record the hash of the left subtree (equal in both trees).
468 proof.push_back(ReferenceMerkleTreeHash(&inputs[0], split)); 670 proof.push_back(HashTree(leaves, split));
469 } 671 }
470 return proof; 672 return proof;
471 } 673 }
472 674
473 class CTLogVerifierTestUsingReferenceGenerator 675 } // namespace rfc6962
676
677 class CTLogVerifierAuditProofTest
474 : public CTLogVerifierTest, 678 : public CTLogVerifierTest,
475 public ::testing::WithParamInterface<uint64_t> {}; 679 public ::testing::WithParamInterface<size_t /* proof index */> {};
476 680
477 const uint64_t kReferenceTreeSize = 256; 681 // Checks that a sample set of valid audit proofs verify successfully.
478 682 TEST_P(CTLogVerifierAuditProofTest, VerifiesValidAuditProofs) {
479 // Tests that every possible valid consistency proof for a tree of a given size 683 const AuditProofTestVector& test_vector = kAuditProofs[GetParam()];
480 // verifies correctly. Also checks that invalid variations of each proof fail to 684 const std::vector<std::string> proof = GetProof(test_vector);
481 // verify (see VerifierConsistencyCheck). 685
482 TEST_P(CTLogVerifierTestUsingReferenceGenerator, 686 const char* const root_hash = kRootHashes[test_vector.tree_size - 1];
483 VerifiesValidConsistencyProof) { 687 CheckVerifyAuditProof(*log_, test_vector.leaf, test_vector.tree_size, proof,
484 std::vector<std::string> data; 688 HexToBytes(root_hash),
485 for (uint64_t i = 0; i < kReferenceTreeSize; ++i) 689 HexToBytes(kLeafHashes[test_vector.leaf]));
486 data.push_back(std::string(1, static_cast<char>(i))); 690 }
487 691
488 const uint64_t tree_size = GetParam(); 692 INSTANTIATE_TEST_CASE_P(KnownGoodProofs,
489 const std::string tree_root = ReferenceMerkleTreeHash(data.data(), tree_size); 693 CTLogVerifierAuditProofTest,
490 694 ::testing::Range(size_t(0), arraysize(kAuditProofs)));
491 for (uint64_t snapshot = 1; snapshot <= tree_size; ++snapshot) { 695
492 SCOPED_TRACE(snapshot); 696 class CTLogVerifierTestUsingGenerator
493 const std::string snapshot_root = 697 : public CTLogVerifierTest,
494 ReferenceMerkleTreeHash(data.data(), snapshot); 698 public ::testing::WithParamInterface<size_t /* tree_size */> {};
495 const std::vector<std::string> proof = 699
496 ReferenceSnapshotConsistency(data.data(), tree_size, snapshot, true); 700 // Checks that valid consistency proofs for a range of generated Merkle trees
497 VerifierConsistencyCheck(snapshot, tree_size, snapshot_root, tree_root, 701 // verify successfully.
498 proof); 702 TEST_P(CTLogVerifierTestUsingGenerator, VerifiesValidConsistencyProof) {
499 } 703 const size_t tree_size = GetParam();
500 } 704
501 705 std::vector<std::string> tree_leaves(tree_size);
502 // Test verification of consistency proofs between all tree sizes from 1 to 128. 706 for (size_t i = 0; i < tree_size; ++i)
503 INSTANTIATE_TEST_CASE_P(RangeOfTreeSizesAndSnapshots, 707 tree_leaves[i].push_back(static_cast<char>(i));
504 CTLogVerifierTestUsingReferenceGenerator, 708
505 testing::Range(UINT64_C(1), 709 const std::string tree_root =
506 (kReferenceTreeSize / 2) + 1)); 710 rfc6962::HashTree(tree_leaves.data(), tree_size);
711
712 // Check consistency proofs for every sub-tree.
713 for (size_t old_tree_size = 0; old_tree_size <= tree_size; ++old_tree_size) {
714 SCOPED_TRACE(old_tree_size);
715 const std::string old_tree_root =
716 rfc6962::HashTree(tree_leaves.data(), old_tree_size);
717 const std::vector<std::string> proof = rfc6962::CreateConsistencyProof(
718 tree_leaves.data(), tree_size, old_tree_size);
719 // Checks that the consistency proof verifies only with the correct tree
720 // sizes and root hashes.
721 CheckVerifyConsistencyProof(*log_, old_tree_size, tree_size, old_tree_root,
722 tree_root, proof);
723 }
724 }
725
726 // Checks that valid audit proofs for a range of generated Merkle trees verify
727 // successfully.
728 TEST_P(CTLogVerifierTestUsingGenerator, VerifiesValidAuditProofs) {
729 const size_t tree_size = GetParam();
730
731 std::vector<std::string> tree_leaves(tree_size);
732 for (size_t i = 0; i < tree_size; ++i)
733 tree_leaves[i].push_back(static_cast<char>(i));
734
735 const std::string root = rfc6962::HashTree(tree_leaves.data(), tree_size);
736
737 // Check audit proofs for every leaf in the tree.
738 for (size_t leaf = 0; leaf < tree_size; ++leaf) {
739 SCOPED_TRACE(leaf);
740 std::vector<std::string> proof =
741 rfc6962::CreateAuditProof(tree_leaves.data(), tree_size, leaf);
742 // Checks that the audit proof verifies only for this leaf data, index,
743 // hash, tree size and root hash.
744 CheckVerifyAuditProof(*log_, leaf, tree_size, proof, root,
745 rfc6962::HashLeaf(tree_leaves[leaf]));
746 }
747 }
748
749 // Test verification of consistency proofs and audit proofs for all tree sizes
750 // from 0 to 128.
751 INSTANTIATE_TEST_CASE_P(RangeOfTreeSizes,
752 CTLogVerifierTestUsingGenerator,
753 testing::Range(size_t(0), size_t(129)));
507 754
508 } // namespace 755 } // namespace
509 756
510 } // namespace net 757 } // namespace net
OLDNEW

Powered by Google App Engine
This is Rietveld 408576698